blob: 5220f158b8f5d77bdf9d07db5b9261d1780551d1 [file] [log] [blame]
/*
* Copyright (c) 2012 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/etherdevice.h>
#include <linux/if_arp.h>
#include "wil6210.h"
#include "txrx.h"
#include "wmi.h"
#include "trace.h"
/**
* WMI event receiving - theory of operations
*
* When firmware about to report WMI event, it fills memory area
* in the mailbox and raises misc. IRQ. Thread interrupt handler invoked for
* the misc IRQ, function @wmi_recv_cmd called by thread IRQ handler.
*
* @wmi_recv_cmd reads event, allocates memory chunk and attaches it to the
* event list @wil->pending_wmi_ev. Then, work queue @wil->wmi_wq wakes up
* and handles events within the @wmi_event_worker. Every event get detached
* from list, processed and deleted.
*
* Purpose for this mechanism is to release IRQ thread; otherwise,
* if WMI event handling involves another WMI command flow, this 2-nd flow
* won't be completed because of blocked IRQ thread.
*/
/**
* Addressing - theory of operations
*
* There are several buses present on the WIL6210 card.
* Same memory areas are visible at different address on
* the different busses. There are 3 main bus masters:
* - MAC CPU (ucode)
* - User CPU (firmware)
* - AHB (host)
*
* On the PCI bus, there is one BAR (BAR0) of 2Mb size, exposing
* AHB addresses starting from 0x880000
*
* Internally, firmware uses addresses that allows faster access but
* are invisible from the host. To read from these addresses, alternative
* AHB address must be used.
*
* Memory mapping
* Linker address PCI/Host address
* 0x880000 .. 0xa80000 2Mb BAR0
* 0x800000 .. 0x807000 0x900000 .. 0x907000 28k DCCM
* 0x840000 .. 0x857000 0x908000 .. 0x91f000 92k PERIPH
*/
/**
* @fw_mapping provides memory remapping table
*/
static const struct {
u32 from; /* linker address - from, inclusive */
u32 to; /* linker address - to, exclusive */
u32 host; /* PCI/Host address - BAR0 + 0x880000 */
} fw_mapping[] = {
{0x000000, 0x040000, 0x8c0000}, /* FW code RAM 256k */
{0x800000, 0x808000, 0x900000}, /* FW data RAM 32k */
{0x840000, 0x860000, 0x908000}, /* peripheral data RAM 128k/96k used */
{0x880000, 0x88a000, 0x880000}, /* various RGF */
{0x8c0000, 0x949000, 0x8c0000}, /* trivial mapping for upper area */
/*
* 920000..930000 ucode code RAM
* 930000..932000 ucode data RAM
* 932000..949000 back-door debug data
*/
};
/**
* return AHB address for given firmware/ucode internal (linker) address
* @x - internal address
* If address have no valid AHB mapping, return 0
*/
static u32 wmi_addr_remap(u32 x)
{
uint i;
for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) {
if ((x >= fw_mapping[i].from) && (x < fw_mapping[i].to))
return x + fw_mapping[i].host - fw_mapping[i].from;
}
return 0;
}
/**
* Check address validity for WMI buffer; remap if needed
* @ptr - internal (linker) fw/ucode address
*
* Valid buffer should be DWORD aligned
*
* return address for accessing buffer from the host;
* if buffer is not valid, return NULL.
