| /* Authors: Karl MacMillan <kmacmillan@tresys.com> |
| * Frank Mayer <mayerf@tresys.com> |
| * |
| * Copyright (C) 2003 - 2004 Tresys Technology, LLC |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation, version 2. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/spinlock.h> |
| #include <asm/semaphore.h> |
| #include <linux/slab.h> |
| |
| #include "security.h" |
| #include "conditional.h" |
| |
| /* |
| * cond_evaluate_expr evaluates a conditional expr |
| * in reverse polish notation. It returns true (1), false (0), |
| * or undefined (-1). Undefined occurs when the expression |
| * exceeds the stack depth of COND_EXPR_MAXDEPTH. |
| */ |
| static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr) |
| { |
| |
| struct cond_expr *cur; |
| int s[COND_EXPR_MAXDEPTH]; |
| int sp = -1; |
| |
| for (cur = expr; cur != NULL; cur = cur->next) { |
| switch (cur->expr_type) { |
| case COND_BOOL: |
| if (sp == (COND_EXPR_MAXDEPTH - 1)) |
| return -1; |
| sp++; |
| s[sp] = p->bool_val_to_struct[cur->bool - 1]->state; |
| break; |
| case COND_NOT: |
| if (sp < 0) |
| return -1; |
| s[sp] = !s[sp]; |
| break; |
| case COND_OR: |
| if (sp < 1) |
| return -1; |
| sp--; |
| s[sp] |= s[sp + 1]; |
| break; |
| case COND_AND: |
| if (sp < 1) |
| return -1; |
| sp--; |
| s[sp] &= s[sp + 1]; |
| break; |
| case COND_XOR: |
| if (sp < 1) |
| return -1; |
| sp--; |
| s[sp] ^= s[sp + 1]; |
| break; |
| case COND_EQ: |
| if (sp < 1) |
| return -1; |
| sp--; |
| s[sp] = (s[sp] == s[sp + 1]); |
| break; |
| case COND_NEQ: |
| if (sp < 1) |
| return -1; |
| sp--; |
| s[sp] = (s[sp] != s[sp + 1]); |
| break; |
| default: |
| return -1; |
| } |
| } |
| return s[0]; |
| } |
| |
| /* |
| * evaluate_cond_node evaluates the conditional stored in |
| * a struct cond_node and if the result is different than the |
| * current state of the node it sets the rules in the true/false |
| * list appropriately. If the result of the expression is undefined |
| * all of the rules are disabled for safety. |
| */ |
| int evaluate_cond_node(struct policydb *p, struct cond_node *node) |
| { |
| int new_state; |
| struct cond_av_list* cur; |
| |
| new_state = cond_evaluate_expr(p, node->expr); |
| if (new_state != node->cur_state) { |
| node->cur_state = new_state; |
| if (new_state == -1) |
| printk(KERN_ERR "security: expression result was undefined - disabling all rules.\n"); |
| /* turn the rules on or off */ |
| for (cur = node->true_list; cur != NULL; cur = cur->next) { |
| if (new_state <= 0) { |
| cur->node->datum.specified &= ~AVTAB_ENABLED; |
| } else { |
| cur->node->datum.specified |= AVTAB_ENABLED; |
| } |
| } |
| |
| for (cur = node->false_list; cur != NULL; cur = cur->next) { |
| /* -1 or 1 */ |
| if (new_state) { |
| cur->node->datum.specified &= ~AVTAB_ENABLED; |
| } else { |
| cur->node->datum.specified |= AVTAB_ENABLED; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| int cond_policydb_init(struct policydb *p) |
| { |
| p->bool_val_to_struct = NULL; |
| p->cond_list = NULL; |
| if (avtab_init(&p->te_cond_avtab)) |
| return -1; |
| |
| return 0; |
| } |
| |
| static void cond_av_list_destroy(struct cond_av_list *list) |
| { |
| struct cond_av_list *cur, *next; |
| for (cur = list; cur != NULL; cur = next) { |
| next = cur->next; |
| /* the avtab_ptr_t node is destroy by the avtab */ |
| kfree(cur); |
| } |
| } |
| |
| static void cond_node_destroy(struct cond_node *node) |
| { |
| struct cond_expr *cur_expr, *next_expr; |
| |
| for (cur_expr = node->expr; cur_expr != NULL; cur_expr = next_expr) { |
| next_expr = cur_expr->next; |
| kfree(cur_expr); |
| } |
| cond_av_list_destroy(node->true_list); |
| cond_av_list_destroy(node->false_list); |
| kfree(node); |
| } |
| |
| static void cond_list_destroy(struct cond_node *list) |
| { |
| struct cond_node *next, *cur; |
| |
| if (list == NULL) |
| return; |
| |
| for (cur = list; cur != NULL; cur = next) { |
| next = cur->next; |
| cond_node_destroy(cur); |
| } |
| } |
| |
