| /* |
| * Code to handle x86 style IRQs plus some generic interrupt stuff. |
| * |
| * Copyright (C) 1992 Linus Torvalds |
| * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle |
| * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org) |
| * Copyright (C) 1999-2000 Grant Grundler |
| * Copyright (c) 2005 Matthew Wilcox |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| #include <linux/bitops.h> |
| #include <linux/config.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/seq_file.h> |
| #include <linux/spinlock.h> |
| #include <linux/types.h> |
| #include <asm/io.h> |
| |
| #include <asm/smp.h> |
| |
| #undef PARISC_IRQ_CR16_COUNTS |
| |
| extern irqreturn_t timer_interrupt(int, void *, struct pt_regs *); |
| extern irqreturn_t ipi_interrupt(int, void *, struct pt_regs *); |
| |
| #define EIEM_MASK(irq) (1UL<<(CPU_IRQ_MAX - irq)) |
| |
| /* Bits in EIEM correlate with cpu_irq_action[]. |
| ** Numbered *Big Endian*! (ie bit 0 is MSB) |
| */ |
| static volatile unsigned long cpu_eiem = 0; |
| |
| static void cpu_disable_irq(unsigned int irq) |
| { |
| unsigned long eirr_bit = EIEM_MASK(irq); |
| |
| cpu_eiem &= ~eirr_bit; |
| /* Do nothing on the other CPUs. If they get this interrupt, |
| * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't |
| * handle it, and the set_eiem() at the bottom will ensure it |
| * then gets disabled */ |
| } |
| |
| static void cpu_enable_irq(unsigned int irq) |
| { |
| unsigned long eirr_bit = EIEM_MASK(irq); |
| |
| cpu_eiem |= eirr_bit; |
| |
| /* FIXME: while our interrupts aren't nested, we cannot reset |
| * the eiem mask if we're already in an interrupt. Once we |
| * implement nested interrupts, this can go away |
| */ |
| if (!in_interrupt()) |
| set_eiem(cpu_eiem); |
| |
| /* This is just a simple NOP IPI. But what it does is cause |
| * all the other CPUs to do a set_eiem(cpu_eiem) at the end |
| * of the interrupt handler */ |
| smp_send_all_nop(); |
| } |
| |
| static unsigned int cpu_startup_irq(unsigned int irq) |
| { |
| cpu_enable_irq(irq); |
| return 0; |
| } |
| |
| void no_ack_irq(unsigned int irq) { } |
| void no_end_irq(unsigned int irq) { } |
| |
| #ifdef CONFIG_SMP |
| int cpu_check_affinity(unsigned int irq, cpumask_t *dest) |
| { |
| int cpu_dest; |
| |
| /* timer and ipi have to always be received on all CPUs */ |
| if (irq == TIMER_IRQ || irq == IPI_IRQ) { |
| /* Bad linux design decision. The mask has already |
| * been set; we must reset it */ |
| irq_desc[irq].affinity = CPU_MASK_ALL; |
| return -EINVAL; |
| } |
| |
| /* whatever mask they set, we just allow one CPU */ |
| cpu_dest = first_cpu(*dest); |
| *dest = cpumask_of_cpu(cpu_dest); |
| |
| return 0; |
| } |
| |
| static void cpu_set_affinity_irq(unsigned int irq, cpumask_t dest) |
| { |
| if (cpu_check_affinity(irq, &dest)) |
| return; |
| |
| irq_desc[irq].affinity = dest; |
| } |
| #endif |
| |
| static struct hw_interrupt_type cpu_interrupt_type = { |
| .typename = "CPU", |
| .startup = cpu_startup_irq, |
| .shutdown = cpu_disable_irq, |
| .enable = cpu_enable_irq, |
| .disable = cpu_disable_irq, |
| .ack = no_ack_irq, |
| .end = no_end_irq, |
| #ifdef CONFIG_SMP |
| .set_affinity = cpu_set_affinity_irq, |
| #endif |
| /* XXX: Needs to be written. We managed without it so far, but |
| * we really ought to write it. |
| */ |
| .retrigger = NULL, |
| }; |
| |
| int show_interrupts(struct seq_file *p, void *v) |
| { |
| int i = *(loff_t *) v, j; |
| unsigned long flags; |
| |
| if (i == 0) { |
| seq_puts(p, " "); |
| for_each_online_cpu(j) |
