| /* |
| * PowerPC64 port by Mike Corrigan and Dave Engebretsen |
| * {mikejc|engebret}@us.ibm.com |
| * |
| * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com> |
| * |
| * SMP scalability work: |
| * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM |
| * |
| * Module name: htab.c |
| * |
| * Description: |
| * PowerPC Hashed Page Table functions |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #undef DEBUG |
| #undef DEBUG_LOW |
| |
| #include <linux/config.h> |
| #include <linux/spinlock.h> |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/proc_fs.h> |
| #include <linux/stat.h> |
| #include <linux/sysctl.h> |
| #include <linux/ctype.h> |
| #include <linux/cache.h> |
| #include <linux/init.h> |
| #include <linux/signal.h> |
| |
| #include <asm/processor.h> |
| #include <asm/pgtable.h> |
| #include <asm/mmu.h> |
| #include <asm/mmu_context.h> |
| #include <asm/page.h> |
| #include <asm/types.h> |
| #include <asm/system.h> |
| #include <asm/uaccess.h> |
| #include <asm/machdep.h> |
| #include <asm/lmb.h> |
| #include <asm/abs_addr.h> |
| #include <asm/tlbflush.h> |
| #include <asm/io.h> |
| #include <asm/eeh.h> |
| #include <asm/tlb.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cputable.h> |
| #include <asm/abs_addr.h> |
| #include <asm/sections.h> |
| |
| #ifdef DEBUG |
| #define DBG(fmt...) udbg_printf(fmt) |
| #else |
| #define DBG(fmt...) |
| #endif |
| |
| #ifdef DEBUG_LOW |
| #define DBG_LOW(fmt...) udbg_printf(fmt) |
| #else |
| #define DBG_LOW(fmt...) |
| #endif |
| |
| #define KB (1024) |
| #define MB (1024*KB) |
| |
| /* |
| * Note: pte --> Linux PTE |
| * HPTE --> PowerPC Hashed Page Table Entry |
| * |
| * Execution context: |
| * htab_initialize is called with the MMU off (of course), but |
| * the kernel has been copied down to zero so it can directly |
| * reference global data. At this point it is very difficult |
| * to print debug info. |
| * |
| */ |
| |
| #ifdef CONFIG_U3_DART |
| extern unsigned long dart_tablebase; |
| #endif /* CONFIG_U3_DART */ |
| |
| static unsigned long _SDR1; |
| struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; |
| |
| hpte_t *htab_address; |
| unsigned long htab_size_bytes; |
| unsigned long htab_hash_mask; |
| int mmu_linear_psize = MMU_PAGE_4K; |
| int mmu_virtual_psize = MMU_PAGE_4K; |
| int mmu_vmalloc_psize = MMU_PAGE_4K; |
| int mmu_io_psize = MMU_PAGE_4K; |
| #ifdef CONFIG_HUGETLB_PAGE |
| int mmu_huge_psize = MMU_PAGE_16M; |
| unsigned int HPAGE_SHIFT; |
| #endif |
| #ifdef CONFIG_PPC_64K_PAGES |
| int mmu_ci_restrictions; |
| #endif |
| |
| /* There are definitions of page sizes arrays to be used when none |
| * is provided by the firmware. |
| */ |
| |
| /* Pre-POWER4 CPUs (4k pages only) |
| */ |
| struct mmu_psize_def mmu_psize_defaults_old[] = { |
| [MMU_PAGE_4K] = { |
| .shift = 12, |
| .sllp = 0, |
| .penc = 0, |
| .avpnm = 0, |
| .tlbiel = 0, |
| }, |
| }; |
| |
| /* POWER4, GPUL, POWER5 |
| * |
| * Support for 16Mb large pages |
| */ |
| struct mmu_psize_def mmu_psize_defaults_gp[] = { |
| [MMU_PAGE_4K] = { |
| .shift = 12, |
| .sllp = 0, |
| .penc = 0, |
| .avpnm = 0, |
| .tlbiel = 1, |
| }, |
| [MMU_PAGE_16M] = { |
| .shift = 24, |
| .sllp = SLB_VSID_L, |
| .penc = 0, |
| .avpnm = 0x1UL, |
| .tlbiel = 0, |
| }, |
| }; |
| |
| |