*/
void __iomem *wmi_buffer(struct wil6210_priv *wil, __le32 ptr_)
{
u32 off;
u32 ptr = le32_to_cpu(ptr_);
if (ptr % 4)
return NULL;
ptr = wmi_addr_remap(ptr);
if (ptr < WIL6210_FW_HOST_OFF)
return NULL;
off = HOSTADDR(ptr);
if (off > WIL6210_MEM_SIZE - 4)
return NULL;
return wil->csr + off;
}
/**
* Check address validity
*/
void __iomem *wmi_addr(struct wil6210_priv *wil, u32 ptr)
{
u32 off;
if (ptr % 4)
return NULL;
if (ptr < WIL6210_FW_HOST_OFF)
return NULL;
off = HOSTADDR(ptr);
if (off > WIL6210_MEM_SIZE - 4)
return NULL;
return wil->csr + off;
}
int wmi_read_hdr(struct wil6210_priv *wil, __le32 ptr,
struct wil6210_mbox_hdr *hdr)
{
void __iomem *src = wmi_buffer(wil, ptr);
if (!src)
return -EINVAL;
wil_memcpy_fromio_32(hdr, src, sizeof(*hdr));
return 0;
}
static int __wmi_send(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len)
{
struct {
struct wil6210_mbox_hdr hdr;
struct wil6210_mbox_hdr_wmi wmi;
} __packed cmd = {
.hdr = {
.type = WIL_MBOX_HDR_TYPE_WMI,
.flags = 0,
.len = cpu_to_le16(sizeof(cmd.wmi) + len),
},
.wmi = {
.mid = 0,
.id = cpu_to_le16(cmdid),
},
};
struct wil6210_mbox_ring *r = &wil->mbox_ctl.tx;
struct wil6210_mbox_ring_desc d_head;
u32 next_head;
void __iomem *dst;
void __iomem *head = wmi_addr(wil, r->head);
uint retry;
if (sizeof(cmd) + len > r->entry_size) {
wil_err(wil, "WMI size too large: %d bytes, max is %d\n",
(int)(sizeof(cmd) + len), r->entry_size);
return -ERANGE;
}
might_sleep();
if (!test_bit(wil_status_fwready, &wil->status)) {
wil_err(wil, "FW not ready\n");
return -EAGAIN;
}
if (!head) {
wil_err(wil, "WMI head is garbage: 0x%08x\n", r->head);
return -EINVAL;
}
/* read Tx head till it is not busy */
for (retry = 5; retry > 0; retry--) {
wil_memcpy_fromio_32(&d_head, head, sizeof(d_head));
if (d_head.sync == 0)
break;
msleep(20);
}
if (d_head.sync != 0) {
wil_err(wil, "WMI head busy\n");
return -EBUSY;
}
/* next head */
next_head = r->base + ((r->head - r->base + sizeof(d_head)) % r->size);
wil_dbg_wmi(wil, "Head 0x%08x -> 0x%08x\n", r->head, next_head);
/* wait till FW finish with previous command */
for (retry = 5; retry > 0; retry--) {
r->tail = ioread32(wil->csr + HOST_MBOX +
offsetof(struct wil6210_mbox_ctl, tx.tail));
if (next_head != r->tail)
break;
msleep(20);
}
if (next_head == r->tail) {
wil_err(wil, "WMI ring full\n");
return -EBUSY;
}
dst = wmi_buffer(wil, d_head.addr);
if (!dst) {
wil_err(wil, "invalid WMI buffer: 0x%08x\n",
le32_to_cpu(d_head.addr));
return -EINVAL;
}
cmd.hdr.seq = cpu_to_le16(++wil->wmi_seq);
/* set command */
wil_dbg_wmi(wil, "WMI command 0x%04x [%d]\n", cmdid, len);
wil_hex_dump_wmi("Cmd ", DUMP_PREFIX_OFFSET, 16, 1, &cmd,
sizeof(cmd), true);
wil_hex_dump_wmi("cmd ", DUMP_PREFIX_OFFSET, 16, 1, buf,
len, true);
wil_memcpy_toio_32(dst, &cmd, sizeof(cmd));
wil_memcpy_toio_32(dst + sizeof(cmd), buf, len);
/* mark entry as full */
iowrite32(1, wil->csr + HOSTADDR(r->head) +
offsetof(struct wil6210_mbox_ring_desc, sync));
/* advance next ptr */
iowrite32(r->head = next_head, wil->csr + HOST_MBOX +
offsetof(struct wil6210_mbox_ctl, tx.head));
trace_wil6210_wmi_cmd(&cmd.wmi, buf, len);
/* interrupt to FW */
iowrite32(SW_INT_MBOX, wil->csr + HOST_SW_INT);
return 0;
}
int wmi_send(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len)
{
int rc;
mutex_lock(&wil->wmi_mutex);
rc = __wmi_send(wil, cmdid, buf, len);
mutex_unlock(&wil->wmi_mutex);
return rc;
