| /* |
| * Copyright 2011 Freescale Semiconductor, Inc. All Rights Reserved. |
| * |
| * Refer to drivers/dma/imx-sdma.c |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/types.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/clk.h> |
| #include <linux/wait.h> |
| #include <linux/sched.h> |
| #include <linux/semaphore.h> |
| #include <linux/device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/slab.h> |
| #include <linux/platform_device.h> |
| #include <linux/dmaengine.h> |
| #include <linux/delay.h> |
| #include <linux/module.h> |
| #include <linux/stmp_device.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/of_dma.h> |
| #include <linux/list.h> |
| |
| #include <asm/irq.h> |
| |
| #include "dmaengine.h" |
| |
| /* |
| * NOTE: The term "PIO" throughout the mxs-dma implementation means |
| * PIO mode of mxs apbh-dma and apbx-dma. With this working mode, |
| * dma can program the controller registers of peripheral devices. |
| */ |
| |
| #define dma_is_apbh(mxs_dma) ((mxs_dma)->type == MXS_DMA_APBH) |
| #define apbh_is_old(mxs_dma) ((mxs_dma)->dev_id == IMX23_DMA) |
| |
| #define HW_APBHX_CTRL0 0x000 |
| #define BM_APBH_CTRL0_APB_BURST8_EN (1 << 29) |
| #define BM_APBH_CTRL0_APB_BURST_EN (1 << 28) |
| #define BP_APBH_CTRL0_RESET_CHANNEL 16 |
| #define HW_APBHX_CTRL1 0x010 |
| #define HW_APBHX_CTRL2 0x020 |
| #define HW_APBHX_CHANNEL_CTRL 0x030 |
| #define BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL 16 |
| /* |
| * The offset of NXTCMDAR register is different per both dma type and version, |
| * while stride for each channel is all the same 0x70. |
| */ |
| #define HW_APBHX_CHn_NXTCMDAR(d, n) \ |
| (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x050 : 0x110) + (n) * 0x70) |
| #define HW_APBHX_CHn_SEMA(d, n) \ |
| (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x080 : 0x140) + (n) * 0x70) |
| #define HW_APBHX_CHn_BAR(d, n) \ |
| (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x070 : 0x130) + (n) * 0x70) |
| #define HW_APBX_CHn_DEBUG1(d, n) (0x150 + (n) * 0x70) |
| |
| /* |
| * ccw bits definitions |
| * |
| * COMMAND: 0..1 (2) |
| * CHAIN: 2 (1) |
| * IRQ: 3 (1) |
| * NAND_LOCK: 4 (1) - not implemented |
| * NAND_WAIT4READY: 5 (1) - not implemented |
| * DEC_SEM: 6 (1) |
| * WAIT4END: 7 (1) |
| * HALT_ON_TERMINATE: 8 (1) |
| * TERMINATE_FLUSH: 9 (1) |
| * RESERVED: 10..11 (2) |
| * PIO_NUM: 12..15 (4) |
| */ |
| #define BP_CCW_COMMAND 0 |
| #define BM_CCW_COMMAND (3 << 0) |
| #define CCW_CHAIN (1 << 2) |
| #define CCW_IRQ (1 << 3) |
| #define CCW_DEC_SEM (1 << 6) |
| #define CCW_WAIT4END (1 << 7) |
| #define CCW_HALT_ON_TERM (1 << 8) |
| #define CCW_TERM_FLUSH (1 << 9) |
| #define BP_CCW_PIO_NUM 12 |
| #define BM_CCW_PIO_NUM (0xf << 12) |
| |
| #define BF_CCW(value, field) (((value) << BP_CCW_##field) & BM_CCW_##field) |
| |
| #define MXS_DMA_CMD_NO_XFER 0 |
| #define MXS_DMA_CMD_WRITE 1 |
| #define MXS_DMA_CMD_READ 2 |
| #define MXS_DMA_CMD_DMA_SENSE 3 /* not implemented */ |
| |
| struct mxs_dma_ccw { |
| u32 next; |
| u16 bits; |
| u16 xfer_bytes; |
| #define MAX_XFER_BYTES 0xff00 |
| u32 bufaddr; |
| #define MXS_PIO_WORDS 16 |
| u32 pio_words[MXS_PIO_WORDS]; |
| }; |
| |
| #define CCW_BLOCK_SIZE (4 * PAGE_SIZE) |
| #define NUM_CCW (int)(CCW_BLOCK_SIZE / sizeof(struct mxs_dma_ccw)) |
| |
