blob: bd61359bbb70f7fab9b117174255497fbe151c6f [file] [log] [blame]
/*
* ALSA SoC dummy cpu & platform dai driver
*
* This driver provides one dummy dai.
*
* Copyright (c) 2014 Samsung Electronics
* http://www.samsungsemi.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/dma/dma-pl330.h>
#include <linux/dma-mapping.h>
#include <linux/kthread.h>
#include <sound/soc.h>
#include <sound/pcm.h>
#include <sound/initval.h>
#include <sound/pcm_params.h>
#define PERIOD_MIN 4
static DECLARE_WAIT_QUEUE_HEAD(compr_cap_wq);
extern ssize_t esa_copy(unsigned long hwbuf, ssize_t size);
extern int esa_compr_running(void);
extern void esa_compr_ctrl_fxintr(bool fxon);
static const struct snd_pcm_hardware dma_hardware = {
.info = SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID,
.formats = SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_U16_LE |
SNDRV_PCM_FMTBIT_U8 |
SNDRV_PCM_FMTBIT_S8,
.channels_min = 1,
.channels_max = 8,
.buffer_bytes_max = 256*1024,
.period_bytes_min = 128,
.period_bytes_max = 32*1024,
.periods_min = 2,
.periods_max = 128,
.fifo_size = 32,
};
struct runtime_data {
spinlock_t lock;
int state;
unsigned int dma_loaded;
unsigned int dma_period;
unsigned long buf_start;
unsigned long buf_pos;
unsigned long buf_end;
unsigned long period_bytes;
struct snd_pcm_hardware hw;
struct snd_pcm_substream *substream;
struct task_struct *compr_cap_kthread;
bool running;
bool opened;
bool dram_used;
} rd;
static int dummy_dma_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct runtime_data *prtd = runtime->private_data;
unsigned long totbytes = params_buffer_bytes(params);
pr_debug("Entered %s\n", __func__);
snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
runtime->dma_bytes = totbytes;
spin_lock_irq(&prtd->lock);
prtd->dma_loaded = 0;
prtd->dma_period = params_period_bytes(params);
prtd->buf_start = (unsigned long)runtime->dma_area;
prtd->buf_pos = prtd->buf_start;
prtd->buf_end = prtd->buf_start + totbytes;
while ((totbytes / prtd->dma_period) < PERIOD_MIN)
prtd->dma_period >>= 1;
spin_unlock_irq(&prtd->lock);
pr_info("Dummy DMA:%s:Addr=@0x%lx Total=%d PrdSz=%d(%d) #Prds=%d \n",
(substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? "P" : "C",
prtd->buf_start, (u32)runtime->dma_bytes,
params_period_bytes(params),(u32) prtd->dma_period,
params_periods(params));
return 0;
}
static int dummy_dma_hw_free(struct snd_pcm_substream *substream)
{
snd_pcm_set_runtime_buffer(substream, NULL);
return 0;
}
static int dummy_dma_prepare(struct snd_pcm_substream *substream)
{
struct runtime_data *prtd = substream->runtime->private_data;
int ret = 0;
pr_debug("Entered %s +\n", __func__);
prtd->dma_loaded = 0;
prtd->buf_pos = prtd->buf_start;
pr_debug("Entered %s -\n", __func__);
return ret;
}
static snd_pcm_uframes_t dummy_dma_pointer(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct runtime_data *prtd = runtime->private_data;
unsigned long res;
pr_debug("Entered %s\n", __func__);
res = prtd->buf_pos - prtd->buf_start;
pr_debug("%s res = %lx\n", __func__, res);
return bytes_to_frames(substream->runtime, res);
}
static int dummy_dma_open(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
pr_info("Entered %s\n", __func__);
if (rd.opened)
return -EBUSY;
if (!esa_compr_running())
return -ENODEV;
spin_lock_init(&rd.lock);
memcpy(&rd.hw, &dma_hardware, sizeof(struct snd_pcm_hardware));
snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
runtime->private_data = &rd;
snd_soc_set_runtime_hwparams(substream, &rd.hw);
rd.opened = true;
pr_info("%s: prtd = %p\n", __func__, &rd);
return 0;
}
static int dummy_dma_close(struct snd_pcm_substream *substream)
{
pr_info("Entered %s\n", __func__);
rd.opened = false;
return 0;
}
static int dummy_dma_copy(struct snd_pcm_substream *substream, int channel,
snd_pcm_uframes_t pos, void __user *buf, snd_pcm_uframes_t count)
{
struct snd_pcm_runtime *runtime = substream->runtime;
char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, pos);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, count)))
return -EFAULT;
} else {
if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, count)))
return -EFAULT;
}
return 0;
}
static int dummy_dma_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct runtime_data *prtd = substream->runtime->private_data;
int ret = 0;
pr_info("Entered %s\n", __func__);
spin_lock(&prtd->lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
/* Enable seiren firmware effect Fx external interrupt
to capture offload's PCM data from firmware */
esa_compr_ctrl_fxintr(true);
rd.running = true;
if (waitqueue_active(&compr_cap_wq))
wake_up_interruptible(&compr_cap_wq);
break;