}
/*=== Event handlers ===*/
static void wmi_evt_ready(struct wil6210_priv *wil, int id, void *d, int len)
{
struct net_device *ndev = wil_to_ndev(wil);
struct wireless_dev *wdev = wil->wdev;
struct wmi_ready_event *evt = d;
wil->fw_version = le32_to_cpu(evt->sw_version);
wil->n_mids = evt->numof_additional_mids;
wil_dbg_wmi(wil, "FW ver. %d; MAC %pM; %d MID's\n", wil->fw_version,
evt->mac, wil->n_mids);
if (!is_valid_ether_addr(ndev->dev_addr)) {
memcpy(ndev->dev_addr, evt->mac, ETH_ALEN);
memcpy(ndev->perm_addr, evt->mac, ETH_ALEN);
}
snprintf(wdev->wiphy->fw_version, sizeof(wdev->wiphy->fw_version),
"%d", wil->fw_version);
}
static void wmi_evt_fw_ready(struct wil6210_priv *wil, int id, void *d,
int len)
{
wil_dbg_wmi(wil, "WMI: FW ready\n");
set_bit(wil_status_fwready, &wil->status);
/* reuse wmi_ready for the firmware ready indication */
complete(&wil->wmi_ready);
}
static void wmi_evt_rx_mgmt(struct wil6210_priv *wil, int id, void *d, int len)
{
struct wmi_rx_mgmt_packet_event *data = d;
struct wiphy *wiphy = wil_to_wiphy(wil);
struct ieee80211_mgmt *rx_mgmt_frame =
(struct ieee80211_mgmt *)data->payload;
int ch_no = data->info.channel+1;
u32 freq = ieee80211_channel_to_frequency(ch_no,
IEEE80211_BAND_60GHZ);
struct ieee80211_channel *channel = ieee80211_get_channel(wiphy, freq);
/* TODO convert LE to CPU */
s32 signal = 0; /* TODO */
__le16 fc = rx_mgmt_frame->frame_control;
u32 d_len = le32_to_cpu(data->info.len);
u16 d_status = le16_to_cpu(data->info.status);
wil_dbg_wmi(wil, "MGMT: channel %d MCS %d SNR %d\n",
data->info.channel, data->info.mcs, data->info.snr);
wil_dbg_wmi(wil, "status 0x%04x len %d fc 0x%04x\n", d_status, d_len,
le16_to_cpu(fc));
wil_dbg_wmi(wil, "qid %d mid %d cid %d\n",
data->info.qid, data->info.mid, data->info.cid);
if (!channel) {
wil_err(wil, "Frame on unsupported channel\n");
return;
}
if (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc)) {
struct cfg80211_bss *bss;
bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
d_len, signal, GFP_KERNEL);
if (bss) {
wil_dbg_wmi(wil, "Added BSS %pM\n",
rx_mgmt_frame->bssid);
cfg80211_put_bss(wiphy, bss);
} else {
wil_err(wil, "cfg80211_inform_bss() failed\n");
}
} else {
cfg80211_rx_mgmt(wil->wdev, freq, signal,
(void *)rx_mgmt_frame, d_len, GFP_KERNEL);
}
}
static void wmi_evt_scan_complete(struct wil6210_priv *wil, int id,
void *d, int len)
{
if (wil->scan_request) {
struct wmi_scan_complete_event *data = d;
bool aborted = (data->status != 0);
wil_dbg_wmi(wil, "SCAN_COMPLETE(0x%08x)\n", data->status);
cfg80211_scan_done(wil->scan_request, aborted);
wil->scan_request = NULL;
} else {
wil_err(wil, "SCAN_COMPLETE while not scanning\n");
}
}
static void wmi_evt_connect(struct wil6210_priv *wil, int id, void *d, int len)
{
struct net_device *ndev = wil_to_ndev(wil);
struct wireless_dev *wdev = wil->wdev;
struct wmi_connect_event *evt = d;
int ch; /* channel number */
struct station_info sinfo;
u8 *assoc_req_ie, *assoc_resp_ie;
size_t assoc_req_ielen, assoc_resp_ielen;
/* capinfo(u16) + listen_interval(u16) + IEs */
const size_t assoc_req_ie_offset = sizeof(u16) * 2;
/* capinfo(u16) + status_code(u16) + associd(u16) + IEs */
const size_t assoc_resp_ie_offset = sizeof(u16) * 3;
if (len < sizeof(*evt)) {
wil_err(wil, "Connect event too short : %d bytes\n", len);
return;
}
if (len != sizeof(*evt) + evt->beacon_ie_len + evt->assoc_req_len +
