| /* |
| Copyright (C) 2004 - 2008 rt2x00 SourceForge Project |
| <http://rt2x00.serialmonkey.com> |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the |
| Free Software Foundation, Inc., |
| 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| /* |
| Module: rt2x00lib |
| Abstract: rt2x00 queue specific routines. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/dma-mapping.h> |
| |
| #include "rt2x00.h" |
| #include "rt2x00lib.h" |
| |
| struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev, |
| struct queue_entry *entry) |
| { |
| struct sk_buff *skb; |
| struct skb_frame_desc *skbdesc; |
| unsigned int frame_size; |
| unsigned int head_size = 0; |
| unsigned int tail_size = 0; |
| |
| /* |
| * The frame size includes descriptor size, because the |
| * hardware directly receive the frame into the skbuffer. |
| */ |
| frame_size = entry->queue->data_size + entry->queue->desc_size; |
| |
| /* |
| * The payload should be aligned to a 4-byte boundary, |
| * this means we need at least 3 bytes for moving the frame |
| * into the correct offset. |
| */ |
| head_size = 4; |
| |
| /* |
| * For IV/EIV/ICV assembly we must make sure there is |
| * at least 8 bytes bytes available in headroom for IV/EIV |
| * and 8 bytes for ICV data as tailroon. |
| */ |
| if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) { |
| head_size += 8; |
| tail_size += 8; |
| } |
| |
| /* |
| * Allocate skbuffer. |
| */ |
| skb = dev_alloc_skb(frame_size + head_size + tail_size); |
| if (!skb) |
| return NULL; |
| |
| /* |
| * Make sure we not have a frame with the requested bytes |
| * available in the head and tail. |
| */ |
| skb_reserve(skb, head_size); |
| skb_put(skb, frame_size); |
| |
| /* |
| * Populate skbdesc. |
| */ |
| skbdesc = get_skb_frame_desc(skb); |
| memset(skbdesc, 0, sizeof(*skbdesc)); |
| skbdesc->entry = entry; |
| |
| if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) { |
| skbdesc->skb_dma = dma_map_single(rt2x00dev->dev, |
| skb->data, |
| skb->len, |
| DMA_FROM_DEVICE); |
| skbdesc->flags |= SKBDESC_DMA_MAPPED_RX; |
| } |
| |
| return skb; |
| } |
| |
| void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb) |
| { |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb); |
| |
| /* |
| * If device has requested headroom, we should make sure that |
| * is also mapped to the DMA so it can be used for transfering |
| * additional descriptor information to the hardware. |
| */ |
| skb_push(skb, rt2x00dev->hw->extra_tx_headroom); |
| |
| skbdesc->skb_dma = |
| dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE); |
| |
| /* |
| * Restore data pointer to original location again. |
| */ |
| skb_pull(skb, rt2x00dev->hw->extra_tx_headroom); |
| |
| skbdesc->flags |= SKBDESC_DMA_MAPPED_TX; |
| } |
| EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb); |
| |
| void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb) |
| { |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb); |
| |
| if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) { |
| dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len, |
| DMA_FROM_DEVICE); |
| skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX; |
| } |
| |
| if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) { |
| /* |
| * Add headroom to the skb length, it has been removed |
| * by the driver, but it was actually mapped to DMA. |
| */ |
| dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, |
| skb->len + rt2x00dev->hw->extra_tx_headroom, |
| DMA_TO_DEVICE); |
| skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX; |
| } |
| } |
| |
| void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb) |
| { |
| if (!skb) |
| return; |
| |
| rt2x00queue_unmap_skb(rt2x00dev, skb); |
| dev_kfree_skb_any(skb); |
| } |
| |
| static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry, |
| struct txentry_desc *txdesc) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data; |
| struct ieee80211_rate *rate = |
| ieee80211_get_tx_rate(rt2x00dev->hw, tx_info); |
| const struct rt2x00_rate *hwrate; |
| unsigned int data_length; |
| unsigned int duration; |
| unsigned int residual; |
| unsigned long irqflags; |
| |
| memset(txdesc, 0, sizeof(*txdesc)); |
| |
| /* |
| * Initialize information from queue |
| */ |
| txdesc->queue = entry->queue->qid; |
| txdesc->cw_min = entry->queue->cw_min; |
