blob: 92024c4e2d768131d9904f394d4dd05092f00d6b [file] [log] [blame]
/*
* DSPG DBMDX UART interface driver
*
* Copyright (C) 2014 DSP Group
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/* #define DEBUG */
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/mutex.h>
#ifdef CONFIG_OF
#include <linux/of.h>
#endif
#include <linux/tty.h>
#include <linux/kthread.h>
#include <linux/platform_device.h>
#include <linux/uaccess.h>
#include <linux/firmware.h>
#include "dbmdx-interface.h"
#include "dbmdx-va-regmap.h"
#include "dbmdx-uart.h"
/* baud rate for wakeup sequence */
#define UART_TTY_WAKEUP_SEQ_BAUD_RATE 2400
#define DEFAULT_UART_WRITE_CHUNK_SIZE 8
#define MAX_UART_WRITE_CHUNK_SIZE 0x20000
#define DEFAULT_UART_READ_CHUNK_SIZE 8
#define MAX_UART_READ_CHUNK_SIZE 4096
#ifndef INIT_COMPLETION
#define INIT_COMPLETION(x) reinit_completion(&x)
#endif
static DECLARE_WAIT_QUEUE_HEAD(dbmdx_wq);
static void uart_transport_enable(struct dbmdx_private *p, bool enable);
#ifndef NEED_FILE_TTY
static inline struct tty_struct *file_tty(struct file *file)
{
return ((struct tty_file_private *)file->private_data)->tty;
}
#endif
static int uart_open_file(struct dbmdx_uart_private *p)
{
long err = 0;
struct file *fp;
int attempt = 0;
unsigned long timeout = jiffies + msecs_to_jiffies(60000);
struct filename fname;
if (p->uart_open)
goto out_ok;
fname.name = p->pdata->uart_dev;
/*
* Wait for the device node to appear in the filesystem. This can take
* some time if the kernel is still booting up and filesystems are
* being mounted.
*/
do {
msleep(DBMDX_MSLEEP_UART_PROBE);
dev_dbg(p->dev,
"%s(): probing for tty on %s (attempt %d)\n",
__func__, p->pdata->uart_dev, ++attempt);
fp = file_open_name(&fname, O_RDWR | O_NONBLOCK | O_NOCTTY, 0);
err = PTR_ERR(fp);
} while (time_before(jiffies, timeout) && (err == -ENOENT) &&
(atomic_read(&p->stop_uart_probing) == 0));
if (atomic_read(&p->stop_uart_probing)) {
dev_dbg(p->dev, "%s: UART probe thread stopped\n", __func__);
atomic_set(&p->stop_uart_probing, 0);
err = -EIO;
goto out;
}
if (IS_ERR_OR_NULL(fp)) {
dev_err(p->dev, "%s: UART device node open failed\n", __func__);
err = -ENODEV;
goto out;
}
/* set uart_dev members */
p->fp = fp;
p->tty = file_tty(fp);
p->ldisc = tty_ldisc_ref(p->tty);
p->uart_open = 1;
err = 0;
dev_dbg(p->dev, "%s: UART successfully opened\n", __func__);
out_ok:
/* finish probe */
complete(&p->uart_done);
out:
return err;
}
static int uart_open_file_noprobe(struct dbmdx_uart_private *p)
{
long err = 0;
struct file *fp;
int attempt = 0;
unsigned long timeout = jiffies + msecs_to_jiffies(1000);
struct filename fname;
if (p->uart_open)
goto out;
fname.name = p->pdata->uart_dev;
/*
* Wait for the device node to appear in the filesystem. This can take
* some time if the kernel is still booting up and filesystems are
* being mounted.