evt->assoc_resp_len) {
wil_err(wil,
"Connect event corrupted : %d != %d + %d + %d + %d\n",
len, (int)sizeof(*evt), evt->beacon_ie_len,
evt->assoc_req_len, evt->assoc_resp_len);
return;
}
ch = evt->channel + 1;
wil_dbg_wmi(wil, "Connect %pM channel [%d] cid %d\n",
evt->bssid, ch, evt->cid);
wil_hex_dump_wmi("connect AI : ", DUMP_PREFIX_OFFSET, 16, 1,
evt->assoc_info, len - sizeof(*evt), true);
/* figure out IE's */
assoc_req_ie = &evt->assoc_info[evt->beacon_ie_len +
assoc_req_ie_offset];
assoc_req_ielen = evt->assoc_req_len - assoc_req_ie_offset;
if (evt->assoc_req_len <= assoc_req_ie_offset) {
assoc_req_ie = NULL;
assoc_req_ielen = 0;
}
assoc_resp_ie = &evt->assoc_info[evt->beacon_ie_len +
evt->assoc_req_len +
assoc_resp_ie_offset];
assoc_resp_ielen = evt->assoc_resp_len - assoc_resp_ie_offset;
if (evt->assoc_resp_len <= assoc_resp_ie_offset) {
assoc_resp_ie = NULL;
assoc_resp_ielen = 0;
}
if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
(wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
if (!test_bit(wil_status_fwconnecting, &wil->status)) {
wil_err(wil, "Not in connecting state\n");
return;
}
del_timer_sync(&wil->connect_timer);
cfg80211_connect_result(ndev, evt->bssid,
assoc_req_ie, assoc_req_ielen,
assoc_resp_ie, assoc_resp_ielen,
WLAN_STATUS_SUCCESS, GFP_KERNEL);
} else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
(wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
memset(&sinfo, 0, sizeof(sinfo));
sinfo.generation = wil->sinfo_gen++;
if (assoc_req_ie) {
sinfo.assoc_req_ies = assoc_req_ie;
sinfo.assoc_req_ies_len = assoc_req_ielen;
sinfo.filled |= STATION_INFO_ASSOC_REQ_IES;
}
cfg80211_new_sta(ndev, evt->bssid, &sinfo, GFP_KERNEL);
}
clear_bit(wil_status_fwconnecting, &wil->status);
set_bit(wil_status_fwconnected, &wil->status);
/* FIXME FW can transmit only ucast frames to peer */
/* FIXME real ring_id instead of hard coded 0 */
memcpy(wil->dst_addr[0], evt->bssid, ETH_ALEN);
wil->pending_connect_cid = evt->cid;
queue_work(wil->wmi_wq_conn, &wil->connect_worker);
}
static void wmi_evt_disconnect(struct wil6210_priv *wil, int id,
void *d, int len)
{
struct wmi_disconnect_event *evt = d;
wil_dbg_wmi(wil, "Disconnect %pM reason %d proto %d wmi\n",
evt->bssid,
evt->protocol_reason_status, evt->disconnect_reason);
wil->sinfo_gen++;
wil6210_disconnect(wil, evt->bssid);
}
static void wmi_evt_notify(struct wil6210_priv *wil, int id, void *d, int len)
{
struct wmi_notify_req_done_event *evt = d;
if (len < sizeof(*evt)) {
wil_err(wil, "Short NOTIFY event\n");
return;
}
wil->stats.tsf = le64_to_cpu(evt->tsf);
wil->stats.snr = le32_to_cpu(evt->snr_val);
wil->stats.bf_mcs = le16_to_cpu(evt->bf_mcs);
wil->stats.my_rx_sector = le16_to_cpu(evt->my_rx_sector);
wil->stats.my_tx_sector = le16_to_cpu(evt->my_tx_sector);
wil->stats.peer_rx_sector = le16_to_cpu(evt->other_rx_sector);
wil->stats.peer_tx_sector = le16_to_cpu(evt->other_tx_sector);
wil_dbg_wmi(wil, "Link status, MCS %d TSF 0x%016llx\n"
"BF status 0x%08x SNR 0x%08x\n"
"Tx Tpt %d goodput %d Rx goodput %d\n"
"Sectors(rx:tx) my %d:%d peer %d:%d\n",
wil->stats.bf_mcs, wil->stats.tsf, evt->status,
wil->stats.snr, le32_to_cpu(evt->tx_tpt),
le32_to_cpu(evt->tx_goodput), le32_to_cpu(evt->rx_goodput),
wil->stats.my_rx_sector, wil->stats.my_tx_sector,
wil->stats.peer_rx_sector, wil->stats.peer_tx_sector);
}
/*
* Firmware reports EAPOL frame using WME event.