| struct mxs_dma_chan { |
| struct mxs_dma_engine *mxs_dma; |
| struct dma_chan chan; |
| struct dma_async_tx_descriptor desc; |
| struct tasklet_struct tasklet; |
| unsigned int chan_irq; |
| struct mxs_dma_ccw *ccw; |
| dma_addr_t ccw_phys; |
| int desc_count; |
| enum dma_status status; |
| unsigned int flags; |
| bool reset; |
| #define MXS_DMA_SG_LOOP (1 << 0) |
| #define MXS_DMA_USE_SEMAPHORE (1 << 1) |
| }; |
| |
| #define MXS_DMA_CHANNELS 16 |
| #define MXS_DMA_CHANNELS_MASK 0xffff |
| |
| enum mxs_dma_devtype { |
| MXS_DMA_APBH, |
| MXS_DMA_APBX, |
| }; |
| |
| enum mxs_dma_id { |
| IMX23_DMA, |
| IMX28_DMA, |
| }; |
| |
| struct mxs_dma_engine { |
| enum mxs_dma_id dev_id; |
| enum mxs_dma_devtype type; |
| void __iomem *base; |
| struct clk *clk; |
| struct dma_device dma_device; |
| struct device_dma_parameters dma_parms; |
| struct mxs_dma_chan mxs_chans[MXS_DMA_CHANNELS]; |
| struct platform_device *pdev; |
| unsigned int nr_channels; |
| }; |
| |
| struct mxs_dma_type { |
| enum mxs_dma_id id; |
| enum mxs_dma_devtype type; |
| }; |
| |
| static struct mxs_dma_type mxs_dma_types[] = { |
| { |
| .id = IMX23_DMA, |
| .type = MXS_DMA_APBH, |
| }, { |
| .id = IMX23_DMA, |
| .type = MXS_DMA_APBX, |
| }, { |
| .id = IMX28_DMA, |
| .type = MXS_DMA_APBH, |
| }, { |
| .id = IMX28_DMA, |
| .type = MXS_DMA_APBX, |
| } |
| }; |
| |
| static const struct platform_device_id mxs_dma_ids[] = { |
| { |
| .name = "imx23-dma-apbh", |
| .driver_data = (kernel_ulong_t) &mxs_dma_types[0], |
| }, { |
| .name = "imx23-dma-apbx", |
| .driver_data = (kernel_ulong_t) &mxs_dma_types[1], |
| }, { |
| .name = "imx28-dma-apbh", |
| .driver_data = (kernel_ulong_t) &mxs_dma_types[2], |
| }, { |
| .name = "imx28-dma-apbx", |
| .driver_data = (kernel_ulong_t) &mxs_dma_types[3], |
| }, { |
| /* end of list */ |
| } |
| }; |
| |
| static const struct of_device_id mxs_dma_dt_ids[] = { |
| { .compatible = "fsl,imx23-dma-apbh", .data = &mxs_dma_ids[0], }, |
| { .compatible = "fsl,imx23-dma-apbx", .data = &mxs_dma_ids[1], }, |
| { .compatible = "fsl,imx28-dma-apbh", .data = &mxs_dma_ids[2], }, |
| { .compatible = "fsl,imx28-dma-apbx", .data = &mxs_dma_ids[3], }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, mxs_dma_dt_ids); |
| |
| static struct mxs_dma_chan *to_mxs_dma_chan(struct dma_chan *chan) |
| { |
| return container_of(chan, struct mxs_dma_chan, chan); |
| } |
| |
| static void mxs_dma_reset_chan(struct dma_chan *chan) |
| { |
| struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); |
| struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; |
| int chan_id = mxs_chan->chan.chan_id; |
| |
| /* |
| * mxs dma channel resets can cause a channel stall. To recover from a |
| * channel stall, we have to reset the whole DMA engine. To avoid this, |
| * we use cyclic DMA with semaphores, that are enhanced in |
| * mxs_dma_int_handler. To reset the channel, we can simply stop writing |
| * into the semaphore counter. |
| */ |
| if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE && |
| mxs_chan->flags & MXS_DMA_SG_LOOP) { |
| mxs_chan->reset = true; |
| } else if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) { |
| writel(1 << (chan_id + BP_APBH_CTRL0_RESET_CHANNEL), |
| mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET); |
| } else { |