*/
do {
if (attempt > 0)
msleep(DBMDX_MSLEEP_UART_PROBE);
dev_dbg(p->dev,
"%s(): probing for tty on %s (attempt %d)\n",
__func__, p->pdata->uart_dev, ++attempt);
fp = file_open_name(&fname, O_RDWR | O_NONBLOCK | O_NOCTTY, 0);
err = PTR_ERR(fp);
} while (time_before(jiffies, timeout) && IS_ERR_OR_NULL(fp));
if (IS_ERR_OR_NULL(fp)) {
dev_err(p->dev, "%s: UART device node open failed, err=%d\n",
__func__,
(int)err);
err = -ENODEV;
goto out;
}
/* set uart_dev members */
p->fp = fp;
p->tty = file_tty(fp);
p->ldisc = tty_ldisc_ref(p->tty);
p->uart_open = 1;
err = 0;
dev_dbg(p->dev, "%s: UART successfully opened\n", __func__);
out:
return err;
}
static void uart_close_file(struct dbmdx_uart_private *p)
{
if (p->uart_probe_thread) {
atomic_inc(&p->stop_uart_probing);
kthread_stop(p->uart_probe_thread);
p->uart_probe_thread = NULL;
}
if (p->uart_open) {
tty_ldisc_deref(p->ldisc);
filp_close(p->fp, 0);
p->uart_open = 0;
}
atomic_set(&p->stop_uart_probing, 0);
}
void uart_flush_rx_fifo(struct dbmdx_uart_private *p)
{
dev_dbg(p->dev, "%s\n", __func__);
if (!p->uart_open) {
dev_err(p->dev, "%s: UART is not opened !!!\n", __func__);
return;
}
tty_ldisc_flush(p->tty);
}
int uart_configure_tty(struct dbmdx_uart_private *p, u32 bps, int stop,
int parity, int flow)
{
int rc = 0;
struct ktermios termios;
if (!p->uart_open) {
dev_err(p->dev, "%s: UART is not opened !!!\n", __func__);
return -EIO;
}
memcpy(&termios, &(p->tty->termios), sizeof(termios));
tty_wait_until_sent(p->tty, 0);
usleep_range(50, 60);
/* clear csize, baud */
termios.c_cflag &= ~(CBAUD | CSIZE | PARENB | CSTOPB);
termios.c_cflag |= BOTHER; /* allow arbitrary baud */
termios.c_cflag |= CS8;
termios.c_cflag |= CREAD;
if (parity)
termios.c_cflag |= PARENB;
if (stop == 2)
termios.c_cflag |= CSTOPB;
/* set uart port to raw mode (see termios man page for flags) */
termios.c_iflag &= ~(IGNBRK | BRKINT | PARMRK | ISTRIP
| INLCR | IGNCR | ICRNL | IXON | IXOFF);
if (flow && p->pdata->software_flow_control)
termios.c_iflag |= IXOFF; /* enable XON/OFF for input */
termios.c_oflag &= ~(OPOST);
termios.c_lflag &= ~(ECHO | ECHONL | ICANON | ISIG | IEXTEN);
/* set baud rate */
termios.c_ospeed = bps;
termios.c_ispeed = bps;
rc = tty_set_termios(p->tty, &termios);
return rc;
}
ssize_t uart_read_data(struct dbmdx_private *p, void *buf, size_t len)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
size_t count = uart_p->pdata->read_chunk_size;
u8 *d = (u8 *)buf;
mm_segment_t oldfs;
int rc;
int i = 0;
size_t bytes_to_read = len;
unsigned long timeout;
/* if stuck for more than 10s, something is wrong */
timeout = jiffies + msecs_to_jiffies(1000);
if (!uart_p->uart_open) {
dev_err(p->dev, "%s: UART is not opened !!!\n", __func__);
return -EIO;
}
oldfs = get_fs();
set_fs(KERNEL_DS);
do {
if (count > bytes_to_read)
count = bytes_to_read;
rc = uart_p->ldisc->ops->read(uart_p->tty,
uart_p->fp,
uart_p->pdata->read_buf,
count);
if (rc > 0) {
memcpy(d + i, uart_p->pdata->read_buf, rc);
bytes_to_read -= rc;
i += rc;
} else if (rc == 0 || rc == -EAGAIN) {
usleep_range(2000, 2100);
} else
dev_err(p->dev,
"%s: Failed to read err= %d bytes to read=%zu\n",
__func__,
rc, bytes_to_read);
} while (time_before(jiffies, timeout) && bytes_to_read);
/* restore old fs context */
set_fs(oldfs);
if (bytes_to_read) {
dev_err(uart_p->dev,
"%s: timeout: unread %zu bytes ,requested %zu\n",
__func__, bytes_to_read, len);
return -EIO;
}
return len;
}
ssize_t uart_write_data_no_sync(struct dbmdx_private *p, const void *buf,
size_t len)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
int ret = 0;
const u8 *cmds = (const u8 *)buf;
size_t to_copy = len;
size_t max_size = (size_t)(uart_p->pdata->write_chunk_size);
mm_segment_t oldfs;
unsigned int count;
if (!uart_p->uart_open) {
dev_err(p->dev, "%s: UART is not opened !!!\n", __func__);
return -EIO;
}
oldfs = get_fs();
set_fs(KERNEL_DS);
while (to_copy > 0) {
if (to_copy > max_size)
count = max_size;
else
count = to_copy;
/* block until tx buffer space is available */
do {
ret = tty_write_room(uart_p->tty);