* Reconstruct Ethernet frame and deliver it via normal Rx
*/
static void wmi_evt_eapol_rx(struct wil6210_priv *wil, int id,
void *d, int len)
{
struct net_device *ndev = wil_to_ndev(wil);
struct wmi_eapol_rx_event *evt = d;
u16 eapol_len = le16_to_cpu(evt->eapol_len);
int sz = eapol_len + ETH_HLEN;
struct sk_buff *skb;
struct ethhdr *eth;
wil_dbg_wmi(wil, "EAPOL len %d from %pM\n", eapol_len,
evt->src_mac);
if (eapol_len > 196) { /* TODO: revisit size limit */
wil_err(wil, "EAPOL too large\n");
return;
}
skb = alloc_skb(sz, GFP_KERNEL);
if (!skb) {
wil_err(wil, "Failed to allocate skb\n");
return;
}
eth = (struct ethhdr *)skb_put(skb, ETH_HLEN);
memcpy(eth->h_dest, ndev->dev_addr, ETH_ALEN);
memcpy(eth->h_source, evt->src_mac, ETH_ALEN);
eth->h_proto = cpu_to_be16(ETH_P_PAE);
memcpy(skb_put(skb, eapol_len), evt->eapol, eapol_len);
skb->protocol = eth_type_trans(skb, ndev);
if (likely(netif_rx_ni(skb) == NET_RX_SUCCESS)) {
ndev->stats.rx_packets++;
ndev->stats.rx_bytes += skb->len;
} else {
ndev->stats.rx_dropped++;
}
}
static void wmi_evt_linkup(struct wil6210_priv *wil, int id, void *d, int len)
{
struct net_device *ndev = wil_to_ndev(wil);
struct wmi_data_port_open_event *evt = d;
wil_dbg_wmi(wil, "Link UP for CID %d\n", evt->cid);
netif_carrier_on(ndev);
}
static void wmi_evt_linkdown(struct wil6210_priv *wil, int id, void *d, int len)
{
struct net_device *ndev = wil_to_ndev(wil);
struct wmi_wbe_link_down_event *evt = d;
wil_dbg_wmi(wil, "Link DOWN for CID %d, reason %d\n",
evt->cid, le32_to_cpu(evt->reason));
netif_carrier_off(ndev);
}
static void wmi_evt_ba_status(struct wil6210_priv *wil, int id, void *d,
int len)
{
struct wmi_vring_ba_status_event *evt = d;
wil_dbg_wmi(wil, "BACK[%d] %s {%d} timeout %d\n",
evt->ringid, evt->status ? "N/A" : "OK", evt->agg_wsize,
__le16_to_cpu(evt->ba_timeout));
}
static const struct {
int eventid;
void (*handler)(struct wil6210_priv *wil, int eventid,
void *data, int data_len);
} wmi_evt_handlers[] = {
{WMI_READY_EVENTID, wmi_evt_ready},
{WMI_FW_READY_EVENTID, wmi_evt_fw_ready},
{WMI_RX_MGMT_PACKET_EVENTID, wmi_evt_rx_mgmt},
{WMI_SCAN_COMPLETE_EVENTID, wmi_evt_scan_complete},
{WMI_CONNECT_EVENTID, wmi_evt_connect},
{WMI_DISCONNECT_EVENTID, wmi_evt_disconnect},
{WMI_NOTIFY_REQ_DONE_EVENTID, wmi_evt_notify},
{WMI_EAPOL_RX_EVENTID, wmi_evt_eapol_rx},
{WMI_DATA_PORT_OPEN_EVENTID, wmi_evt_linkup},
{WMI_WBE_LINKDOWN_EVENTID, wmi_evt_linkdown},
{WMI_BA_STATUS_EVENTID, wmi_evt_ba_status},
};
/*
* Run in IRQ context
* Extract WMI command from mailbox. Queue it to the @wil->pending_wmi_ev
* that will be eventually handled by the @wmi_event_worker in the thread
* context of thread "wil6210_wmi"
*/
void wmi_recv_cmd(struct wil6210_priv *wil)
{
struct wil6210_mbox_ring_desc d_tail;
struct wil6210_mbox_hdr hdr;
struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
struct pending_wmi_event *evt;
u8 *cmd;
void __iomem *src;
ulong flags;
if (!test_bit(wil_status_reset_done, &wil->status)) {
wil_err(wil, "Reset not completed\n");
return;
}
for (;;) {
u16 len;
r->head = ioread32(wil->csr + HOST_MBOX +
offsetof(struct wil6210_mbox_ctl, rx.head));
if (r->tail == r->head)
return;
/* read cmd from tail */
wil_memcpy_fromio_32(&d_tail, wil->csr + HOSTADDR(r->tail),
sizeof(struct wil6210_mbox_ring_desc));
if (d_tail.sync == 0) {
wil_err(wil, "Mbox evt not owned by FW?\n");
return;
}
if (0 != wmi_read_hdr(wil, d_tail.addr, &hdr)) {
wil_err(wil, "Mbox evt at 0x%08x?\n",
le32_to_cpu(d_tail.addr));
return;
}
len = le16_to_cpu(hdr.len);
src = wmi_buffer(wil, d_tail.addr) +
sizeof(struct wil6210_mbox_hdr);