| int htab_bolt_mapping(unsigned long vstart, unsigned long vend, |
| unsigned long pstart, unsigned long mode, int psize) |
| { |
| unsigned long vaddr, paddr; |
| unsigned int step, shift; |
| unsigned long tmp_mode; |
| int ret = 0; |
| |
| shift = mmu_psize_defs[psize].shift; |
| step = 1 << shift; |
| |
| for (vaddr = vstart, paddr = pstart; vaddr < vend; |
| vaddr += step, paddr += step) { |
| unsigned long vpn, hash, hpteg; |
| unsigned long vsid = get_kernel_vsid(vaddr); |
| unsigned long va = (vsid << 28) | (vaddr & 0x0fffffff); |
| |
| vpn = va >> shift; |
| tmp_mode = mode; |
| |
| /* Make non-kernel text non-executable */ |
| if (!in_kernel_text(vaddr)) |
| tmp_mode = mode | HPTE_R_N; |
| |
| hash = hpt_hash(va, shift); |
| hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); |
| |
| DBG("htab_bolt_mapping: calling %p\n", ppc_md.hpte_insert); |
| |
| BUG_ON(!ppc_md.hpte_insert); |
| ret = ppc_md.hpte_insert(hpteg, va, paddr, |
| tmp_mode, HPTE_V_BOLTED, psize); |
| |
| if (ret < 0) |
| break; |
| } |
| return ret < 0 ? ret : 0; |
| } |
| |
| static int __init htab_dt_scan_page_sizes(unsigned long node, |
| const char *uname, int depth, |
| void *data) |
| { |
| char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| u32 *prop; |
| unsigned long size = 0; |
| |
| /* We are scanning "cpu" nodes only */ |
| if (type == NULL || strcmp(type, "cpu") != 0) |
| return 0; |
| |
| prop = (u32 *)of_get_flat_dt_prop(node, |
| "ibm,segment-page-sizes", &size); |
| if (prop != NULL) { |
| DBG("Page sizes from device-tree:\n"); |
| size /= 4; |
| cur_cpu_spec->cpu_features &= ~(CPU_FTR_16M_PAGE); |
| while(size > 0) { |
| unsigned int shift = prop[0]; |
| unsigned int slbenc = prop[1]; |
| unsigned int lpnum = prop[2]; |
| unsigned int lpenc = 0; |
| struct mmu_psize_def *def; |
| int idx = -1; |
| |
| size -= 3; prop += 3; |
| while(size > 0 && lpnum) { |
| if (prop[0] == shift) |
| lpenc = prop[1]; |
| prop += 2; size -= 2; |
| lpnum--; |
| } |
| switch(shift) { |
| case 0xc: |
| idx = MMU_PAGE_4K; |
| break; |
| case 0x10: |
| idx = MMU_PAGE_64K; |
| break; |
| case 0x14: |
| idx = MMU_PAGE_1M; |
| break; |
| case 0x18: |
| idx = MMU_PAGE_16M; |
| cur_cpu_spec->cpu_features |= CPU_FTR_16M_PAGE; |
| break; |
| case 0x22: |
| idx = MMU_PAGE_16G; |
| break; |
| } |
| if (idx < 0) |
| continue; |
| def = &mmu_psize_defs[idx]; |
| def->shift = shift; |
| if (shift <= 23) |
| def->avpnm = 0; |
| else |
| def->avpnm = (1 << (shift - 23)) - 1; |
| def->sllp = slbenc; |
| def->penc = lpenc; |
| /* We don't know for sure what's up with tlbiel, so |
| * for now we only set it for 4K and 64K pages |
| */ |
| if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K) |
| def->tlbiel = 1; |
| else |
| def->tlbiel = 0; |
| |
| DBG(" %d: shift=%02x, sllp=%04x, avpnm=%08x, " |
| "tlbiel=%d, penc=%d\n", |
| idx, shift, def->sllp, def->avpnm, def->tlbiel, |
| def->penc); |
| } |
| return 1; |
| } |
| return 0; |
| } |
| |
| |
| static void __init htab_init_page_sizes(void) |
| { |
| int rc; |
| |
| /* Default to 4K pages only */ |
| memcpy(mmu_psize_defs, mmu_psize_defaults_old, |
| sizeof(mmu_psize_defaults_old)); |
| |
| /* |
| * Try to find the available page sizes in the device-tree |
| */ |
| rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL); |
| if (rc != 0) /* Found */ |