| unsigned long elapsed = 0; |
| const unsigned long max_wait = 50000; /* 50ms */ |
| void __iomem *reg_dbg1 = mxs_dma->base + |
| HW_APBX_CHn_DEBUG1(mxs_dma, chan_id); |
| |
| /* |
| * On i.MX28 APBX, the DMA channel can stop working if we reset |
| * the channel while it is in READ_FLUSH (0x08) state. |
| * We wait here until we leave the state. Then we trigger the |
| * reset. Waiting a maximum of 50ms, the kernel shouldn't crash |
| * because of this. |
| */ |
| while ((readl(reg_dbg1) & 0xf) == 0x8 && elapsed < max_wait) { |
| udelay(100); |
| elapsed += 100; |
| } |
| |
| if (elapsed >= max_wait) |
| dev_err(&mxs_chan->mxs_dma->pdev->dev, |
| "Failed waiting for the DMA channel %d to leave state READ_FLUSH, trying to reset channel in READ_FLUSH state now\n", |
| chan_id); |
| |
| writel(1 << (chan_id + BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL), |
| mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET); |
| } |
| |
| mxs_chan->status = DMA_COMPLETE; |
| } |
| |
| static void mxs_dma_enable_chan(struct dma_chan *chan) |
| { |
| struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); |
| struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; |
| int chan_id = mxs_chan->chan.chan_id; |
| |
| /* set cmd_addr up */ |
| writel(mxs_chan->ccw_phys, |
| mxs_dma->base + HW_APBHX_CHn_NXTCMDAR(mxs_dma, chan_id)); |
| |
| /* write 1 to SEMA to kick off the channel */ |
| if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE && |
| mxs_chan->flags & MXS_DMA_SG_LOOP) { |
| /* A cyclic DMA consists of at least 2 segments, so initialize |
| * the semaphore with 2 so we have enough time to add 1 to the |
| * semaphore if we need to */ |
| writel(2, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id)); |
| } else { |
| writel(1, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id)); |
| } |
| mxs_chan->reset = false; |
| } |
| |
| static void mxs_dma_disable_chan(struct dma_chan *chan) |
| { |
| struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); |
| |
| mxs_chan->status = DMA_COMPLETE; |
| } |
| |
| static int mxs_dma_pause_chan(struct dma_chan *chan) |
| { |
| struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); |
| struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; |
| int chan_id = mxs_chan->chan.chan_id; |
| |
| /* freeze the channel */ |
| if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) |
| writel(1 << chan_id, |
| mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET); |
| else |
| writel(1 << chan_id, |
| mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET); |
| |
| mxs_chan->status = DMA_PAUSED; |
| return 0; |
| } |
| |
| static int mxs_dma_resume_chan(struct dma_chan *chan) |
| { |
| struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); |
| struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; |
| int chan_id = mxs_chan->chan.chan_id; |
| |
| /* unfreeze the channel */ |
| if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) |
| writel(1 << chan_id, |
| mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_CLR); |
| else |
| writel(1 << chan_id, |
| mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_CLR); |
| |
| mxs_chan->status = DMA_IN_PROGRESS; |
| return 0; |
| } |
| |
| static dma_cookie_t mxs_dma_tx_submit(struct dma_async_tx_descriptor *tx) |
| { |