evt = kmalloc(ALIGN(offsetof(struct pending_wmi_event,
event.wmi) + len, 4),
GFP_KERNEL);
if (!evt)
return;
evt->event.hdr = hdr;
cmd = (void *)&evt->event.wmi;
wil_memcpy_fromio_32(cmd, src, len);
/* mark entry as empty */
iowrite32(0, wil->csr + HOSTADDR(r->tail) +
offsetof(struct wil6210_mbox_ring_desc, sync));
/* indicate */
wil_dbg_wmi(wil, "Mbox evt %04x %04x %04x %02x\n",
le16_to_cpu(hdr.seq), len, le16_to_cpu(hdr.type),
hdr.flags);
if ((hdr.type == WIL_MBOX_HDR_TYPE_WMI) &&
(len >= sizeof(struct wil6210_mbox_hdr_wmi))) {
struct wil6210_mbox_hdr_wmi *wmi = &evt->event.wmi;
u16 id = le16_to_cpu(wmi->id);
u32 tstamp = le32_to_cpu(wmi->timestamp);
wil_dbg_wmi(wil, "WMI event 0x%04x MID %d @%d msec\n",
id, wmi->mid, tstamp);
trace_wil6210_wmi_event(wmi, &wmi[1],
len - sizeof(*wmi));
}
wil_hex_dump_wmi("evt ", DUMP_PREFIX_OFFSET, 16, 1,
&evt->event.hdr, sizeof(hdr) + len, true);
/* advance tail */
r->tail = r->base + ((r->tail - r->base +
sizeof(struct wil6210_mbox_ring_desc)) % r->size);
iowrite32(r->tail, wil->csr + HOST_MBOX +
offsetof(struct wil6210_mbox_ctl, rx.tail));
/* add to the pending list */
spin_lock_irqsave(&wil->wmi_ev_lock, flags);
list_add_tail(&evt->list, &wil->pending_wmi_ev);
spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
{
int q = queue_work(wil->wmi_wq,
&wil->wmi_event_worker);
wil_dbg_wmi(wil, "queue_work -> %d\n", q);
}
}
}
int wmi_call(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len,
u16 reply_id, void *reply, u8 reply_size, int to_msec)
{
int rc;
int remain;
mutex_lock(&wil->wmi_mutex);
rc = __wmi_send(wil, cmdid, buf, len);
if (rc)
goto out;
wil->reply_id = reply_id;
wil->reply_buf = reply;
wil->reply_size = reply_size;
remain = wait_for_completion_timeout(&wil->wmi_ready,
msecs_to_jiffies(to_msec));
if (0 == remain) {
wil_err(wil, "wmi_call(0x%04x->0x%04x) timeout %d msec\n",
cmdid, reply_id, to_msec);
rc = -ETIME;
} else {
wil_dbg_wmi(wil,
"wmi_call(0x%04x->0x%04x) completed in %d msec\n",
cmdid, reply_id,
to_msec - jiffies_to_msecs(remain));
}
wil->reply_id = 0;
wil->reply_buf = NULL;
wil->reply_size = 0;
out:
mutex_unlock(&wil->wmi_mutex);
return rc;
}
int wmi_echo(struct wil6210_priv *wil)
{
struct wmi_echo_cmd cmd = {
.value = cpu_to_le32(0x12345678),
};
return wmi_call(wil, WMI_ECHO_CMDID, &cmd, sizeof(cmd),
WMI_ECHO_RSP_EVENTID, NULL, 0, 20);
}
int wmi_set_mac_address(struct wil6210_priv *wil, void *addr)
{
struct wmi_set_mac_address_cmd cmd;
memcpy(cmd.mac, addr, ETH_ALEN);
wil_dbg_wmi(wil, "Set MAC %pM\n", addr);
return wmi_send(wil, WMI_SET_MAC_ADDRESS_CMDID, &cmd, sizeof(cmd));
}
int wmi_pcp_start(struct wil6210_priv *wil, int bi, u8 wmi_nettype, u8 chan)
{
int rc;
struct wmi_pcp_start_cmd cmd = {
.bcon_interval = cpu_to_le16(bi),
.network_type = wmi_nettype,
.disable_sec_offload = 1,
.channel = chan - 1,
};
struct {
struct wil6210_mbox_hdr_wmi wmi;
struct wmi_pcp_started_event evt;
} __packed reply;
if (!wil->secure_pcp)
cmd.disable_sec = 1;
/*
* Processing time may be huge, in case of secure AP it takes about
* 3500ms for FW to start AP
*/
rc = wmi_call(wil, WMI_PCP_START_CMDID, &cmd, sizeof(cmd),
WMI_PCP_STARTED_EVENTID, &reply, sizeof(reply), 5000);
if (rc)
return rc;
if (reply.evt.status != WMI_FW_STATUS_SUCCESS)
rc = -EINVAL;
return rc;
}
int wmi_pcp_stop(struct wil6210_priv *wil)
{
return wmi_call(wil, WMI_PCP_STOP_CMDID, NULL, 0,
WMI_PCP_STOPPED_EVENTID, NULL, 0, 20);
}
int wmi_set_ssid(struct wil6210_priv *wil, u8 ssid_len, const void *ssid)
{
struct wmi_set_ssid_cmd cmd = {
.ssid_len = cpu_to_le32(ssid_len),
};
if (ssid_len > sizeof(cmd.ssid))
return -EINVAL;
memcpy(cmd.ssid, ssid, ssid_len);