| void cond_policydb_destroy(struct policydb *p) |
| { |
| if (p->bool_val_to_struct != NULL) |
| kfree(p->bool_val_to_struct); |
| avtab_destroy(&p->te_cond_avtab); |
| cond_list_destroy(p->cond_list); |
| } |
| |
| int cond_init_bool_indexes(struct policydb *p) |
| { |
| if (p->bool_val_to_struct) |
| kfree(p->bool_val_to_struct); |
| p->bool_val_to_struct = (struct cond_bool_datum**) |
| kmalloc(p->p_bools.nprim * sizeof(struct cond_bool_datum*), GFP_KERNEL); |
| if (!p->bool_val_to_struct) |
| return -1; |
| return 0; |
| } |
| |
| int cond_destroy_bool(void *key, void *datum, void *p) |
| { |
| if (key) |
| kfree(key); |
| kfree(datum); |
| return 0; |
| } |
| |
| int cond_index_bool(void *key, void *datum, void *datap) |
| { |
| struct policydb *p; |
| struct cond_bool_datum *booldatum; |
| |
| booldatum = datum; |
| p = datap; |
| |
| if (!booldatum->value || booldatum->value > p->p_bools.nprim) |
| return -EINVAL; |
| |
| p->p_bool_val_to_name[booldatum->value - 1] = key; |
| p->bool_val_to_struct[booldatum->value -1] = booldatum; |
| |
| return 0; |
| } |
| |
| static int bool_isvalid(struct cond_bool_datum *b) |
| { |
| if (!(b->state == 0 || b->state == 1)) |
| return 0; |
| return 1; |
| } |
| |
| int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp) |
| { |
| char *key = NULL; |
| struct cond_bool_datum *booldatum; |
| u32 buf[3], len; |
| int rc; |
| |
| booldatum = kmalloc(sizeof(struct cond_bool_datum), GFP_KERNEL); |
| if (!booldatum) |
| return -1; |
| memset(booldatum, 0, sizeof(struct cond_bool_datum)); |
| |
| rc = next_entry(buf, fp, sizeof buf); |
| if (rc < 0) |
| goto err; |
| |
| booldatum->value = le32_to_cpu(buf[0]); |
| booldatum->state = le32_to_cpu(buf[1]); |
| |
| if (!bool_isvalid(booldatum)) |
| goto err; |
| |
| len = le32_to_cpu(buf[2]); |
| |
| key = kmalloc(len + 1, GFP_KERNEL); |
| if (!key) |
| goto err; |
| rc = next_entry(key, fp, len); |
| if (rc < 0) |
| goto err; |
| key[len] = 0; |
| if (hashtab_insert(h, key, booldatum)) |
| goto err; |
| |
| return 0; |
| err: |
| cond_destroy_bool(key, booldatum, NULL); |
| return -1; |
| } |
| |
| static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, |
| struct cond_av_list *other) |
| { |
| struct cond_av_list *list, *last = NULL, *cur; |
| struct avtab_key key; |
| struct avtab_datum datum; |
| struct avtab_node *node_ptr; |
| int rc; |
| u32 buf[1], i, len; |
| u8 found; |
| |
| *ret_list = NULL; |
| |
| len = 0; |
| rc = next_entry(buf, fp, sizeof buf); |
| if (rc < 0) |
| return -1; |
| |
| len = le32_to_cpu(buf[0]); |
| if (len == 0) { |
| return 0; |
| } |
| |
| for (i = 0; i < len; i++) { |
| if (avtab_read_item(fp, &datum, &key)) |
| goto err; |
| |
| /* |
| * For type rules we have to make certain there aren't any |
| * conflicting rules by searching the te_avtab and the |
| * cond_te_avtab. |
| */ |
| if (datum.specified & AVTAB_TYPE) { |
| if (avtab_search(&p->te_avtab, &key, AVTAB_TYPE)) { |
| printk("security: type rule already exists outside of a conditional."); |
| goto err; |
| } |
| /* |
| * If we are reading the false list other will be a pointer to |
| * the true list. We can have duplicate entries if there is only |
| * 1 other entry and it is in our true list. |
| * |
| * If we are reading the true list (other == NULL) there shouldn't |
| * be any other entries. |
| */ |
| if (other) { |
| node_ptr = avtab_search_node(&p->te_cond_avtab, &key, AVTAB_TYPE); |
| if (node_ptr) { |
| if (avtab_search_node_next(node_ptr, AVTAB_TYPE)) { |
| printk("security: too many conflicting type rules."); |
| goto err; |
| } |
| found = 0; |
| for (cur = other; cur != NULL; cur = cur->next) { |
| if (cur->node == node_ptr) { |
| found = 1; |
| break; |
| } |
| } |
| if (!found) { |
| printk("security: conflicting type rules."); |
| goto err; |
| } |
| } |
| } else { |
| if (avtab_search(&p->te_cond_avtab, &key, AVTAB_TYPE)) { |
| printk("security: conflicting type rules when adding type rule for true."); |
| goto err; |
| } |
| } |
| } |