| txdesc->cw_max = entry->queue->cw_max; |
| txdesc->aifs = entry->queue->aifs; |
| |
| /* Data length + CRC */ |
| data_length = entry->skb->len + 4; |
| |
| /* |
| * Check whether this frame is to be acked. |
| */ |
| if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) |
| __set_bit(ENTRY_TXD_ACK, &txdesc->flags); |
| |
| if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags) && |
| !entry->skb->do_not_encrypt) { |
| /* Apply crypto specific descriptor information */ |
| rt2x00crypto_create_tx_descriptor(entry, txdesc); |
| |
| /* |
| * Extend frame length to include all encryption overhead |
| * that will be added by the hardware. |
| */ |
| data_length += rt2x00crypto_tx_overhead(tx_info); |
| } |
| |
| /* |
| * Check if this is a RTS/CTS frame |
| */ |
| if (ieee80211_is_rts(hdr->frame_control) || |
| ieee80211_is_cts(hdr->frame_control)) { |
| __set_bit(ENTRY_TXD_BURST, &txdesc->flags); |
| if (ieee80211_is_rts(hdr->frame_control)) |
| __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags); |
| else |
| __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags); |
| if (tx_info->control.rts_cts_rate_idx >= 0) |
| rate = |
| ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info); |
| } |
| |
| /* |
| * Determine retry information. |
| */ |
| txdesc->retry_limit = tx_info->control.rates[0].count - 1; |
| if (txdesc->retry_limit >= rt2x00dev->long_retry) |
| __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags); |
| |
| /* |
| * Check if more fragments are pending |
| */ |
| if (ieee80211_has_morefrags(hdr->frame_control)) { |
| __set_bit(ENTRY_TXD_BURST, &txdesc->flags); |
| __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags); |
| } |
| |
| /* |
| * Beacons and probe responses require the tsf timestamp |
| * to be inserted into the frame. |
| */ |
| if (ieee80211_is_beacon(hdr->frame_control) || |
| ieee80211_is_probe_resp(hdr->frame_control)) |
| __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags); |
| |
| /* |
| * Determine with what IFS priority this frame should be send. |
| * Set ifs to IFS_SIFS when the this is not the first fragment, |
| * or this fragment came after RTS/CTS. |
| */ |
| if (test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) { |
| txdesc->ifs = IFS_SIFS; |
| } else if (tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) { |
| __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags); |
| txdesc->ifs = IFS_BACKOFF; |
| } else { |
| txdesc->ifs = IFS_SIFS; |
| } |
| |
| /* |
| * Hardware should insert sequence counter. |
| * FIXME: We insert a software sequence counter first for |
| * hardware that doesn't support hardware sequence counting. |
| * |
| * This is wrong because beacons are not getting sequence |
| * numbers assigned properly. |
| * |
| * A secondary problem exists for drivers that cannot toggle |
| * sequence counting per-frame, since those will override the |
| * sequence counter given by mac80211. |
| */ |
| if (tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { |
| if (likely(tx_info->control.vif)) { |
| struct rt2x00_intf *intf; |
| |
| intf = vif_to_intf(tx_info->control.vif); |
| |
| spin_lock_irqsave(&intf->seqlock, irqflags); |
| |
| if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)) |
| intf->seqno += 0x10; |
| hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); |
| hdr->seq_ctrl |= cpu_to_le16(intf->seqno); |
| |
| spin_unlock_irqrestore(&intf->seqlock, irqflags); |
| |
| __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags); |
| } |
| } |
| |
| /* |
| * PLCP setup |
| * Length calculation depends on OFDM/CCK rate. |
| */ |
| hwrate = rt2x00_get_rate(rate->hw_value); |
| txdesc->signal = hwrate->plcp; |
| txdesc->service = 0x04; |
| |
| if (hwrate->flags & DEV_RATE_OFDM) { |
| __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags); |
| |
| txdesc->length_high = (data_length >> 6) & 0x3f; |
| txdesc->length_low = data_length & 0x3f; |
| } else { |
| /* |
| * Convert length to microseconds. |
| */ |
| residual = GET_DURATION_RES(data_length, hwrate->bitrate); |
| duration = GET_DURATION(data_length, hwrate->bitrate); |
| |
| if (residual != 0) { |
| duration++; |
| |
| /* |
| * Check if we need to set the Length Extension |
| */ |
| if (hwrate->bitrate == 110 && residual <= 30) |