usleep_range(100, 110);
} while (ret <= 0);
if (ret < count)
count = ret;
ret = uart_p->ldisc->ops->write(uart_p->tty,
uart_p->fp,
cmds,
min_t(size_t,
count, max_size));
if (ret < 0) {
dev_err(uart_p->dev, "%s: Failed ret=%d\n",
__func__, ret);
break;
}
to_copy -= ret;
cmds += ret;
}
/* restore old fs context */
set_fs(oldfs);
return len - to_copy;
}
ssize_t uart_write_data(struct dbmdx_private *p, const void *buf,
size_t len)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
ssize_t bytes_wr;
dev_dbg(uart_p->dev, "%s\n", __func__);
if (!uart_p->uart_open) {
dev_err(p->dev, "%s: UART is not opened !!!\n", __func__);
return -EIO;
}
bytes_wr = uart_write_data_no_sync(p, buf, len);
tty_wait_until_sent(uart_p->tty, 0);
usleep_range(50, 60);
return bytes_wr;
}
ssize_t send_uart_cmd_vqe(struct dbmdx_private *p, u32 command,
u16 *response)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
char tmp[3];
u8 send[7];
u8 recv[6] = {0, 0, 0, 0, 0, 0};
int ret;
dev_dbg(uart_p->dev, "%s: Send 0x%04x\n", __func__, command);
if (response)
uart_flush_rx_fifo(uart_p);
ret = snprintf(tmp, 3, "%02x", (command >> 16) & 0xff);
if (ret < 0)
goto out;
send[0] = tmp[0];
send[1] = tmp[1];
send[2] = 'w';
ret = snprintf(tmp, 3, "%02x", (command >> 8) & 0xff);
if (ret < 0)
goto out;
send[3] = tmp[0];
send[4] = tmp[1];
ret = snprintf(tmp, 3, "%02x", command & 0xff);
if (ret < 0)
goto out;
send[5] = tmp[0];
send[6] = tmp[1];
ret = uart_write_data(p, send, 7);
if (ret != 7)
goto out;
ret = 0;
/* the sleep command cannot be acked before the device goes to sleep */
if (command == DBMDX_VA_SET_POWER_STATE_SLEEP)
goto out;
if (!response)
goto out;
ret = uart_read_data(p, recv, 5);
if (ret < 0)
goto out;
ret = kstrtou16(recv, 16, response);
if (ret < 0) {
dev_err(uart_p->dev, "%s: %2.2x:%2.2x:%2.2x:%2.2x\n",
__func__, recv[0], recv[1], recv[2], recv[3]);
goto out;
}
ret = 0;
out:
return ret;
}
ssize_t send_uart_cmd_va(struct dbmdx_private *p, u32 command,
u16 *response)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
char tmp[3];
u8 send[7];
u8 recv[6] = {0, 0, 0, 0, 0, 0};
int ret;
dev_dbg(uart_p->dev, "%s: Send 0x%02x\n", __func__, command);
/*Send wakeup byte*/
if (p->pdata->send_wakeup_seq) {
send[0] = 0;
ret = uart_write_data(p, send, 1);
if (ret != 1)
goto out;
usleep_range(DBMDX_USLEEP_UART_AFTER_WAKEUP_BYTE,
DBMDX_USLEEP_UART_AFTER_WAKEUP_BYTE + 10);
}
if (response) {
uart_flush_rx_fifo(uart_p);
ret = snprintf(tmp, 3, "%02x", (command >> 16) & 0xff);
send[0] = tmp[0];
send[1] = tmp[1];
send[2] = 'r';
ret = uart_write_data(p, send, 3);
if (ret != 3)
goto out;
ret = 0;
/* The sleep command cannot be ack'ed before the device goes
* to sleep
*/
if (command == DBMDX_VA_SET_POWER_STATE_SLEEP)
goto out;
if (!response)
goto out;
ret = uart_read_data(p, recv, 5);
if (ret < 0)
goto out;
ret = kstrtou16(recv, 16, response);
if (ret < 0) {
dev_err(uart_p->dev, "%s: %2.2x:%2.2x:%2.2x:%2.2x\n",
__func__, recv[0], recv[1], recv[2], recv[3]);
goto out;
}
dev_dbg(uart_p->dev,
"%s: Received 0x%02x\n", __func__, *response);
ret = 0;
} else {
ret = snprintf(tmp, 3, "%02x", (command >> 16) & 0xff);
if (ret < 0)
goto out;
send[0] = tmp[0];
send[1] = tmp[1];
send[2] = 'w';
ret = snprintf(tmp, 3, "%02x", (command >> 8) & 0xff);
if (ret < 0)
goto out;
send[3] = tmp[0];
send[4] = tmp[1];
ret = snprintf(tmp, 3, "%02x", command & 0xff);
if (ret < 0)
goto out;
send[5] = tmp[0];
send[6] = tmp[1];
ret = uart_write_data(p, send, 7);
if (ret != 7)
goto out;
ret = 0;
}
out:
return ret;
}
int send_uart_cmd_boot(struct dbmdx_private *p, u32 command)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
u8 send[3];
int ret;
dev_info(uart_p->dev, "%s: command = %x\n", __func__, command);
send[0] = (command >> 16) & 0xff;
send[1] = (command >> 8) & 0xff;
uart_flush_rx_fifo(uart_p);
ret = uart_write_data(p, send, 2);
if (ret != 2) {
dev_err(uart_p->dev, "%s: ret = %d\n", __func__, ret);
return ret;
}
return 0;
}
int uart_verify_boot_checksum(struct dbmdx_private *p,
const void *checksum, size_t chksum_len)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