| return dma_cookie_assign(tx); |
| } |
| |
| static void mxs_dma_tasklet(unsigned long data) |
| { |
| struct mxs_dma_chan *mxs_chan = (struct mxs_dma_chan *) data; |
| |
| if (mxs_chan->desc.callback) |
| mxs_chan->desc.callback(mxs_chan->desc.callback_param); |
| } |
| |
| static int mxs_dma_irq_to_chan(struct mxs_dma_engine *mxs_dma, int irq) |
| { |
| int i; |
| |
| for (i = 0; i != mxs_dma->nr_channels; ++i) |
| if (mxs_dma->mxs_chans[i].chan_irq == irq) |
| return i; |
| |
| return -EINVAL; |
| } |
| |
| static irqreturn_t mxs_dma_int_handler(int irq, void *dev_id) |
| { |
| struct mxs_dma_engine *mxs_dma = dev_id; |
| struct mxs_dma_chan *mxs_chan; |
| u32 completed; |
| u32 err; |
| int chan = mxs_dma_irq_to_chan(mxs_dma, irq); |
| |
| if (chan < 0) |
| return IRQ_NONE; |
| |
| /* completion status */ |
| completed = readl(mxs_dma->base + HW_APBHX_CTRL1); |
| completed = (completed >> chan) & 0x1; |
| |
| /* Clear interrupt */ |
| writel((1 << chan), |
| mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_CLR); |
| |
| /* error status */ |
| err = readl(mxs_dma->base + HW_APBHX_CTRL2); |
| err &= (1 << (MXS_DMA_CHANNELS + chan)) | (1 << chan); |
| |
| /* |
| * error status bit is in the upper 16 bits, error irq bit in the lower |
| * 16 bits. We transform it into a simpler error code: |
| * err: 0x00 = no error, 0x01 = TERMINATION, 0x02 = BUS_ERROR |
| */ |
| err = (err >> (MXS_DMA_CHANNELS + chan)) + (err >> chan); |
| |
| /* Clear error irq */ |
| writel((1 << chan), |
| mxs_dma->base + HW_APBHX_CTRL2 + STMP_OFFSET_REG_CLR); |
| |
| /* |
| * When both completion and error of termination bits set at the |
| * same time, we do not take it as an error. IOW, it only becomes |
| * an error we need to handle here in case of either it's a bus |
| * error or a termination error with no completion. 0x01 is termination |
| * error, so we can subtract err & completed to get the real error case. |
| */ |
| err -= err & completed; |
| |
| mxs_chan = &mxs_dma->mxs_chans[chan]; |
| |
| if (err) { |
| dev_dbg(mxs_dma->dma_device.dev, |
| "%s: error in channel %d\n", __func__, |
| chan); |
| mxs_chan->status = DMA_ERROR; |
| mxs_dma_reset_chan(&mxs_chan->chan); |
| } else if (mxs_chan->status != DMA_COMPLETE) { |
| if (mxs_chan->flags & MXS_DMA_SG_LOOP) { |
| mxs_chan->status = DMA_IN_PROGRESS; |
| if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE) |
| writel(1, mxs_dma->base + |
| HW_APBHX_CHn_SEMA(mxs_dma, chan)); |
| } else { |
| mxs_chan->status = DMA_COMPLETE; |
| } |
| } |
| |
| if (mxs_chan->status == DMA_COMPLETE) { |
| if (mxs_chan->reset) |
| return IRQ_HANDLED; |
| dma_cookie_complete(&mxs_chan->desc); |
| } |
| |
| /* schedule tasklet on this channel */ |
| tasklet_schedule(&mxs_chan->tasklet); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int mxs_dma_alloc_chan_resources(struct dma_chan *chan) |
| { |
| struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); |
| struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; |
| int ret; |
| |
| mxs_chan->ccw = dma_zalloc_coherent(mxs_dma->dma_device.dev, |
| CCW_BLOCK_SIZE, |
| &mxs_chan->ccw_phys, GFP_KERNEL); |
| if (!mxs_chan->ccw) { |
| ret = -ENOMEM; |
| goto err_alloc; |
| } |
| |
| if (mxs_chan->chan_irq != NO_IRQ) { |
| ret = request_irq(mxs_chan->chan_irq, mxs_dma_int_handler, |