case SNDRV_PCM_TRIGGER_STOP:
rd.running = false;
/* Disable seiren firmware effect Fx externalinterrupt */
esa_compr_ctrl_fxintr(false);
break;
default:
ret = -EINVAL;
break;
}
spin_unlock(&prtd->lock);
return ret;
}
static struct snd_pcm_ops visualizercap_dummy_dma_ops = {
.open = dummy_dma_open,
.close = dummy_dma_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = dummy_dma_hw_params,
.hw_free = dummy_dma_hw_free,
.prepare = dummy_dma_prepare,
.trigger = dummy_dma_trigger,
.pointer = dummy_dma_pointer,
.copy = dummy_dma_copy,
};
static int compr_cap_kthr(void *p)
{
struct runtime_data *prtd = (struct runtime_data *)p;
int ret = 0;
while (!kthread_should_stop()) {
wait_event_interruptible(compr_cap_wq, rd.running);
ret = esa_copy(prtd->buf_pos, prtd->dma_period);
if (ret < 0) {
pr_err("Failed to get f/w decoded pcm data\n");
rd.running = false;
continue;
}
prtd->buf_pos = prtd->buf_pos + prtd->dma_period;
if (prtd->buf_pos >= prtd->buf_end)
prtd->buf_pos = prtd->buf_start;
snd_pcm_period_elapsed(rd.substream);
}
return 0;
}
static int preallocate_dma_buffer_of(struct snd_pcm *pcm, int stream,
struct device_node *np)
{
struct snd_pcm_substream *substream = pcm->streams[stream].substream;
struct snd_dma_buffer *buf = &substream->dma_buffer;
dma_addr_t dma_addr;
size_t size = dma_hardware.buffer_bytes_max;
pr_debug("Entered %s\n", __func__);
buf->dev.type = SNDRV_DMA_TYPE_DEV;
buf->dev.dev = pcm->card->dev;
buf->private_data = NULL;
buf->area = dma_alloc_coherent(pcm->card->dev, size, &dma_addr, GFP_KERNEL);
if (!buf->area)
return -ENOMEM;
buf->addr = dma_addr;
buf->bytes = size;
rd.substream = substream;
return 0;
}
static void dummy_dma_free_dma_buffers(struct snd_pcm *pcm)
{
struct snd_pcm_substream *substream;
struct snd_dma_buffer *buf;
pr_debug("Entered %s\n", __func__);
substream = pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream;
if (!substream)
return;
buf = &substream->dma_buffer;
if (!buf->area)
return;
dma_free_coherent(pcm->card->dev, buf->bytes, buf->area, buf->addr);
buf->area = NULL;
}
static u64 dma_mask = DMA_BIT_MASK(32);
static int dummy_dma_new(struct snd_soc_pcm_runtime *rtd)
{
struct snd_card *card = rtd->card->snd_card;
struct snd_pcm *pcm = rtd->pcm;
struct device_node *np = rtd->cpu_dai->dev->of_node;
struct sched_param param = { .sched_priority = 0 };
struct task_struct *ret_task;
int ret = 0;
pr_debug("Entered %s\n", __func__);
if (!card->dev->dma_mask)
card->dev->dma_mask = &dma_mask;
if (!card->dev->coherent_dma_mask)
card->dev->coherent_dma_mask = DMA_BIT_MASK(32);
if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
ret = 0;
if (np)
ret = preallocate_dma_buffer_of(pcm,
SNDRV_PCM_STREAM_CAPTURE, np);
if (ret)
goto out;
}
ret_task = kthread_run(compr_cap_kthr, &rd, "compr_cap_kthr");
if (IS_ERR(ret_task)) {
pr_info("%s: failed to create compr_cap thread(%ld)\n",
__func__, PTR_ERR(ret_task));
ret = PTR_ERR(ret_task);
} else {
sched_setscheduler(ret_task, SCHED_NORMAL, &param);
}
out:
return ret;
}
static struct snd_soc_platform_driver dummy_asoc_platform = {
.ops = &visualizercap_dummy_dma_ops,
.pcm_new = dummy_dma_new,
.pcm_free = dummy_dma_free_dma_buffers,
};
#define SAMSUNG_I2S_RATES SNDRV_PCM_RATE_8000_192000
#define SAMSUNG_I2S_FMTS (SNDRV_PCM_FMTBIT_S8 | \
SNDRV_PCM_FMTBIT_S16_LE | \
SNDRV_PCM_FMTBIT_S24_LE)
static struct snd_soc_dai_driver dummy_i2s_dai_drv = {
.name = "dummy-i2s-dai-driver",
};
static const struct snd_soc_component_driver dummy_i2s_component = {
.name = "dummy-i2s",
};
static int dummy_cpu_probe(struct platform_device *pdev)
{
dummy_i2s_dai_drv.symmetric_rates = 1;
dummy_i2s_dai_drv.capture.channels_min = 1;
dummy_i2s_dai_drv.capture.channels_max = 2;
dummy_i2s_dai_drv.capture.rates = SAMSUNG_I2S_RATES;
dummy_i2s_dai_drv.capture.formats = SAMSUNG_I2S_FMTS;
snd_soc_register_component(&pdev->dev, &dummy_i2s_component,
&dummy_i2s_dai_drv, 1);
snd_soc_register_platform(&pdev->dev, &dummy_asoc_platform);
return 0;
}
static int dummy_cpu_remove(struct platform_device *pdev)
{
snd_soc_unregister_component(&pdev->dev);
snd_soc_unregister_platform(&pdev->dev);
return 0;
}
static const struct of_device_id dummy_cpu_of_match[] = {
{ .compatible = "samsung,dummy-i2s", },
{},
};
MODULE_DEVICE_TABLE(of, dummy_cpu_of_match);
static struct platform_driver dummy_cpu_driver = {
.probe = dummy_cpu_probe,
.remove = dummy_cpu_remove,
.driver = {
.name = "dummy-i2s",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(dummy_cpu_of_match),
},
};
module_platform_driver(dummy_cpu_driver);
MODULE_AUTHOR("Hyunwoong Kim <khw0178.kim@samsung.com>");
MODULE_DESCRIPTION("Dummy dai driver");
MODULE_LICENSE("GPL");