int ret;
u8 rx_checksum[10];
if (!checksum)
return 0;
if (chksum_len > 8) {
dev_err(uart_p->dev, "%s: illegal checksum length\n", __func__);
return -EINVAL;
}
uart_flush_rx_fifo(uart_p);
ret = send_uart_cmd_boot(p, DBMDX_READ_CHECKSUM);
if (ret < 0) {
dev_err(uart_p->dev, "%s: could not read checksum\n", __func__);
return -EIO;
}
ret = uart_read_data(p, (void *)rx_checksum, chksum_len + 2);
if (ret < 0) {
dev_err(uart_p->dev, "%s: could not read checksum data\n",
__func__);
return -EIO;
}
ret = p->verify_checksum(p, checksum, &rx_checksum[2], chksum_len);
if (ret) {
dev_err(uart_p->dev, "%s: checksum mismatch\n", __func__);
return -EILSEQ;
}
return 0;
}
int uart_verify_chip_id(struct dbmdx_private *p)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
int ret;
u8 idr_read_cmd[] = {0x5A, 0x07, 0x68, 0x00, 0x00, 0x03};
u8 idr_read_result[7] = {0};
u8 chip_rev_id_low_a = 0;
u8 chip_rev_id_low_b = 0;
u8 chip_rev_id_high = 0;
u8 recv_chip_rev_id_high = 0;
u8 recv_chip_rev_id_low = 0;
if (p->cur_firmware_id == DBMDX_FIRMWARE_ID_DBMD2) {
idr_read_cmd[2] = 0x68;
chip_rev_id_high = 0x0d;
chip_rev_id_low_a = 0xb0;
chip_rev_id_low_b = 0xb1;
} else if (p->cur_firmware_id == DBMDX_FIRMWARE_ID_DBMD4) {
idr_read_cmd[2] = 0x74;
chip_rev_id_high = 0xdb;
chip_rev_id_low_a = 0x40;
chip_rev_id_low_b = 0x40;
} else if (p->cur_firmware_id == DBMDX_FIRMWARE_ID_DBMD6) {
idr_read_cmd[2] = 0x74;
chip_rev_id_high = 0xdb;
chip_rev_id_low_a = 0x60;
chip_rev_id_low_b = 0x60;
} else {
idr_read_cmd[2] = 0x74;
chip_rev_id_high = 0xdb;
chip_rev_id_low_a = 0x80;
chip_rev_id_low_b = 0x80;
}
ret = uart_write_data(p, idr_read_cmd, 6);
if (ret != sizeof(idr_read_cmd)) {
dev_err(uart_p->dev, "%s: idr_read_cmd ret = %d\n",
__func__, ret);
return ret;
}
usleep_range(1000, 2000);
ret = uart_read_data(p, (void *)idr_read_result, 6);
if (ret < 0) {
dev_err(uart_p->dev, "%s: could not idr register data\n",
__func__);
return -EIO;
}
/* Verify answer */
if ((idr_read_result[0] != idr_read_cmd[0]) ||
(idr_read_result[1] != idr_read_cmd[1]) ||
(idr_read_result[4] != 0x00) ||
(idr_read_result[5] != 0x00)) {
dev_err(uart_p->dev, "%s: Wrong IDR resp: %x:%x:%x:%x:%x:%x\n",
__func__,
idr_read_result[0],
idr_read_result[1],
idr_read_result[2],
idr_read_result[3],
idr_read_result[4],
idr_read_result[5]);
return -EIO;
}
recv_chip_rev_id_high = idr_read_result[3];
recv_chip_rev_id_low = idr_read_result[2];
if ((recv_chip_rev_id_high != chip_rev_id_high) ||
((recv_chip_rev_id_low != chip_rev_id_low_a) &&
(recv_chip_rev_id_low != chip_rev_id_low_b))) {
dev_err(uart_p->dev,
"%s: Wrong chip ID: Received 0x%2x%2x Expected: 0x%2x%2x | 0x%2x%2x\n",
__func__,
recv_chip_rev_id_high,
recv_chip_rev_id_low,
chip_rev_id_high,
chip_rev_id_low_a,
chip_rev_id_high,
chip_rev_id_low_b);
return -EILSEQ;
}
dev_info(uart_p->dev,
"%s: Chip ID was successfully verified: 0x%2x%2x\n",
__func__,
recv_chip_rev_id_high,
recv_chip_rev_id_low);
return 0;
}
static int uart_can_boot(struct dbmdx_private *p)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
unsigned long remaining_time;
int retries = RETRY_COUNT;
int ret = -EBUSY;
dev_dbg(uart_p->dev, "%s\n", __func__);
/*
* do additional waiting until UART device is really
* available
*/
do {
remaining_time =
wait_for_completion_timeout(&uart_p->uart_done, HZ);
} while (!remaining_time && retries--);
if (uart_p->uart_probe_thread) {
atomic_inc(&uart_p->stop_uart_probing);
kthread_stop(uart_p->uart_probe_thread);
uart_p->uart_probe_thread = NULL;
}
INIT_COMPLETION(uart_p->uart_done);
if (retries == 0) {
dev_err(p->dev, "%s: UART not available\n", __func__);
goto out;
}
uart_transport_enable(p, true);
ret = 0;
out:
return ret;
}
static int uart_prepare_boot(struct dbmdx_private *p)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
dev_dbg(uart_p->dev, "%s\n", __func__);
return 0;
}
int uart_wait_for_ok(struct dbmdx_private *p)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
u8 resp[5] = {0, 0, 0, 0, 0};
const char match[] = "OK\n\r";
int ret;