| 0, "mxs-dma", mxs_dma); |
| if (ret) |
| goto err_irq; |
| } |
| |
| ret = clk_prepare_enable(mxs_dma->clk); |
| if (ret) |
| goto err_clk; |
| |
| mxs_dma_reset_chan(chan); |
| |
| dma_async_tx_descriptor_init(&mxs_chan->desc, chan); |
| mxs_chan->desc.tx_submit = mxs_dma_tx_submit; |
| |
| /* the descriptor is ready */ |
| async_tx_ack(&mxs_chan->desc); |
| |
| return 0; |
| |
| err_clk: |
| free_irq(mxs_chan->chan_irq, mxs_dma); |
| err_irq: |
| dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE, |
| mxs_chan->ccw, mxs_chan->ccw_phys); |
| err_alloc: |
| return ret; |
| } |
| |
| static void mxs_dma_free_chan_resources(struct dma_chan *chan) |
| { |
| struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); |
| struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; |
| |
| mxs_dma_disable_chan(chan); |
| |
| free_irq(mxs_chan->chan_irq, mxs_dma); |
| |
| dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE, |
| mxs_chan->ccw, mxs_chan->ccw_phys); |
| |
| clk_disable_unprepare(mxs_dma->clk); |
| } |
| |
| /* |
| * How to use the flags for ->device_prep_slave_sg() : |
| * [1] If there is only one DMA command in the DMA chain, the code should be: |
| * ...... |
| * ->device_prep_slave_sg(DMA_CTRL_ACK); |
| * ...... |
| * [2] If there are two DMA commands in the DMA chain, the code should be |
| * ...... |
| * ->device_prep_slave_sg(0); |
| * ...... |
| * ->device_prep_slave_sg(DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| * ...... |
| * [3] If there are more than two DMA commands in the DMA chain, the code |
| * should be: |
| * ...... |
| * ->device_prep_slave_sg(0); // First |
| * ...... |
| * ->device_prep_slave_sg(DMA_PREP_INTERRUPT [| DMA_CTRL_ACK]); |
| * ...... |
| * ->device_prep_slave_sg(DMA_PREP_INTERRUPT | DMA_CTRL_ACK); // Last |
| * ...... |
| */ |
| static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg( |
| struct dma_chan *chan, struct scatterlist *sgl, |
| unsigned int sg_len, enum dma_transfer_direction direction, |
| unsigned long flags, void *context) |
| { |
| struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); |
| struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; |
| struct mxs_dma_ccw *ccw; |
| struct scatterlist *sg; |
| u32 i, j; |
| u32 *pio; |
| bool append = flags & DMA_PREP_INTERRUPT; |
| int idx = append ? mxs_chan->desc_count : 0; |
| |
| if (mxs_chan->status == DMA_IN_PROGRESS && !append) |
| return NULL; |
| |
| if (sg_len + (append ? idx : 0) > NUM_CCW) { |
| dev_err(mxs_dma->dma_device.dev, |
| "maximum number of sg exceeded: %d > %d\n", |
| sg_len, NUM_CCW); |
| goto err_out; |
| } |
| |
| mxs_chan->status = DMA_IN_PROGRESS; |
| mxs_chan->flags = 0; |
| |
| /* |
| * If the sg is prepared with append flag set, the sg |
| * will be appended to the last prepared sg. |
| */ |
| if (append) { |
| BUG_ON(idx < 1); |
| ccw = &mxs_chan->ccw[idx - 1]; |
| ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx; |
| ccw->bits |= CCW_CHAIN; |
| ccw->bits &= ~CCW_IRQ; |
| ccw->bits &= ~CCW_DEC_SEM; |
| } else { |
| idx = 0; |
| } |
| |
| if (direction == DMA_TRANS_NONE) { |
| ccw = &mxs_chan->ccw[idx++]; |
| pio = (u32 *) sgl; |
| |
| for (j = 0; j < sg_len;) |
| ccw->pio_words[j++] = *pio++; |
| |
| ccw->bits = 0; |
| ccw->bits |= CCW_IRQ; |