| goto found; |
| |
| /* |
| * Not in the device-tree, let's fallback on known size |
| * list for 16M capable GP & GR |
| */ |
| if (cpu_has_feature(CPU_FTR_16M_PAGE) && !machine_is(iseries)) |
| memcpy(mmu_psize_defs, mmu_psize_defaults_gp, |
| sizeof(mmu_psize_defaults_gp)); |
| found: |
| /* |
| * Pick a size for the linear mapping. Currently, we only support |
| * 16M, 1M and 4K which is the default |
| */ |
| if (mmu_psize_defs[MMU_PAGE_16M].shift) |
| mmu_linear_psize = MMU_PAGE_16M; |
| else if (mmu_psize_defs[MMU_PAGE_1M].shift) |
| mmu_linear_psize = MMU_PAGE_1M; |
| |
| #ifdef CONFIG_PPC_64K_PAGES |
| /* |
| * Pick a size for the ordinary pages. Default is 4K, we support |
| * 64K for user mappings and vmalloc if supported by the processor. |
| * We only use 64k for ioremap if the processor |
| * (and firmware) support cache-inhibited large pages. |
| * If not, we use 4k and set mmu_ci_restrictions so that |
| * hash_page knows to switch processes that use cache-inhibited |
| * mappings to 4k pages. |
| */ |
| if (mmu_psize_defs[MMU_PAGE_64K].shift) { |
| mmu_virtual_psize = MMU_PAGE_64K; |
| mmu_vmalloc_psize = MMU_PAGE_64K; |
| if (cpu_has_feature(CPU_FTR_CI_LARGE_PAGE)) |
| mmu_io_psize = MMU_PAGE_64K; |
| else |
| mmu_ci_restrictions = 1; |
| } |
| #endif |
| |
| printk(KERN_DEBUG "Page orders: linear mapping = %d, " |
| "virtual = %d, io = %d\n", |
| mmu_psize_defs[mmu_linear_psize].shift, |
| mmu_psize_defs[mmu_virtual_psize].shift, |
| mmu_psize_defs[mmu_io_psize].shift); |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| /* Init large page size. Currently, we pick 16M or 1M depending |
| * on what is available |
| */ |
| if (mmu_psize_defs[MMU_PAGE_16M].shift) |
| mmu_huge_psize = MMU_PAGE_16M; |
| /* With 4k/4level pagetables, we can't (for now) cope with a |
| * huge page size < PMD_SIZE */ |
| else if (mmu_psize_defs[MMU_PAGE_1M].shift) |
| mmu_huge_psize = MMU_PAGE_1M; |
| |
| /* Calculate HPAGE_SHIFT and sanity check it */ |
| if (mmu_psize_defs[mmu_huge_psize].shift > MIN_HUGEPTE_SHIFT && |
| mmu_psize_defs[mmu_huge_psize].shift < SID_SHIFT) |
| HPAGE_SHIFT = mmu_psize_defs[mmu_huge_psize].shift; |
| else |
| HPAGE_SHIFT = 0; /* No huge pages dude ! */ |
| #endif /* CONFIG_HUGETLB_PAGE */ |
| } |
| |
| static int __init htab_dt_scan_pftsize(unsigned long node, |
| const char *uname, int depth, |
| void *data) |
| { |
| char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| u32 *prop; |
| |
| /* We are scanning "cpu" nodes only */ |
| if (type == NULL || strcmp(type, "cpu") != 0) |
| return 0; |
| |
| prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL); |
| if (prop != NULL) { |
| /* pft_size[0] is the NUMA CEC cookie */ |
| ppc64_pft_size = prop[1]; |
| return 1; |
| } |
| return 0; |
| } |
| |
| static unsigned long __init htab_get_table_size(void) |
| { |
| unsigned long mem_size, rnd_mem_size, pteg_count; |
| |
| /* If hash size isn't already provided by the platform, we try to |
| * retrieve it from the device-tree. If it's not there neither, we |
| * calculate it now based on the total RAM size |
| */ |
| if (ppc64_pft_size == 0) |
| of_scan_flat_dt(htab_dt_scan_pftsize, NULL); |
| if (ppc64_pft_size) |
| return 1UL << ppc64_pft_size; |
| |
| /* round mem_size up to next power of 2 */ |
| mem_size = lmb_phys_mem_size(); |