dev_dbg(uart_p->dev, "%s\n", __func__);
ret = uart_read_data(p, resp, 3);
if (ret < 0) {
dev_err(uart_p->dev, "%s: failed to read OK from uart: %d\n",
__func__, ret);
goto out;
}
ret = strncmp(match, resp, 2);
if (ret)
dev_err(uart_p->dev,
"%s: result = %d : %2.2x:%2.2x:%2.2x\n",
__func__, ret, resp[0], resp[1], resp[2]);
if (ret)
ret = strncmp(match + 1, resp, 2);
if (ret)
ret = strncmp(match, resp + 1, 2);
out:
return ret;
}
static int uart_boot(const void *fw_data, size_t fw_size,
struct dbmdx_private *p, const void *checksum,
size_t chksum_len, int load_fw)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
dev_dbg(uart_p->dev, "%s\n", __func__);
return 0;
}
static int uart_finish_boot(struct dbmdx_private *p)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
dev_dbg(uart_p->dev, "%s\n", __func__);
return 0;
}
static int uart_dump_state(struct chip_interface *chip, char *buf)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)chip->pdata;
int off = 0;
dev_dbg(uart_p->dev, "%s\n", __func__);
off += snprintf(buf + off, PAGE_SIZE - off,
"\t===UART Interface Dump====\n");
off += snprintf(buf + off, PAGE_SIZE - off, "\tUart Interface:\t%s\n",
uart_p->uart_open ? "Open" : "Closed");
off += snprintf(buf + off, PAGE_SIZE - off, "\tUart Device:\t%s\n",
uart_p->pdata->uart_dev);
off += snprintf(buf + off, PAGE_SIZE - off,
"\tUART Write Chunk Size:\t\t%d\n",
uart_p->pdata->write_chunk_size);
off += snprintf(buf + off, PAGE_SIZE - off,
"\tUART Read Chunk Size:\t\t%d\n",
uart_p->pdata->read_chunk_size);
off += snprintf(buf + off, PAGE_SIZE - off,
"\tInterface resumed:\t%s\n",
uart_p->interface_enabled ? "ON" : "OFF");
return off;
}
static int uart_set_va_firmware_ready(struct dbmdx_private *p)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
int ret = 0;
dev_dbg(uart_p->dev, "%s\n", __func__);
if (p->pdata->uart_low_speed_enabled)
ret = uart_set_speed(p, DBMDX_VA_SPEED_NORMAL);
else
ret = uart_set_speed(p, DBMDX_VA_SPEED_BUFFERING);
if (ret) {
dev_err(p->dev, "%s: failed to send change speed command\n",
__func__);
return -EIO;
}
return 0;
}
static int uart_set_vqe_firmware_ready(struct dbmdx_private *p)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
dev_dbg(uart_p->dev, "%s\n", __func__);
return 0;
}
static void uart_transport_enable(struct dbmdx_private *p, bool enable)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
int ret;
u32 uart_baud;
dev_dbg(uart_p->dev, "%s (%s)\n", __func__, enable ? "ON" : "OFF");
if (enable) {
#ifdef CONFIG_PM_WAKELOCKS
__pm_stay_awake(&uart_p->ps_nosuspend_wl);
#endif
ret = wait_event_interruptible(dbmdx_wq,
uart_p->interface_enabled);
if (ret)
dev_dbg(uart_p->dev,
"%s, waiting for interface was interrupted",
__func__);
else
dev_dbg(uart_p->dev, "%s, interface is active\n",
__func__);
}
if (enable) {
p->wakeup_set(p);
if (uart_p->uart_open)
return;
ret = uart_open_file_noprobe(uart_p);
if (ret < 0) {
dev_err(uart_p->dev, "%s: failed to enable UART: %d\n",
__func__, ret);
return;
}
if (p->pdata->uart_low_speed_enabled)
uart_baud = p->pdata->va_speed_cfg[0].uart_baud;
else
uart_baud = p->pdata->va_speed_cfg[1].uart_baud;
/* Send wakeup byte */
if (p->pdata->send_wakeup_seq &&
p->power_mode == DBMDX_PM_SLEEPING) {
u8 send[2] = {0, 0};
ret = uart_configure_tty(uart_p,
UART_TTY_WAKEUP_SEQ_BAUD_RATE,
uart_p->normal_stop_bits,
uart_p->normal_parity,
0);
if (ret) {
dev_err(uart_p->dev,
"%s: cannot configure tty to: %us%up%uf%u\n",
__func__,
UART_TTY_WAKEUP_SEQ_BAUD_RATE,
uart_p->normal_parity,
uart_p->normal_stop_bits, 0);
return;
}
uart_write_data(p, send, 1);
}
if (p->power_mode == DBMDX_PM_SLEEPING)
/* It takes up to 100ms
* to PLL to stabilize after hibernation
*/
msleep(DBMDX_MSLEEP_UART_WAKEUP);
ret = uart_configure_tty(uart_p,
uart_baud,
uart_p->normal_stop_bits,
uart_p->normal_parity,
0);
if (ret) {
dev_err(uart_p->dev,
"%s: cannot configure tty to: %us%up%uf%u\n",
__func__,
uart_baud,
uart_p->normal_parity,
uart_p->normal_stop_bits, 0);
return;
}
/* Send wakeup in detection mode byte */
if (p->pdata->send_wakeup_seq &&