| ccw->bits |= CCW_DEC_SEM; |
| if (flags & DMA_CTRL_ACK) |
| ccw->bits |= CCW_WAIT4END; |
| ccw->bits |= CCW_HALT_ON_TERM; |
| ccw->bits |= CCW_TERM_FLUSH; |
| ccw->bits |= BF_CCW(sg_len, PIO_NUM); |
| ccw->bits |= BF_CCW(MXS_DMA_CMD_NO_XFER, COMMAND); |
| } else { |
| for_each_sg(sgl, sg, sg_len, i) { |
| if (sg_dma_len(sg) > MAX_XFER_BYTES) { |
| dev_err(mxs_dma->dma_device.dev, "maximum bytes for sg entry exceeded: %d > %d\n", |
| sg_dma_len(sg), MAX_XFER_BYTES); |
| goto err_out; |
| } |
| |
| ccw = &mxs_chan->ccw[idx++]; |
| |
| ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx; |
| ccw->bufaddr = sg->dma_address; |
| ccw->xfer_bytes = sg_dma_len(sg); |
| |
| ccw->bits = 0; |
| ccw->bits |= CCW_CHAIN; |
| ccw->bits |= CCW_HALT_ON_TERM; |
| ccw->bits |= CCW_TERM_FLUSH; |
| ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ? |
| MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ, |
| COMMAND); |
| |
| if (i + 1 == sg_len) { |
| ccw->bits &= ~CCW_CHAIN; |
| ccw->bits |= CCW_IRQ; |
| ccw->bits |= CCW_DEC_SEM; |
| if (flags & DMA_CTRL_ACK) |
| ccw->bits |= CCW_WAIT4END; |
| } |
| } |
| } |
| mxs_chan->desc_count = idx; |
| |
| return &mxs_chan->desc; |
| |
| err_out: |
| mxs_chan->status = DMA_ERROR; |
| return NULL; |
| } |
| |
| static struct dma_async_tx_descriptor *mxs_dma_prep_dma_cyclic( |
| struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, |
| size_t period_len, enum dma_transfer_direction direction, |
| unsigned long flags, void *context) |
| { |
| struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); |
| struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; |
| u32 num_periods = buf_len / period_len; |
| u32 i = 0, buf = 0; |
| |
| if (mxs_chan->status == DMA_IN_PROGRESS) |
| return NULL; |
| |
| mxs_chan->status = DMA_IN_PROGRESS; |
| mxs_chan->flags |= MXS_DMA_SG_LOOP; |
| mxs_chan->flags |= MXS_DMA_USE_SEMAPHORE; |
| |
| if (num_periods > NUM_CCW) { |
| dev_err(mxs_dma->dma_device.dev, |
| "maximum number of sg exceeded: %d > %d\n", |
| num_periods, NUM_CCW); |
| goto err_out; |
| } |
| |
| if (period_len > MAX_XFER_BYTES) { |
| dev_err(mxs_dma->dma_device.dev, |
| "maximum period size exceeded: %d > %d\n", |
| period_len, MAX_XFER_BYTES); |
| goto err_out; |
| } |
| |
| while (buf < buf_len) { |
| struct mxs_dma_ccw *ccw = &mxs_chan->ccw[i]; |
| |
| if (i + 1 == num_periods) |
| ccw->next = mxs_chan->ccw_phys; |
| else |
| ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * (i + 1); |
| |
| ccw->bufaddr = dma_addr; |
| ccw->xfer_bytes = period_len; |
| |
| ccw->bits = 0; |
| ccw->bits |= CCW_CHAIN; |
| ccw->bits |= CCW_IRQ; |
| ccw->bits |= CCW_HALT_ON_TERM; |
| ccw->bits |= CCW_TERM_FLUSH; |
| ccw->bits |= CCW_DEC_SEM; |
| ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ? |
| MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ, COMMAND); |
| |
| dma_addr += period_len; |
| buf += period_len; |
| |
| i++; |
| } |
| mxs_chan->desc_count = i; |
| |
| return &mxs_chan->desc; |
| |
| err_out: |
| mxs_chan->status = DMA_ERROR; |
| return NULL; |
| } |
| |
| static int mxs_dma_terminate_all(struct dma_chan *chan) |
| { |
| mxs_dma_reset_chan(chan); |
| mxs_dma_disable_chan(chan); |
| |
| return 0; |
| } |
| |
| static enum dma_status mxs_dma_tx_status(struct dma_chan *chan, |