| txdesc->service |= 0x80; |
| } |
| |
| txdesc->length_high = (duration >> 8) & 0xff; |
| txdesc->length_low = duration & 0xff; |
| |
| /* |
| * When preamble is enabled we should set the |
| * preamble bit for the signal. |
| */ |
| if (rt2x00_get_rate_preamble(rate->hw_value)) |
| txdesc->signal |= 0x08; |
| } |
| } |
| |
| static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry, |
| struct txentry_desc *txdesc) |
| { |
| struct data_queue *queue = entry->queue; |
| struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; |
| |
| rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc); |
| |
| /* |
| * All processing on the frame has been completed, this means |
| * it is now ready to be dumped to userspace through debugfs. |
| */ |
| rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb); |
| |
| /* |
| * Check if we need to kick the queue, there are however a few rules |
| * 1) Don't kick beacon queue |
| * 2) Don't kick unless this is the last in frame in a burst. |
| * When the burst flag is set, this frame is always followed |
| * by another frame which in some way are related to eachother. |
| * This is true for fragments, RTS or CTS-to-self frames. |
| * 3) Rule 2 can be broken when the available entries |
| * in the queue are less then a certain threshold. |
| */ |
| if (entry->queue->qid == QID_BEACON) |
| return; |
| |
| if (rt2x00queue_threshold(queue) || |
| !test_bit(ENTRY_TXD_BURST, &txdesc->flags)) |
| rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid); |
| } |
| |
| int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb) |
| { |
| struct ieee80211_tx_info *tx_info; |
| struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX); |
| struct txentry_desc txdesc; |
| struct skb_frame_desc *skbdesc; |
| unsigned int iv_len = 0; |
| u8 rate_idx, rate_flags; |
| |
| if (unlikely(rt2x00queue_full(queue))) |
| return -ENOBUFS; |
| |
| if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) { |
| ERROR(queue->rt2x00dev, |
| "Arrived at non-free entry in the non-full queue %d.\n" |
| "Please file bug report to %s.\n", |
| queue->qid, DRV_PROJECT); |
| return -EINVAL; |
| } |
| |
| /* |
| * Copy all TX descriptor information into txdesc, |
| * after that we are free to use the skb->cb array |
| * for our information. |
| */ |
| entry->skb = skb; |
| rt2x00queue_create_tx_descriptor(entry, &txdesc); |
| |
| if (IEEE80211_SKB_CB(skb)->control.hw_key != NULL) |
| iv_len = IEEE80211_SKB_CB(skb)->control.hw_key->iv_len; |
| |
| /* |
| * All information is retrieved from the skb->cb array, |
| * now we should claim ownership of the driver part of that |
| * array, preserving the bitrate index and flags. |
| */ |
| tx_info = IEEE80211_SKB_CB(skb); |
| rate_idx = tx_info->control.rates[0].idx; |
| rate_flags = tx_info->control.rates[0].flags; |
| skbdesc = get_skb_frame_desc(skb); |
| memset(skbdesc, 0, sizeof(*skbdesc)); |
| skbdesc->entry = entry; |
| skbdesc->tx_rate_idx = rate_idx; |
| skbdesc->tx_rate_flags = rate_flags; |
| |
| /* |
| * When hardware encryption is supported, and this frame |
| * is to be encrypted, we should strip the IV/EIV data from |
| * the frame so we can provide it to the driver seperately. |
| */ |
| if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) && |
| !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) { |
| if (test_bit(CONFIG_CRYPTO_COPY_IV, &queue->rt2x00dev->flags)) |
| rt2x00crypto_tx_copy_iv(skb, iv_len); |
| else |
| rt2x00crypto_tx_remove_iv(skb, iv_len); |
| } |
| |
| /* |
| * It could be possible that the queue was corrupted and this |
| * call failed. Since we always return NETDEV_TX_OK to mac80211, |
| * this frame will simply be dropped. |
| */ |
| if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) { |
| clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); |
| entry->skb = NULL; |
| return -EIO; |
| } |
| |
| if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags)) |
| rt2x00queue_map_txskb(queue->rt2x00dev, skb); |
| |
| set_bit(ENTRY_DATA_PENDING, &entry->flags); |
| |
| rt2x00queue_index_inc(queue, Q_INDEX); |
| rt2x00queue_write_tx_descriptor(entry, &txdesc); |
| |
| return 0; |
| } |
| |
| int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev, |
| struct ieee80211_vif *vif) |
| { |
| struct rt2x00_intf *intf = vif_to_intf(vif); |
| struct skb_frame_desc *skbdesc; |