p->va_flags.mode == DBMDX_DETECTION) {
u8 send[2] = {0, 0};
uart_write_data(p, send, 1);
}
} else {
#ifdef CONFIG_PM_WAKELOCKS
__pm_relax(&uart_p->ps_nosuspend_wl);
#endif
p->wakeup_release(p);
if (!uart_p->uart_open)
return;
uart_close_file(uart_p);
}
}
static void uart_resume(struct dbmdx_private *p)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
dev_dbg(uart_p->dev, "%s\n", __func__);
uart_interface_resume(uart_p);
}
void uart_interface_resume(struct dbmdx_uart_private *uart_p)
{
dev_dbg(uart_p->dev, "%s\n", __func__);
uart_p->interface_enabled = 1;
wake_up_interruptible(&dbmdx_wq);
}
static void uart_suspend(struct dbmdx_private *p)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
dev_dbg(uart_p->dev, "%s\n", __func__);
uart_interface_suspend(uart_p);
}
void uart_interface_suspend(struct dbmdx_uart_private *uart_p)
{
dev_dbg(uart_p->dev, "%s\n", __func__);
uart_p->interface_enabled = 0;
}
int uart_wait_till_alive(struct dbmdx_private *p)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
int ret = 0;
u16 response;
unsigned long stimeout = jiffies + msecs_to_jiffies(1000);
uart_flush_rx_fifo(uart_p);
/* Poll to wait for firmware completing its wakeup procedure:
* Read the firmware ID number
*/
do {
/* check if chip is alive */
ret = send_uart_cmd_va(p, DBMDX_VA_FW_ID, &response);
if (ret)
continue;
if (response == (u16)(p->pdata->firmware_id))
ret = 0;
else
ret = -1;
} while (time_before(jiffies, stimeout) && ret != 0);
if (ret != 0)
dev_err(p->dev, "%s: failed to read firmware id\n", __func__);
ret = (ret >= 0 ? 1 : 0);
if (!ret)
dev_err(p->dev, "%s(): failed = 0x%x\n", __func__, ret);
return ret;
}
/* This function sets the uart speed and also can set the software flow
* control according to the define
*/
int uart_set_speed_host_only(struct dbmdx_private *p, int index)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
int ret;
ret = uart_configure_tty(uart_p,
p->pdata->va_speed_cfg[index].uart_baud,
uart_p->normal_stop_bits,
uart_p->normal_parity,
0);
if (ret) {
dev_err(p->dev, "%s: cannot configure tty to: %us%up%uf%u\n",
__func__,
p->pdata->va_speed_cfg[index].uart_baud,
uart_p->normal_parity,
uart_p->normal_stop_bits,
0);
goto out;
}
dev_info(p->dev, "%s: Configure tty to: %us%up%uf%u\n",
__func__,
p->pdata->va_speed_cfg[index].uart_baud,
uart_p->normal_parity,
uart_p->normal_stop_bits,
0);
uart_p->normal_baud_rate = p->pdata->va_speed_cfg[index].uart_baud;
uart_flush_rx_fifo(uart_p);
out:
return ret;
}
/* this set the uart speed no flow control */
int uart_set_speed(struct dbmdx_private *p, int index)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
int ret;
ret = send_uart_cmd_va(p,
DBMDX_VA_UART_SPEED |
p->pdata->va_speed_cfg[index].uart_baud/100,
NULL);
if (ret) {
dev_err(p->dev,
"%s: failed to send UART change speed command\n",
__func__);
goto out;
}
/* set baudrate to FW baud (common case) */
ret = uart_configure_tty(uart_p,
p->pdata->va_speed_cfg[index].uart_baud,
uart_p->normal_stop_bits,
uart_p->normal_parity,
0);
if (ret) {
dev_err(p->dev, "%s: cannot configure tty to: %us%up%uf%u\n",
__func__,
p->pdata->va_speed_cfg[index].uart_baud,
uart_p->normal_parity,
uart_p->normal_stop_bits,
0);
goto out;
}
dev_info(p->dev, "%s: Configure tty to: %us%up%uf%u\n",
__func__,
p->pdata->va_speed_cfg[index].uart_baud,
uart_p->normal_parity,
uart_p->normal_stop_bits,
0);
uart_p->normal_baud_rate = p->pdata->va_speed_cfg[index].uart_baud;
uart_flush_rx_fifo(uart_p);
ret = uart_wait_till_alive(p);
if (!ret) {
dev_err(p->dev, "%s: device not responding\n", __func__);
goto out;
}
ret = 0;
goto out;
out:
return ret;
}
static int uart_prepare_buffering(struct dbmdx_private *p)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
dev_dbg(uart_p->dev, "%s\n", __func__);
return 0;
}
static int uart_read_audio_data(struct dbmdx_private *p,
void *buf,
size_t samples,
bool to_read_metadata,
size_t *available_samples,
size_t *data_offset)
{
size_t bytes_to_read;
int ret;
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
mm_segment_t oldfs;
dev_dbg(uart_p->dev, "%s\n", __func__);