| dma_cookie_t cookie, struct dma_tx_state *txstate) |
| { |
| struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); |
| struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; |
| u32 residue = 0; |
| |
| if (mxs_chan->status == DMA_IN_PROGRESS && |
| mxs_chan->flags & MXS_DMA_SG_LOOP) { |
| struct mxs_dma_ccw *last_ccw; |
| u32 bar; |
| |
| last_ccw = &mxs_chan->ccw[mxs_chan->desc_count - 1]; |
| residue = last_ccw->xfer_bytes + last_ccw->bufaddr; |
| |
| bar = readl(mxs_dma->base + |
| HW_APBHX_CHn_BAR(mxs_dma, chan->chan_id)); |
| residue -= bar; |
| } |
| |
| dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie, |
| residue); |
| |
| return mxs_chan->status; |
| } |
| |
| static int __init mxs_dma_init(struct mxs_dma_engine *mxs_dma) |
| { |
| int ret; |
| |
| ret = clk_prepare_enable(mxs_dma->clk); |
| if (ret) |
| return ret; |
| |
| ret = stmp_reset_block(mxs_dma->base); |
| if (ret) |
| goto err_out; |
| |
| /* enable apbh burst */ |
| if (dma_is_apbh(mxs_dma)) { |
| writel(BM_APBH_CTRL0_APB_BURST_EN, |
| mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET); |
| writel(BM_APBH_CTRL0_APB_BURST8_EN, |
| mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET); |
| } |
| |
| /* enable irq for all the channels */ |
| writel(MXS_DMA_CHANNELS_MASK << MXS_DMA_CHANNELS, |
| mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_SET); |
| |
| err_out: |
| clk_disable_unprepare(mxs_dma->clk); |
| return ret; |
| } |
| |
| struct mxs_dma_filter_param { |
| struct device_node *of_node; |
| unsigned int chan_id; |
| }; |
| |
| static bool mxs_dma_filter_fn(struct dma_chan *chan, void *fn_param) |
| { |
| struct mxs_dma_filter_param *param = fn_param; |
| struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); |
| struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; |
| int chan_irq; |
| |
| if (mxs_dma->dma_device.dev->of_node != param->of_node) |
| return false; |
| |
| if (chan->chan_id != param->chan_id) |
| return false; |
| |
| chan_irq = platform_get_irq(mxs_dma->pdev, param->chan_id); |
| if (chan_irq < 0) |
| return false; |
| |
| mxs_chan->chan_irq = chan_irq; |
| |
| return true; |
| } |
| |
| static struct dma_chan *mxs_dma_xlate(struct of_phandle_args *dma_spec, |
| struct of_dma *ofdma) |
| { |
| struct mxs_dma_engine *mxs_dma = ofdma->of_dma_data; |
| dma_cap_mask_t mask = mxs_dma->dma_device.cap_mask; |
| struct mxs_dma_filter_param param; |
| |
| if (dma_spec->args_count != 1) |
| return NULL; |
| |
| param.of_node = ofdma->of_node; |
| param.chan_id = dma_spec->args[0]; |
| |
| if (param.chan_id >= mxs_dma->nr_channels) |
| return NULL; |
| |
| return dma_request_channel(mask, mxs_dma_filter_fn, ¶m); |
| } |
| |
| static int __init mxs_dma_probe(struct platform_device *pdev) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| const struct platform_device_id *id_entry; |
| const struct of_device_id *of_id; |
| const struct mxs_dma_type *dma_type; |
| struct mxs_dma_engine *mxs_dma; |
| struct resource *iores; |
| int ret, i; |
| |
| mxs_dma = devm_kzalloc(&pdev->dev, sizeof(*mxs_dma), GFP_KERNEL); |
| if (!mxs_dma) |
| return -ENOMEM; |
| |
| ret = of_property_read_u32(np, "dma-channels", &mxs_dma->nr_channels); |
| if (ret) { |
| dev_err(&pdev->dev, "failed to read dma-channels\n"); |
| return ret; |
| } |
| |