| rnd_mem_size = 1UL << __ilog2(mem_size); |
| if (rnd_mem_size < mem_size) |
| rnd_mem_size <<= 1; |
| |
| /* # pages / 2 */ |
| pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11); |
| |
| return pteg_count << 7; |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| void create_section_mapping(unsigned long start, unsigned long end) |
| { |
| BUG_ON(htab_bolt_mapping(start, end, __pa(start), |
| _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_COHERENT | PP_RWXX, |
| mmu_linear_psize)); |
| } |
| #endif /* CONFIG_MEMORY_HOTPLUG */ |
| |
| static inline void make_bl(unsigned int *insn_addr, void *func) |
| { |
| unsigned long funcp = *((unsigned long *)func); |
| int offset = funcp - (unsigned long)insn_addr; |
| |
| *insn_addr = (unsigned int)(0x48000001 | (offset & 0x03fffffc)); |
| flush_icache_range((unsigned long)insn_addr, 4+ |
| (unsigned long)insn_addr); |
| } |
| |
| static void __init htab_finish_init(void) |
| { |
| extern unsigned int *htab_call_hpte_insert1; |
| extern unsigned int *htab_call_hpte_insert2; |
| extern unsigned int *htab_call_hpte_remove; |
| extern unsigned int *htab_call_hpte_updatepp; |
| |
| #ifdef CONFIG_PPC_64K_PAGES |
| extern unsigned int *ht64_call_hpte_insert1; |
| extern unsigned int *ht64_call_hpte_insert2; |
| extern unsigned int *ht64_call_hpte_remove; |
| extern unsigned int *ht64_call_hpte_updatepp; |
| |
| make_bl(ht64_call_hpte_insert1, ppc_md.hpte_insert); |
| make_bl(ht64_call_hpte_insert2, ppc_md.hpte_insert); |
| make_bl(ht64_call_hpte_remove, ppc_md.hpte_remove); |
| make_bl(ht64_call_hpte_updatepp, ppc_md.hpte_updatepp); |
| #endif /* CONFIG_PPC_64K_PAGES */ |
| |
| make_bl(htab_call_hpte_insert1, ppc_md.hpte_insert); |
| make_bl(htab_call_hpte_insert2, ppc_md.hpte_insert); |
| make_bl(htab_call_hpte_remove, ppc_md.hpte_remove); |
| make_bl(htab_call_hpte_updatepp, ppc_md.hpte_updatepp); |
| } |
| |
| void __init htab_initialize(void) |
| { |
| unsigned long table; |
| unsigned long pteg_count; |
| unsigned long mode_rw; |
| unsigned long base = 0, size = 0; |
| int i; |
| |
| extern unsigned long tce_alloc_start, tce_alloc_end; |
| |
| DBG(" -> htab_initialize()\n"); |
| |
| /* Initialize page sizes */ |
| htab_init_page_sizes(); |
| |
| /* |
| * Calculate the required size of the htab. We want the number of |
| * PTEGs to equal one half the number of real pages. |
| */ |
| htab_size_bytes = htab_get_table_size(); |
| pteg_count = htab_size_bytes >> 7; |
| |
| htab_hash_mask = pteg_count - 1; |
| |
| if (firmware_has_feature(FW_FEATURE_LPAR)) { |
| /* Using a hypervisor which owns the htab */ |
| htab_address = NULL; |
| _SDR1 = 0; |
| } else { |
| /* Find storage for the HPT. Must be contiguous in |
| * the absolute address space. |
| */ |
| table = lmb_alloc(htab_size_bytes, htab_size_bytes); |
| |
| DBG("Hash table allocated at %lx, size: %lx\n", table, |
| htab_size_bytes); |
| |
| htab_address = abs_to_virt(table); |
| |
| /* htab absolute addr + encoded htabsize */ |
| _SDR1 = table + __ilog2(pteg_count) - 11; |
| |
| /* Initialize the HPT with no entries */ |
| memset((void *)table, 0, htab_size_bytes); |
| |
| /* Set SDR1 */ |
| mtspr(SPRN_SDR1, _SDR1); |
| } |
| |
| mode_rw = _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_COHERENT | PP_RWXX; |
| |