| struct txentry_desc txdesc; |
| __le32 desc[16]; |
| |
| if (unlikely(!intf->beacon)) |
| return -ENOBUFS; |
| |
| intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif); |
| if (!intf->beacon->skb) |
| return -ENOMEM; |
| |
| /* |
| * Copy all TX descriptor information into txdesc, |
| * after that we are free to use the skb->cb array |
| * for our information. |
| */ |
| rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc); |
| |
| /* |
| * For the descriptor we use a local array from where the |
| * driver can move it to the correct location required for |
| * the hardware. |
| */ |
| memset(desc, 0, sizeof(desc)); |
| |
| /* |
| * Fill in skb descriptor |
| */ |
| skbdesc = get_skb_frame_desc(intf->beacon->skb); |
| memset(skbdesc, 0, sizeof(*skbdesc)); |
| skbdesc->desc = desc; |
| skbdesc->desc_len = intf->beacon->queue->desc_size; |
| skbdesc->entry = intf->beacon; |
| |
| /* |
| * Write TX descriptor into reserved room in front of the beacon. |
| */ |
| rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc); |
| |
| /* |
| * Send beacon to hardware. |
| * Also enable beacon generation, which might have been disabled |
| * by the driver during the config_beacon() callback function. |
| */ |
| rt2x00dev->ops->lib->write_beacon(intf->beacon); |
| rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON); |
| |
| return 0; |
| } |
| |
| struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev, |
| const enum data_queue_qid queue) |
| { |
| int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags); |
| |
| if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx) |
| return &rt2x00dev->tx[queue]; |
| |
| if (!rt2x00dev->bcn) |
| return NULL; |
| |
| if (queue == QID_BEACON) |
| return &rt2x00dev->bcn[0]; |
| else if (queue == QID_ATIM && atim) |
| return &rt2x00dev->bcn[1]; |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(rt2x00queue_get_queue); |
| |
| struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, |
| enum queue_index index) |
| { |
| struct queue_entry *entry; |
| unsigned long irqflags; |
| |
| if (unlikely(index >= Q_INDEX_MAX)) { |
| ERROR(queue->rt2x00dev, |
| "Entry requested from invalid index type (%d)\n", index); |
| return NULL; |
| } |
| |
| spin_lock_irqsave(&queue->lock, irqflags); |
| |
| entry = &queue->entries[queue->index[index]]; |
| |
| spin_unlock_irqrestore(&queue->lock, irqflags); |
| |
| return entry; |
| } |
| EXPORT_SYMBOL_GPL(rt2x00queue_get_entry); |
| |
| void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index) |
| { |
| unsigned long irqflags; |
| |
| if (unlikely(index >= Q_INDEX_MAX)) { |
| ERROR(queue->rt2x00dev, |
| "Index change on invalid index type (%d)\n", index); |
| return; |
| } |
| |
| spin_lock_irqsave(&queue->lock, irqflags); |
| |
| queue->index[index]++; |
| if (queue->index[index] >= queue->limit) |
| queue->index[index] = 0; |
| |
| if (index == Q_INDEX) { |
| queue->length++; |
| } else if (index == Q_INDEX_DONE) { |
| queue->length--; |
| queue->count++; |
| } |
| |
| spin_unlock_irqrestore(&queue->lock, irqflags); |
| } |
| |
| static void rt2x00queue_reset(struct data_queue *queue) |
| { |
| unsigned long irqflags; |
| |
| spin_lock_irqsave(&queue->lock, irqflags); |
| |
| queue->count = 0; |
| queue->length = 0; |
| memset(queue->index, 0, sizeof(queue->index)); |
| |
| spin_unlock_irqrestore(&queue->lock, irqflags); |
| } |
| |
| void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev) |
| { |
| struct data_queue *queue; |
| unsigned int i; |
| |
| queue_for_each(rt2x00dev, queue) { |
| rt2x00queue_reset(queue); |
| |
| for (i = 0; i < queue->limit; i++) { |
| queue->entries[i].flags = 0; |
| |
| rt2x00dev->ops->lib->clear_entry(&queue->entries[i]); |
| } |
| } |
| } |
| |
| static int rt2x00queue_alloc_entries(struct data_queue *queue, |
| const struct data_queue_desc *qdesc) |
| { |
| struct queue_entry *entries; |
| unsigned int entry_size; |
| unsigned int i; |
| |
| rt2x00queue_reset(queue); |
| |
| queue->limit = qdesc->entry_num; |
| queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10); |
| queue->data_size = qdesc->data_size; |
| queue->desc_size = qdesc->desc_size; |
| |
| /* |
| * Allocate all queue entries. |
| */ |
| entry_size = sizeof(*entries) + qdesc->priv_size; |
| entries = kzalloc(queue->limit * entry_size, GFP_KERNEL); |