| node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, &key, &datum); |
| if (!node_ptr) { |
| printk("security: could not insert rule."); |
| goto err; |
| } |
| |
| list = kmalloc(sizeof(struct cond_av_list), GFP_KERNEL); |
| if (!list) |
| goto err; |
| memset(list, 0, sizeof(struct cond_av_list)); |
| |
| list->node = node_ptr; |
| if (i == 0) |
| *ret_list = list; |
| else |
| last->next = list; |
| last = list; |
| |
| } |
| |
| return 0; |
| err: |
| cond_av_list_destroy(*ret_list); |
| *ret_list = NULL; |
| return -1; |
| } |
| |
| static int expr_isvalid(struct policydb *p, struct cond_expr *expr) |
| { |
| if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) { |
| printk("security: conditional expressions uses unknown operator.\n"); |
| return 0; |
| } |
| |
| if (expr->bool > p->p_bools.nprim) { |
| printk("security: conditional expressions uses unknown bool.\n"); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp) |
| { |
| u32 buf[2], len, i; |
| int rc; |
| struct cond_expr *expr = NULL, *last = NULL; |
| |
| rc = next_entry(buf, fp, sizeof(u32)); |
| if (rc < 0) |
| return -1; |
| |
| node->cur_state = le32_to_cpu(buf[0]); |
| |
| len = 0; |
| rc = next_entry(buf, fp, sizeof(u32)); |
| if (rc < 0) |
| return -1; |
| |
| /* expr */ |
| len = le32_to_cpu(buf[0]); |
| |
| for (i = 0; i < len; i++ ) { |
| rc = next_entry(buf, fp, sizeof(u32) * 2); |
| if (rc < 0) |
| goto err; |
| |
| expr = kmalloc(sizeof(struct cond_expr), GFP_KERNEL); |
| if (!expr) { |
| goto err; |
| } |
| memset(expr, 0, sizeof(struct cond_expr)); |
| |
| expr->expr_type = le32_to_cpu(buf[0]); |
| expr->bool = le32_to_cpu(buf[1]); |
| |
| if (!expr_isvalid(p, expr)) { |
| kfree(expr); |
| goto err; |
| } |
| |
| if (i == 0) { |
| node->expr = expr; |
| } else { |
| last->next = expr; |
| } |
| last = expr; |
| } |
| |
| if (cond_read_av_list(p, fp, &node->true_list, NULL) != 0) |
| goto err; |
| if (cond_read_av_list(p, fp, &node->false_list, node->true_list) != 0) |
| goto err; |
| return 0; |
| err: |
| cond_node_destroy(node); |
| return -1; |
| } |
| |
| int cond_read_list(struct policydb *p, void *fp) |
| { |
| struct cond_node *node, *last = NULL; |
| u32 buf[1], i, len; |
| int rc; |
| |
| rc = next_entry(buf, fp, sizeof buf); |
| if (rc < 0) |
| return -1; |
| |
| len = le32_to_cpu(buf[0]); |
| |
| for (i = 0; i < len; i++) { |
| node = kmalloc(sizeof(struct cond_node), GFP_KERNEL); |
| if (!node) |
| goto err; |
| memset(node, 0, sizeof(struct cond_node)); |
| |
| if (cond_read_node(p, node, fp) != 0) |
| goto err; |
| |
| if (i == 0) { |
| p->cond_list = node; |
| } else { |
| last->next = node; |
| } |
| last = node; |
| } |
| return 0; |
| err: |
| cond_list_destroy(p->cond_list); |
| return -1; |
| } |
| |
| /* Determine whether additional permissions are granted by the conditional |
| * av table, and if so, add them to the result |
| */ |
| void cond_compute_av(struct avtab *ctab, struct avtab_key *key, struct av_decision *avd) |
| { |
| struct avtab_node *node; |
| |
| if(!ctab || !key || !avd) |
| return; |
| |
| for(node = avtab_search_node(ctab, key, AVTAB_AV); node != NULL; |
| node = avtab_search_node_next(node, AVTAB_AV)) { |
| if ( (__u32) (AVTAB_ALLOWED|AVTAB_ENABLED) == |
| (node->datum.specified & (AVTAB_ALLOWED|AVTAB_ENABLED))) |
| avd->allowed |= avtab_allowed(&node->datum); |
| if ( (__u32) (AVTAB_AUDITDENY|AVTAB_ENABLED) == |
| (node->datum.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED))) |
| /* Since a '0' in an auditdeny mask represents a |
| * permission we do NOT want to audit (dontaudit), we use |
| * the '&' operand to ensure that all '0's in the mask |
| * are retained (much unlike the allow and auditallow cases). |
| */ |
| avd->auditdeny &= avtab_auditdeny(&node->datum); |
| if ( (__u32) (AVTAB_AUDITALLOW|AVTAB_ENABLED) == |
| (node->datum.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED))) |
| avd->auditallow |= avtab_auditallow(&node->datum); |
| } |
| return; |
| } |