| /* On U3 based machines, we need to reserve the DART area and |
| * _NOT_ map it to avoid cache paradoxes as it's remapped non |
| * cacheable later on |
| */ |
| |
| /* create bolted the linear mapping in the hash table */ |
| for (i=0; i < lmb.memory.cnt; i++) { |
| base = (unsigned long)__va(lmb.memory.region[i].base); |
| size = lmb.memory.region[i].size; |
| |
| DBG("creating mapping for region: %lx : %lx\n", base, size); |
| |
| #ifdef CONFIG_U3_DART |
| /* Do not map the DART space. Fortunately, it will be aligned |
| * in such a way that it will not cross two lmb regions and |
| * will fit within a single 16Mb page. |
| * The DART space is assumed to be a full 16Mb region even if |
| * we only use 2Mb of that space. We will use more of it later |
| * for AGP GART. We have to use a full 16Mb large page. |
| */ |
| DBG("DART base: %lx\n", dart_tablebase); |
| |
| if (dart_tablebase != 0 && dart_tablebase >= base |
| && dart_tablebase < (base + size)) { |
| unsigned long dart_table_end = dart_tablebase + 16 * MB; |
| if (base != dart_tablebase) |
| BUG_ON(htab_bolt_mapping(base, dart_tablebase, |
| __pa(base), mode_rw, |
| mmu_linear_psize)); |
| if ((base + size) > dart_table_end) |
| BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB, |
| base + size, |
| __pa(dart_table_end), |
| mode_rw, |
| mmu_linear_psize)); |
| continue; |
| } |
| #endif /* CONFIG_U3_DART */ |
| BUG_ON(htab_bolt_mapping(base, base + size, __pa(base), |
| mode_rw, mmu_linear_psize)); |
| } |
| |
| /* |
| * If we have a memory_limit and we've allocated TCEs then we need to |
| * explicitly map the TCE area at the top of RAM. We also cope with the |
| * case that the TCEs start below memory_limit. |
| * tce_alloc_start/end are 16MB aligned so the mapping should work |
| * for either 4K or 16MB pages. |
| */ |
| if (tce_alloc_start) { |
| tce_alloc_start = (unsigned long)__va(tce_alloc_start); |
| tce_alloc_end = (unsigned long)__va(tce_alloc_end); |
| |
| if (base + size >= tce_alloc_start) |
| tce_alloc_start = base + size + 1; |
| |
| BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end, |
| __pa(tce_alloc_start), mode_rw, |
| mmu_linear_psize)); |
| } |
| |
| htab_finish_init(); |
| |
| DBG(" <- htab_initialize()\n"); |
| } |
| #undef KB |
| #undef MB |
| |
| void htab_initialize_secondary(void) |
| { |
| if (!firmware_has_feature(FW_FEATURE_LPAR)) |
| mtspr(SPRN_SDR1, _SDR1); |
| } |
| |
| /* |
| * Called by asm hashtable.S for doing lazy icache flush |
| */ |
| unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap) |
| { |
| struct page *page; |
| |
| if (!pfn_valid(pte_pfn(pte))) |
| return pp; |
| |
| page = pte_page(pte); |
| |
| /* page is dirty */ |
| if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) { |
| if (trap == 0x400) { |
| __flush_dcache_icache(page_address(page)); |
| set_bit(PG_arch_1, &page->flags); |
| } else |
| pp |= HPTE_R_N; |
| } |
| return pp; |
| } |
| |
| /* Result code is: |
| * 0 - handled |
| * 1 - normal page fault |
| * -1 - critical hash insertion error |
| */ |
| int hash_page(unsigned long ea, unsigned long access, unsigned long trap) |
| { |
| void *pgdir; |
| unsigned long vsid; |
| struct mm_struct *mm; |
| pte_t *ptep; |
| cpumask_t tmp; |
| int rc, user_region = 0, local = 0; |
| int psize; |
| |
| DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n", |
| ea, access, trap); |
| |
| if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) { |
| DBG_LOW(" out of pgtable range !\n"); |
| return 1; |
| } |
| |
| /* Get region & vsid */ |
| switch (REGION_ID(ea)) { |
| case USER_REGION_ID: |
| user_region = 1; |
| mm = current->mm; |
| if (! mm) { |
| DBG_LOW(" user region with no mm !\n"); |
| return 1; |
| } |
| vsid = get_vsid(mm->context.id, ea); |
| psize = mm->context.user_psize; |
| break; |
| case VMALLOC_REGION_ID: |
| mm = &init_mm; |
| vsid = get_kernel_vsid(ea); |
| if (ea < VMALLOC_END) |
| psize = mmu_vmalloc_psize; |
| else |
| psize = mmu_io_psize; |
| break; |
| default: |
| /* Not a valid range |
| * Send the problem up to do_page_fault |
| */ |
| return 1; |
| } |
| DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid); |
| |
| /* Get pgdir */ |
| pgdir = mm->pgd; |
| if (pgdir == NULL) |
| return 1; |
| |
| /* Check CPU locality */ |
| tmp = cpumask_of_cpu(smp_processor_id()); |
| if (user_region && cpus_equal(mm->cpu_vm_mask, tmp)) |
| local = 1; |
| |
| /* Handle hugepage regions */ |
| if (unlikely(in_hugepage_area(mm->context, ea))) { |
| DBG_LOW(" -> huge page !\n"); |
| return hash_huge_page(mm, access, ea, vsid, local, trap); |
| } |
| |
| /* Get PTE and page size from page tables */ |
| ptep = find_linux_pte(pgdir, ea); |
| if (ptep == NULL || !pte_present(*ptep)) { |
| DBG_LOW(" no PTE !\n"); |
| return 1; |
| } |
| |
| #ifndef CONFIG_PPC_64K_PAGES |
| DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep)); |
| #else |
| DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep), |
| pte_val(*(ptep + PTRS_PER_PTE))); |
| #endif |
| /* Pre-check access permissions (will be re-checked atomically |
| * in __hash_page_XX but this pre-check is a fast path |
| */ |
| if (access & ~pte_val(*ptep)) { |
| DBG_LOW(" no access !\n"); |
| return 1; |
| } |
| |
| /* Do actual hashing */ |
| #ifndef CONFIG_PPC_64K_PAGES |
| rc = __hash_page_4K(ea, access, vsid, ptep, trap, local); |
| #else |
| if (mmu_ci_restrictions) { |
| /* If this PTE is non-cacheable, switch to 4k */ |
| if (psize == MMU_PAGE_64K && |
| (pte_val(*ptep) & _PAGE_NO_CACHE)) { |
| if (user_region) { |
| psize = MMU_PAGE_4K; |
| mm->context.user_psize = MMU_PAGE_4K; |
| mm->context.sllp = SLB_VSID_USER | |
| mmu_psize_defs[MMU_PAGE_4K].sllp; |
| } else if (ea < VMALLOC_END) { |
| /* |
| * some driver did a non-cacheable mapping |
| * in vmalloc space, so switch vmalloc |
| * to 4k pages |
| */ |
| printk(KERN_ALERT "Reducing vmalloc segment " |
| "to 4kB pages because of " |
| "non-cacheable mapping\n"); |
| psize = mmu_vmalloc_psize = MMU_PAGE_4K; |
| } |
| } |
| if (user_region) { |
| if (psize != get_paca()->context.user_psize) { |
| get_paca()->context = mm->context; |
| slb_flush_and_rebolt(); |
| } |
| } else if (get_paca()->vmalloc_sllp != |
| mmu_psize_defs[mmu_vmalloc_psize].sllp) { |
| get_paca()->vmalloc_sllp = |
| mmu_psize_defs[mmu_vmalloc_psize].sllp; |
| slb_flush_and_rebolt(); |
| } |
| } |
| if (psize == MMU_PAGE_64K) |
| rc = __hash_page_64K(ea, access, vsid, ptep, trap, local); |
| else |
| rc = __hash_page_4K(ea, access, vsid, ptep, trap, local); |
| #endif /* CONFIG_PPC_64K_PAGES */ |
| |
| #ifndef CONFIG_PPC_64K_PAGES |
| DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep)); |
| #else |
| DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep), |
| pte_val(*(ptep + PTRS_PER_PTE))); |
| #endif |
| DBG_LOW(" -> rc=%d\n", rc); |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(hash_page); |
| |
| void hash_preload(struct mm_struct *mm, unsigned long ea, |
| unsigned long access, unsigned long trap) |
| { |
| unsigned long vsid; |
| void *pgdir; |
| pte_t *ptep; |
| cpumask_t mask; |
| unsigned long flags; |
| int local = 0; |
| |
| /* We don't want huge pages prefaulted for now |
| */ |
| if (unlikely(in_hugepage_area(mm->context, ea))) |
| return; |
| |
| DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx," |
| " trap=%lx\n", mm, mm->pgd, ea, access, trap); |
| |
| /* Get PTE, VSID, access mask */ |
| pgdir = mm->pgd; |
| if (pgdir == NULL) |
| return; |
| ptep = find_linux_pte(pgdir, ea); |
| if (!ptep) |
| return; |
| vsid = get_vsid(mm->context.id, ea); |
| |
| /* Hash it in */ |
| local_irq_save(flags); |
| mask = cpumask_of_cpu(smp_processor_id()); |
| if (cpus_equal(mm->cpu_vm_mask, mask)) |
| local = 1; |
| #ifndef CONFIG_PPC_64K_PAGES |
| __hash_page_4K(ea, access, vsid, ptep, trap, local); |
| #else |
| if (mmu_ci_restrictions) { |
| /* If this PTE is non-cacheable, switch to 4k */ |
| if (mm->context.user_psize == MMU_PAGE_64K && |
| (pte_val(*ptep) & _PAGE_NO_CACHE)) { |
| mm->context.user_psize = MMU_PAGE_4K; |
| mm->context.sllp = SLB_VSID_USER | |
| mmu_psize_defs[MMU_PAGE_4K].sllp; |
| get_paca()->context = mm->context; |
| slb_flush_and_rebolt(); |
| } |
| } |
| if (mm->context.user_psize == MMU_PAGE_64K) |
| __hash_page_64K(ea, access, vsid, ptep, trap, local); |
| else |
| __hash_page_4K(ea, access, vsid, ptep, trap, local); |
| #endif /* CONFIG_PPC_64K_PAGES */ |
| local_irq_restore(flags); |
| } |
| |
| void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int local) |
| { |
| unsigned long hash, index, shift, hidx, slot; |
| |
| DBG_LOW("flush_hash_page(va=%016x)\n", va); |
| pte_iterate_hashed_subpages(pte, psize, va, index, shift) { |
| hash = hpt_hash(va, shift); |
| hidx = __rpte_to_hidx(pte, index); |
| if (hidx & _PTEIDX_SECONDARY) |
| hash = ~hash; |
| slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; |
| slot += hidx & _PTEIDX_GROUP_IX; |
| DBG_LOW(" sub %d: hash=%x, hidx=%x\n", index, slot, hidx); |
| ppc_md.hpte_invalidate(slot, va, psize, local); |
| } pte_iterate_hashed_end(); |
| } |
| |
| void flush_hash_range(unsigned long number, int local) |
| { |
| if (ppc_md.flush_hash_range) |
| ppc_md.flush_hash_range(number, local); |
| else { |
| int i; |
| struct ppc64_tlb_batch *batch = |
| &__get_cpu_var(ppc64_tlb_batch); |
| |
| for (i = 0; i < number; i++) |
| flush_hash_page(batch->vaddr[i], batch->pte[i], |
| batch->psize, local); |
| } |
| } |
| |
| /* |
| * low_hash_fault is called when we the low level hash code failed |
| * to instert a PTE due to an hypervisor error |
| */ |
| void low_hash_fault(struct pt_regs *regs, unsigned long address) |
| { |
| if (user_mode(regs)) { |
| siginfo_t info; |
| |
| info.si_signo = SIGBUS; |
| info.si_errno = 0; |
| info.si_code = BUS_ADRERR; |
| info.si_addr = (void __user *)address; |
| force_sig_info(SIGBUS, &info, current); |
| return; |
| } |
| bad_page_fault(regs, address, SIGBUS); |
| } |