oldfs = get_fs();
set_fs(KERNEL_DS);
ret = send_uart_cmd_va(p, DBMDX_VA_READ_AUDIO_BUFFER | samples, NULL);
if (ret) {
dev_err(p->dev, "%s: failed to request %zu audio samples\n",
__func__, samples);
ret = -1;
goto out;
}
*available_samples = 0;
if (to_read_metadata)
*data_offset = 8;
else
*data_offset = 0;
bytes_to_read = samples * 8 * p->bytes_per_sample + *data_offset;
ret = uart_read_data(p, buf, bytes_to_read);
if (ret != bytes_to_read) {
dev_err(p->dev,
"%s: read audio failed, %zu bytes to read, res(%d)\n",
__func__,
bytes_to_read,
ret);
ret = -1;
goto out;
}
/* Word #4 contains current number of available samples */
if (to_read_metadata)
*available_samples = (size_t)(((u16 *)buf)[3]);
else
*available_samples = samples;
ret = samples;
out:
/* restore old fs context */
set_fs(oldfs);
return ret;
}
static int uart_finish_buffering(struct dbmdx_private *p)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
dev_dbg(uart_p->dev, "%s\n", __func__);
return 0;
}
static int uart_prepare_amodel_loading(struct dbmdx_private *p)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
dev_dbg(uart_p->dev, "%s\n", __func__);
return 0;
}
static int uart_finish_amodel_loading(struct dbmdx_private *p)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
dev_dbg(uart_p->dev, "%s\n", __func__);
/* do the same as for finishing buffering */
return uart_finish_buffering(p);
}
static int uart_open_thread(void *data)
{
int ret;
struct dbmdx_uart_private *p = (struct dbmdx_uart_private *)data;
ret = uart_open_file(p);
while (!kthread_should_stop())
usleep_range(10000, 11000);
return ret;
}
static u32 uart_get_read_chunk_size(struct dbmdx_private *p)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
dev_dbg(uart_p->dev, "%s UART read chunk is %u\n",
__func__, uart_p->pdata->read_chunk_size);
return uart_p->pdata->read_chunk_size;
}
static u32 uart_get_write_chunk_size(struct dbmdx_private *p)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
dev_dbg(uart_p->dev, "%s UART write chunk is %u\n",
__func__, uart_p->pdata->write_chunk_size);
return uart_p->pdata->write_chunk_size;
}
static int uart_set_read_chunk_size(struct dbmdx_private *p, u32 size)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
if (size > MAX_UART_READ_CHUNK_SIZE) {
dev_err(uart_p->dev,
"%s Error setting UART read chunk. Max chunk size: %u\n",
__func__, MAX_UART_READ_CHUNK_SIZE);
return -EINVAL;
} else if ((size % 2) != 0) {
dev_err(uart_p->dev,
"%s Error setting UART read chunk. Uneven size\n",
__func__);
return -EINVAL;
} else if (size == 0)
uart_p->pdata->read_chunk_size = DEFAULT_UART_READ_CHUNK_SIZE;
else
uart_p->pdata->read_chunk_size = size;
dev_dbg(uart_p->dev, "%s UART read chunk was set to %u\n",
__func__, uart_p->pdata->read_chunk_size);
return 0;
}
static int uart_set_write_chunk_size(struct dbmdx_private *p, u32 size)
{
struct dbmdx_uart_private *uart_p =
(struct dbmdx_uart_private *)p->chip->pdata;
if (size > MAX_UART_WRITE_CHUNK_SIZE) {
dev_err(uart_p->dev,
"%s Error setting UART write chunk. Max chunk size: %u\n",
__func__, MAX_UART_WRITE_CHUNK_SIZE);
return -EINVAL;
} else if ((size % 2) != 0) {
dev_err(uart_p->dev,
"%s Error setting UART write chunk. Uneven size\n",
__func__);
return -EINVAL;
} else if (size == 0)
uart_p->pdata->write_chunk_size = DEFAULT_UART_WRITE_CHUNK_SIZE;
else
uart_p->pdata->write_chunk_size = size;
dev_dbg(uart_p->dev, "%s UART write chunk was set to %u\n",
__func__, uart_p->pdata->write_chunk_size);
return 0;
}
int uart_common_probe(struct platform_device *pdev, const char threadnamefmt[])
{
#ifdef CONFIG_OF
struct device_node *np;
#endif
int ret;
struct dbmdx_uart_private *p;
struct dbmdx_uart_data *pdata;
dev_dbg(&pdev->dev, "%s\n", __func__);
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (p == NULL)
return -ENOMEM;
p->pdev = pdev;
p->dev = &pdev->dev;
p->chip.pdata = p;
#ifdef CONFIG_OF
np = p->dev->of_node;
if (!np) {
dev_err(p->dev, "%s: no devicetree entry\n", __func__);
ret = -EINVAL;
goto out_err_kfree;
}