| seq_printf(p, " CPU%d", j); |
| |
| #ifdef PARISC_IRQ_CR16_COUNTS |
| seq_printf(p, " [min/avg/max] (CPU cycle counts)"); |
| #endif |
| seq_putc(p, '\n'); |
| } |
| |
| if (i < NR_IRQS) { |
| struct irqaction *action; |
| |
| spin_lock_irqsave(&irq_desc[i].lock, flags); |
| action = irq_desc[i].action; |
| if (!action) |
| goto skip; |
| seq_printf(p, "%3d: ", i); |
| #ifdef CONFIG_SMP |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]); |
| #else |
| seq_printf(p, "%10u ", kstat_irqs(i)); |
| #endif |
| |
| seq_printf(p, " %14s", irq_desc[i].chip->typename); |
| #ifndef PARISC_IRQ_CR16_COUNTS |
| seq_printf(p, " %s", action->name); |
| |
| while ((action = action->next)) |
| seq_printf(p, ", %s", action->name); |
| #else |
| for ( ;action; action = action->next) { |
| unsigned int k, avg, min, max; |
| |
| min = max = action->cr16_hist[0]; |
| |
| for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) { |
| int hist = action->cr16_hist[k]; |
| |
| if (hist) { |
| avg += hist; |
| } else |
| break; |
| |
| if (hist > max) max = hist; |
| if (hist < min) min = hist; |
| } |
| |
| avg /= k; |
| seq_printf(p, " %s[%d/%d/%d]", action->name, |
| min,avg,max); |
| } |
| #endif |
| |
| seq_putc(p, '\n'); |
| skip: |
| spin_unlock_irqrestore(&irq_desc[i].lock, flags); |
| } |
| |
| return 0; |
| } |
| |
| |
| |
| /* |
| ** The following form a "set": Virtual IRQ, Transaction Address, Trans Data. |
| ** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit. |
| ** |
| ** To use txn_XXX() interfaces, get a Virtual IRQ first. |
| ** Then use that to get the Transaction address and data. |
| */ |
| |
| int cpu_claim_irq(unsigned int irq, struct hw_interrupt_type *type, void *data) |
| { |
| if (irq_desc[irq].action) |
| return -EBUSY; |
| if (irq_desc[irq].chip != &cpu_interrupt_type) |
| return -EBUSY; |
| |
| if (type) { |
| irq_desc[irq].chip = type; |
| irq_desc[irq].chip_data = data; |
| cpu_interrupt_type.enable(irq); |
| } |
| return 0; |
| } |
| |
| int txn_claim_irq(int irq) |
| { |
| return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq; |
| } |
| |
| /* |
| * The bits_wide parameter accommodates the limitations of the HW/SW which |
| * use these bits: |
| * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register) |
| * V-class (EPIC): 6 bits |
| * N/L/A-class (iosapic): 8 bits |
| * PCI 2.2 MSI: 16 bits |
| * Some PCI devices: 32 bits (Symbios SCSI/ATM/HyperFabric) |
| * |
| * On the service provider side: |
| * o PA 1.1 (and PA2.0 narrow mode) 5-bits (width of EIR register) |
| * o PA 2.0 wide mode 6-bits (per processor) |
| * o IA64 8-bits (0-256 total) |
| * |
| * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported |
| * by the processor...and the N/L-class I/O subsystem supports more bits than |
| * PA2.0 has. The first case is the problem. |
| */ |
| int txn_alloc_irq(unsigned int bits_wide) |
| { |
| int irq; |
| |
| /* never return irq 0 cause that's the interval timer */ |
| for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) { |
| if (cpu_claim_irq(irq, NULL, NULL) < 0) |
| continue; |
| if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide)) |
| continue; |
| return irq; |
| } |
| |
| /* unlikely, but be prepared */ |
| return -1; |
| } |
| |
| |
| unsigned long txn_affinity_addr(unsigned int irq, int cpu) |
| { |
| #ifdef CONFIG_SMP |
| irq_desc[irq].affinity = cpumask_of_cpu(cpu); |
| #endif |
| |
| return cpu_data[cpu].txn_addr; |
| } |
| |
| |
| unsigned long txn_alloc_addr(unsigned int virt_irq) |
| { |