return wmi_send(wil, WMI_SET_SSID_CMDID, &cmd, sizeof(cmd));
}
int wmi_get_ssid(struct wil6210_priv *wil, u8 *ssid_len, void *ssid)
{
int rc;
struct {
struct wil6210_mbox_hdr_wmi wmi;
struct wmi_set_ssid_cmd cmd;
} __packed reply;
int len; /* reply.cmd.ssid_len in CPU order */
rc = wmi_call(wil, WMI_GET_SSID_CMDID, NULL, 0, WMI_GET_SSID_EVENTID,
&reply, sizeof(reply), 20);
if (rc)
return rc;
len = le32_to_cpu(reply.cmd.ssid_len);
if (len > sizeof(reply.cmd.ssid))
return -EINVAL;
*ssid_len = len;
memcpy(ssid, reply.cmd.ssid, len);
return 0;
}
int wmi_set_channel(struct wil6210_priv *wil, int channel)
{
struct wmi_set_pcp_channel_cmd cmd = {
.channel = channel - 1,
};
return wmi_send(wil, WMI_SET_PCP_CHANNEL_CMDID, &cmd, sizeof(cmd));
}
int wmi_get_channel(struct wil6210_priv *wil, int *channel)
{
int rc;
struct {
struct wil6210_mbox_hdr_wmi wmi;
struct wmi_set_pcp_channel_cmd cmd;
} __packed reply;
rc = wmi_call(wil, WMI_GET_PCP_CHANNEL_CMDID, NULL, 0,
WMI_GET_PCP_CHANNEL_EVENTID, &reply, sizeof(reply), 20);
if (rc)
return rc;
if (reply.cmd.channel > 3)
return -EINVAL;
*channel = reply.cmd.channel + 1;
return 0;
}
int wmi_p2p_cfg(struct wil6210_priv *wil, int channel)
{
struct wmi_p2p_cfg_cmd cmd = {
.discovery_mode = WMI_DISCOVERY_MODE_NON_OFFLOAD,
.channel = channel - 1,
};
return wmi_send(wil, WMI_P2P_CFG_CMDID, &cmd, sizeof(cmd));
}
int wmi_del_cipher_key(struct wil6210_priv *wil, u8 key_index,
const void *mac_addr)
{
struct wmi_delete_cipher_key_cmd cmd = {
.key_index = key_index,
};
if (mac_addr)
memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
return wmi_send(wil, WMI_DELETE_CIPHER_KEY_CMDID, &cmd, sizeof(cmd));
}
int wmi_add_cipher_key(struct wil6210_priv *wil, u8 key_index,
const void *mac_addr, int key_len, const void *key)
{
struct wmi_add_cipher_key_cmd cmd = {
.key_index = key_index,
.key_usage = WMI_KEY_USE_PAIRWISE,
.key_len = key_len,
};
if (!key || (key_len > sizeof(cmd.key)))
return -EINVAL;
memcpy(cmd.key, key, key_len);
if (mac_addr)
memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
return wmi_send(wil, WMI_ADD_CIPHER_KEY_CMDID, &cmd, sizeof(cmd));
}
int wmi_set_ie(struct wil6210_priv *wil, u8 type, u16 ie_len, const void *ie)
{
int rc;
u16 len = sizeof(struct wmi_set_appie_cmd) + ie_len;
struct wmi_set_appie_cmd *cmd = kzalloc(len, GFP_KERNEL);
if (!cmd)
return -ENOMEM;
cmd->mgmt_frm_type = type;
/* BUG: FW API define ieLen as u8. Will fix FW */
cmd->ie_len = cpu_to_le16(ie_len);
memcpy(cmd->ie_info, ie, ie_len);
rc = wmi_send(wil, WMI_SET_APPIE_CMDID, cmd, len);
kfree(cmd);
return rc;
}
int wmi_rx_chain_add(struct wil6210_priv *wil, struct vring *vring)
{
struct wireless_dev *wdev = wil->wdev;
struct net_device *ndev = wil_to_ndev(wil);
struct wmi_cfg_rx_chain_cmd cmd = {
.action = WMI_RX_CHAIN_ADD,
.rx_sw_ring = {
.max_mpdu_size = cpu_to_le16(RX_BUF_LEN),
.ring_mem_base = cpu_to_le64(vring->pa),
.ring_size = cpu_to_le16(vring->size),
},
.mid = 0, /* TODO - what is it? */
.decap_trans_type = WMI_DECAP_TYPE_802_3,
};
struct {
struct wil6210_mbox_hdr_wmi wmi;
struct wmi_cfg_rx_chain_done_event evt;
} __packed evt;
int rc;
if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
struct ieee80211_channel *ch = wdev->preset_chandef.chan;
cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON);
if (ch)
cmd.sniffer_cfg.channel = ch->hw_value - 1;
cmd.sniffer_cfg.phy_info_mode =
cpu_to_le32(ndev->type == ARPHRD_IEEE80211_RADIOTAP);
cmd.sniffer_cfg.phy_support =
cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL)
? WMI_SNIFFER_CP : WMI_SNIFFER_DP);
} else {
/* Initialize offload (in non-sniffer mode).