| if (!entries) |
| return -ENOMEM; |
| |
| #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \ |
| ( ((char *)(__base)) + ((__limit) * (__esize)) + \ |
| ((__index) * (__psize)) ) |
| |
| for (i = 0; i < queue->limit; i++) { |
| entries[i].flags = 0; |
| entries[i].queue = queue; |
| entries[i].skb = NULL; |
| entries[i].entry_idx = i; |
| entries[i].priv_data = |
| QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit, |
| sizeof(*entries), qdesc->priv_size); |
| } |
| |
| #undef QUEUE_ENTRY_PRIV_OFFSET |
| |
| queue->entries = entries; |
| |
| return 0; |
| } |
| |
| static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev, |
| struct data_queue *queue) |
| { |
| unsigned int i; |
| |
| if (!queue->entries) |
| return; |
| |
| for (i = 0; i < queue->limit; i++) { |
| if (queue->entries[i].skb) |
| rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb); |
| } |
| } |
| |
| static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev, |
| struct data_queue *queue) |
| { |
| unsigned int i; |
| struct sk_buff *skb; |
| |
| for (i = 0; i < queue->limit; i++) { |
| skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]); |
| if (!skb) |
| return -ENOMEM; |
| queue->entries[i].skb = skb; |
| } |
| |
| return 0; |
| } |
| |
| int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev) |
| { |
| struct data_queue *queue; |
| int status; |
| |
| status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx); |
| if (status) |
| goto exit; |
| |
| tx_queue_for_each(rt2x00dev, queue) { |
| status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx); |
| if (status) |
| goto exit; |
| } |
| |
| status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn); |
| if (status) |
| goto exit; |
| |
| if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) { |
| status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1], |
| rt2x00dev->ops->atim); |
| if (status) |
| goto exit; |
| } |
| |
| status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx); |
| if (status) |
| goto exit; |
| |
| return 0; |
| |
| exit: |
| ERROR(rt2x00dev, "Queue entries allocation failed.\n"); |
| |
| rt2x00queue_uninitialize(rt2x00dev); |
| |
| return status; |
| } |
| |
| void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev) |
| { |
| struct data_queue *queue; |
| |
| rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx); |
| |
| queue_for_each(rt2x00dev, queue) { |
| kfree(queue->entries); |
| queue->entries = NULL; |
| } |
| } |
| |
| static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev, |
| struct data_queue *queue, enum data_queue_qid qid) |
| { |
| spin_lock_init(&queue->lock); |
| |
| queue->rt2x00dev = rt2x00dev; |
| queue->qid = qid; |
| queue->txop = 0; |
| queue->aifs = 2; |
| queue->cw_min = 5; |
| queue->cw_max = 10; |
| } |
| |
| int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev) |
| { |
| struct data_queue *queue; |
| enum data_queue_qid qid; |
| unsigned int req_atim = |
| !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags); |
| |
| /* |
| * We need the following queues: |
| * RX: 1 |
| * TX: ops->tx_queues |
| * Beacon: 1 |
| * Atim: 1 (if required) |
| */ |
| rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim; |
| |
| queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL); |
| if (!queue) { |
| ERROR(rt2x00dev, "Queue allocation failed.\n"); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Initialize pointers |
| */ |
| rt2x00dev->rx = queue; |
| rt2x00dev->tx = &queue[1]; |
| rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues]; |
| |
| /* |
| * Initialize queue parameters. |
| * RX: qid = QID_RX |
| * TX: qid = QID_AC_BE + index |
| * TX: cw_min: 2^5 = 32. |
| * TX: cw_max: 2^10 = 1024. |
| * BCN: qid = QID_BEACON |
| * ATIM: qid = QID_ATIM |
| */ |
| rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX); |
| |
| qid = QID_AC_BE; |
| tx_queue_for_each(rt2x00dev, queue) |
| rt2x00queue_init(rt2x00dev, queue, qid++); |
| |
| rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON); |
| if (req_atim) |
| rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM); |
| |
| return 0; |
| } |
| |
| void rt2x00queue_free(struct rt2x00_dev *rt2x00dev) |
| { |
| kfree(rt2x00dev->rx); |
| rt2x00dev->rx = NULL; |
| rt2x00dev->tx = NULL; |
| rt2x00dev->bcn = NULL; |
| } |