| static int next_cpu = -1; |
| |
| next_cpu++; /* assign to "next" CPU we want this bugger on */ |
| |
| /* validate entry */ |
| while ((next_cpu < NR_CPUS) && (!cpu_data[next_cpu].txn_addr || |
| !cpu_online(next_cpu))) |
| next_cpu++; |
| |
| if (next_cpu >= NR_CPUS) |
| next_cpu = 0; /* nothing else, assign monarch */ |
| |
| return txn_affinity_addr(virt_irq, next_cpu); |
| } |
| |
| |
| unsigned int txn_alloc_data(unsigned int virt_irq) |
| { |
| return virt_irq - CPU_IRQ_BASE; |
| } |
| |
| /* ONLY called from entry.S:intr_extint() */ |
| void do_cpu_irq_mask(struct pt_regs *regs) |
| { |
| unsigned long eirr_val; |
| |
| irq_enter(); |
| |
| /* |
| * Don't allow TIMER or IPI nested interrupts. |
| * Allowing any single interrupt to nest can lead to that CPU |
| * handling interrupts with all enabled interrupts unmasked. |
| */ |
| set_eiem(0UL); |
| |
| /* 1) only process IRQs that are enabled/unmasked (cpu_eiem) |
| * 2) We loop here on EIRR contents in order to avoid |
| * nested interrupts or having to take another interrupt |
| * when we could have just handled it right away. |
| */ |
| for (;;) { |
| unsigned long bit = (1UL << (BITS_PER_LONG - 1)); |
| unsigned int irq; |
| eirr_val = mfctl(23) & cpu_eiem; |
| if (!eirr_val) |
| break; |
| |
| mtctl(eirr_val, 23); /* reset bits we are going to process */ |
| |
| /* Work our way from MSb to LSb...same order we alloc EIRs */ |
| for (irq = TIMER_IRQ; eirr_val && bit; bit>>=1, irq++) { |
| #ifdef CONFIG_SMP |
| cpumask_t dest = irq_desc[irq].affinity; |
| #endif |
| if (!(bit & eirr_val)) |
| continue; |
| |
| /* clear bit in mask - can exit loop sooner */ |
| eirr_val &= ~bit; |
| |
| #ifdef CONFIG_SMP |
| /* FIXME: because generic set affinity mucks |
| * with the affinity before sending it to us |
| * we can get the situation where the affinity is |
| * wrong for our CPU type interrupts */ |
| if (irq != TIMER_IRQ && irq != IPI_IRQ && |
| !cpu_isset(smp_processor_id(), dest)) { |
| int cpu = first_cpu(dest); |
| |
| printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n", |
| irq, smp_processor_id(), cpu); |
| gsc_writel(irq + CPU_IRQ_BASE, |
| cpu_data[cpu].hpa); |
| continue; |
| } |
| #endif |
| |
| __do_IRQ(irq, regs); |
| } |
| } |
| |
| set_eiem(cpu_eiem); /* restore original mask */ |
| irq_exit(); |
| } |
| |
| |
| static struct irqaction timer_action = { |
| .handler = timer_interrupt, |
| .name = "timer", |
| .flags = SA_INTERRUPT, |
| }; |
| |
| #ifdef CONFIG_SMP |
| static struct irqaction ipi_action = { |
| .handler = ipi_interrupt, |
| .name = "IPI", |
| .flags = SA_INTERRUPT, |
| }; |
| #endif |
| |
| static void claim_cpu_irqs(void) |
| { |
| int i; |
| for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) { |
| irq_desc[i].chip = &cpu_interrupt_type; |
| } |
| |
| irq_desc[TIMER_IRQ].action = &timer_action; |
| irq_desc[TIMER_IRQ].status |= IRQ_PER_CPU; |
| #ifdef CONFIG_SMP |
| irq_desc[IPI_IRQ].action = &ipi_action; |
| irq_desc[IPI_IRQ].status = IRQ_PER_CPU; |
| #endif |
| } |
| |
| void __init init_IRQ(void) |
| { |
| local_irq_disable(); /* PARANOID - should already be disabled */ |
| mtctl(~0UL, 23); /* EIRR : clear all pending external intr */ |
| claim_cpu_irqs(); |
| #ifdef CONFIG_SMP |
| if (!cpu_eiem) |
| cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ); |
| #else |
| cpu_eiem = EIEM_MASK(TIMER_IRQ); |
| #endif |
| set_eiem(cpu_eiem); /* EIEM : enable all external intr */ |
| |
| } |
| |
| void ack_bad_irq(unsigned int irq) |
| { |
| printk("unexpected IRQ %d\n", irq); |
| } |