* Linux IP stack always calculates IP checksum
* HW always calculate TCP/UDP checksum
*/
cmd.l3_l4_ctrl |= (1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS);
}
/* typical time for secure PCP is 840ms */
rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, &cmd, sizeof(cmd),
WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000);
if (rc)
return rc;
vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr);
wil_dbg_misc(wil, "Rx init: status %d tail 0x%08x\n",
le32_to_cpu(evt.evt.status), vring->hwtail);
if (le32_to_cpu(evt.evt.status) != WMI_CFG_RX_CHAIN_SUCCESS)
rc = -EINVAL;
return rc;
}
int wmi_get_temperature(struct wil6210_priv *wil, u32 *t_m, u32 *t_r)
{
int rc;
struct wmi_temp_sense_cmd cmd = {
.measure_marlon_m_en = cpu_to_le32(!!t_m),
.measure_marlon_r_en = cpu_to_le32(!!t_r),
};
struct {
struct wil6210_mbox_hdr_wmi wmi;
struct wmi_temp_sense_done_event evt;
} __packed reply;
rc = wmi_call(wil, WMI_TEMP_SENSE_CMDID, &cmd, sizeof(cmd),
WMI_TEMP_SENSE_DONE_EVENTID, &reply, sizeof(reply), 100);
if (rc)
return rc;
if (t_m)
*t_m = le32_to_cpu(reply.evt.marlon_m_t1000);
if (t_r)
*t_r = le32_to_cpu(reply.evt.marlon_r_t1000);
return 0;
}
void wmi_event_flush(struct wil6210_priv *wil)
{
struct pending_wmi_event *evt, *t;
wil_dbg_wmi(wil, "%s()\n", __func__);
list_for_each_entry_safe(evt, t, &wil->pending_wmi_ev, list) {
list_del(&evt->list);
kfree(evt);
}
}
static bool wmi_evt_call_handler(struct wil6210_priv *wil, int id,
void *d, int len)
{
uint i;
for (i = 0; i < ARRAY_SIZE(wmi_evt_handlers); i++) {
if (wmi_evt_handlers[i].eventid == id) {
wmi_evt_handlers[i].handler(wil, id, d, len);
return true;
}
}
return false;
}
static void wmi_event_handle(struct wil6210_priv *wil,
struct wil6210_mbox_hdr *hdr)
{
u16 len = le16_to_cpu(hdr->len);
if ((hdr->type == WIL_MBOX_HDR_TYPE_WMI) &&
(len >= sizeof(struct wil6210_mbox_hdr_wmi))) {
struct wil6210_mbox_hdr_wmi *wmi = (void *)(&hdr[1]);
void *evt_data = (void *)(&wmi[1]);
u16 id = le16_to_cpu(wmi->id);
/* check if someone waits for this event */
if (wil->reply_id && wil->reply_id == id) {
if (wil->reply_buf) {
memcpy(wil->reply_buf, wmi,
min(len, wil->reply_size));
} else {
wmi_evt_call_handler(wil, id, evt_data,
len - sizeof(*wmi));
}
wil_dbg_wmi(wil, "Complete WMI 0x%04x\n", id);
complete(&wil->wmi_ready);
return;
}
/* unsolicited event */
/* search for handler */
if (!wmi_evt_call_handler(wil, id, evt_data,
len - sizeof(*wmi))) {
wil_err(wil, "Unhandled event 0x%04x\n", id);
}
} else {
wil_err(wil, "Unknown event type\n");
print_hex_dump(KERN_ERR, "evt?? ", DUMP_PREFIX_OFFSET, 16, 1,
hdr, sizeof(*hdr) + len, true);
}
}
/*
* Retrieve next WMI event from the pending list
*/
static struct list_head *next_wmi_ev(struct wil6210_priv *wil)
{
ulong flags;
struct list_head *ret = NULL;
spin_lock_irqsave(&wil->wmi_ev_lock, flags);
if (!list_empty(&wil->pending_wmi_ev)) {
ret = wil->pending_wmi_ev.next;
list_del(ret);
}
spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
return ret;
}
/*
* Handler for the WMI events
*/
void wmi_event_worker(struct work_struct *work)
{
struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
wmi_event_worker);
struct pending_wmi_event *evt;
struct list_head *lh;
while ((lh = next_wmi_ev(wil)) != NULL) {
evt = list_entry(lh, struct pending_wmi_event, list);
wmi_event_handle(wil, &evt->event.hdr);
kfree(evt);
}
}