pdata = kzalloc(sizeof(struct dbmdx_uart_data), GFP_KERNEL);
if (!pdata) {
ret = -ENOMEM;
goto out_err_kfree;
}
ret = of_property_read_string(np, "uart_device", &pdata->uart_dev);
if (ret && ret != -EINVAL) {
dev_err(p->dev, "%s: invalid 'uart_device'\n", __func__);
ret = -EINVAL;
goto out_err_kfree;
}
/* check for software flow control option */
if (of_find_property(np, "software-flow-control", NULL)) {
dev_info(p->dev, "%s: Software flow control enabled\n",
__func__);
pdata->software_flow_control = 1;
} else
dev_info(p->dev, "%s: Software flow control disabled\n",
__func__);
#else
pdata = dev_get_platdata(&pdev->dev);
#endif
#ifdef CONFIG_OF
ret = of_property_read_u32(np, "read-chunk-size",
&pdata->read_chunk_size);
if (ret != 0) {
/*
* read-chunk-size not set, set it to default
*/
pdata->read_chunk_size = DEFAULT_UART_READ_CHUNK_SIZE;
dev_info(p->dev,
"%s: Setting uart read chunk to default val: %u bytes\n",
__func__, pdata->read_chunk_size);
}
#endif
if (pdata->read_chunk_size > MAX_UART_READ_CHUNK_SIZE)
pdata->read_chunk_size = MAX_UART_READ_CHUNK_SIZE;
if (pdata->read_chunk_size == 0)
pdata->read_chunk_size = DEFAULT_UART_READ_CHUNK_SIZE;
dev_info(p->dev, "%s: Setting uart read chunk to %u bytes\n",
__func__, pdata->read_chunk_size);
#ifdef CONFIG_OF
ret = of_property_read_u32(np, "write-chunk-size",
&pdata->write_chunk_size);
if (ret != 0) {
/*
* write-chunk-size not set, set it to default
*/
pdata->write_chunk_size = DEFAULT_UART_WRITE_CHUNK_SIZE;
dev_info(p->dev,
"%s: Setting uart write chunk to default val: %u bytes\n",
__func__, pdata->write_chunk_size);
}
#endif
if (pdata->write_chunk_size > MAX_UART_WRITE_CHUNK_SIZE)
pdata->write_chunk_size = MAX_UART_WRITE_CHUNK_SIZE;
if (pdata->write_chunk_size == 0)
pdata->write_chunk_size = DEFAULT_UART_WRITE_CHUNK_SIZE;
dev_info(p->dev, "%s: Setting uart write chunk to %u bytes\n",
__func__, pdata->write_chunk_size);
p->pdata = pdata;
init_completion(&p->uart_done);
atomic_set(&p->stop_uart_probing, 0);
#ifdef CONFIG_PM_WAKELOCKS
wakeup_source_init(&p->ps_nosuspend_wl,
"dbmdx_nosuspend_wakelock_uart");
#endif
/* fill in chip interface functions */
p->chip.can_boot = uart_can_boot;
p->chip.prepare_boot = uart_prepare_boot;
p->chip.boot = uart_boot;
p->chip.finish_boot = uart_finish_boot;
p->chip.dump = uart_dump_state;
p->chip.set_va_firmware_ready = uart_set_va_firmware_ready;
p->chip.set_vqe_firmware_ready = uart_set_vqe_firmware_ready;
p->chip.transport_enable = uart_transport_enable;
p->chip.read = uart_read_data;
p->chip.write = uart_write_data;
p->chip.send_cmd_vqe = send_uart_cmd_vqe;
p->chip.send_cmd_va = send_uart_cmd_va;
p->chip.send_cmd_boot = send_uart_cmd_boot;
p->chip.verify_boot_checksum = uart_verify_boot_checksum;
p->chip.prepare_buffering = uart_prepare_buffering;
p->chip.read_audio_data = uart_read_audio_data;
p->chip.finish_buffering = uart_finish_buffering;
p->chip.prepare_amodel_loading = uart_prepare_amodel_loading;
p->chip.finish_amodel_loading = uart_finish_amodel_loading;
p->chip.get_write_chunk_size = uart_get_write_chunk_size;
p->chip.get_read_chunk_size = uart_get_read_chunk_size;
p->chip.set_write_chunk_size = uart_set_write_chunk_size;
p->chip.set_read_chunk_size = uart_set_read_chunk_size;
p->chip.resume = uart_resume;
p->chip.suspend = uart_suspend;
p->interface_enabled = 1;
dev_set_drvdata(p->dev, &p->chip);
p->uart_probe_thread = kthread_run(uart_open_thread,
(void *)p,
threadnamefmt);
if (IS_ERR_OR_NULL(p->uart_probe_thread)) {
dev_err(p->dev,
"%s(): can't create dbmd uart probe thread = %p\n",
__func__, p->uart_probe_thread);
ret = -ENOMEM;
goto out_err_kfree;
}
dev_info(p->dev, "%s: successfully probed\n", __func__);
ret = 0;
goto out;
out_err_kfree:
kfree(p);
out:
return ret;
}
int uart_common_remove(struct platform_device *pdev)
{
struct chip_interface *ci = dev_get_drvdata(&pdev->dev);
struct dbmdx_uart_private *p = (struct dbmdx_uart_private *)ci->pdata;
dev_set_drvdata(p->dev, NULL);
#ifdef CONFIG_PM_WAKELOCKS
wakeup_source_trash(&p->ps_nosuspend_wl);
#endif
uart_close_file(p);
kfree(p);
return 0;
}