| of_id = of_match_device(mxs_dma_dt_ids, &pdev->dev); |
| if (of_id) |
| id_entry = of_id->data; |
| else |
| id_entry = platform_get_device_id(pdev); |
| |
| dma_type = (struct mxs_dma_type *)id_entry->driver_data; |
| mxs_dma->type = dma_type->type; |
| mxs_dma->dev_id = dma_type->id; |
| |
| iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| mxs_dma->base = devm_ioremap_resource(&pdev->dev, iores); |
| if (IS_ERR(mxs_dma->base)) |
| return PTR_ERR(mxs_dma->base); |
| |
| mxs_dma->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(mxs_dma->clk)) |
| return PTR_ERR(mxs_dma->clk); |
| |
| dma_cap_set(DMA_SLAVE, mxs_dma->dma_device.cap_mask); |
| dma_cap_set(DMA_CYCLIC, mxs_dma->dma_device.cap_mask); |
| |
| INIT_LIST_HEAD(&mxs_dma->dma_device.channels); |
| |
| /* Initialize channel parameters */ |
| for (i = 0; i < MXS_DMA_CHANNELS; i++) { |
| struct mxs_dma_chan *mxs_chan = &mxs_dma->mxs_chans[i]; |
| |
| mxs_chan->mxs_dma = mxs_dma; |
| mxs_chan->chan.device = &mxs_dma->dma_device; |
| dma_cookie_init(&mxs_chan->chan); |
| |
| tasklet_init(&mxs_chan->tasklet, mxs_dma_tasklet, |
| (unsigned long) mxs_chan); |
| |
| |
| /* Add the channel to mxs_chan list */ |
| list_add_tail(&mxs_chan->chan.device_node, |
| &mxs_dma->dma_device.channels); |
| } |
| |
| ret = mxs_dma_init(mxs_dma); |
| if (ret) |
| return ret; |
| |
| mxs_dma->pdev = pdev; |
| mxs_dma->dma_device.dev = &pdev->dev; |
| |
| /* mxs_dma gets 65535 bytes maximum sg size */ |
| mxs_dma->dma_device.dev->dma_parms = &mxs_dma->dma_parms; |
| dma_set_max_seg_size(mxs_dma->dma_device.dev, MAX_XFER_BYTES); |
| |
| mxs_dma->dma_device.device_alloc_chan_resources = mxs_dma_alloc_chan_resources; |
| mxs_dma->dma_device.device_free_chan_resources = mxs_dma_free_chan_resources; |
| mxs_dma->dma_device.device_tx_status = mxs_dma_tx_status; |
| mxs_dma->dma_device.device_prep_slave_sg = mxs_dma_prep_slave_sg; |
| mxs_dma->dma_device.device_prep_dma_cyclic = mxs_dma_prep_dma_cyclic; |
| mxs_dma->dma_device.device_pause = mxs_dma_pause_chan; |
| mxs_dma->dma_device.device_resume = mxs_dma_resume_chan; |
| mxs_dma->dma_device.device_terminate_all = mxs_dma_terminate_all; |
| mxs_dma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); |
| mxs_dma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); |
| mxs_dma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); |
| mxs_dma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; |
| mxs_dma->dma_device.device_issue_pending = mxs_dma_enable_chan; |
| |
| ret = dma_async_device_register(&mxs_dma->dma_device); |
| if (ret) { |
| dev_err(mxs_dma->dma_device.dev, "unable to register\n"); |
| return ret; |
| } |
| |
| ret = of_dma_controller_register(np, mxs_dma_xlate, mxs_dma); |
| if (ret) { |
| dev_err(mxs_dma->dma_device.dev, |
| "failed to register controller\n"); |
| dma_async_device_unregister(&mxs_dma->dma_device); |
| } |
| |
| dev_info(mxs_dma->dma_device.dev, "initialized\n"); |
| |
| return 0; |
| } |
| |
| static struct platform_driver mxs_dma_driver = { |
| .driver = { |
| .name = "mxs-dma", |
| .of_match_table = mxs_dma_dt_ids, |
| }, |
| .id_table = mxs_dma_ids, |
| }; |
| |
| static int __init mxs_dma_module_init(void) |
| { |
| return platform_driver_probe(&mxs_dma_driver, mxs_dma_probe); |
| } |
| subsys_initcall(mxs_dma_module_init); |