| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| * |
| * Further, this software is distributed without any warranty that it is |
| * free of the rightful claim of any third person regarding infringement |
| * or the like. Any license provided herein, whether implied or |
| * otherwise, applies only to this software file. Patent licenses, if |
| * any, provided herein do not apply to combinations of this program with |
| * other software, or any other product whatsoever. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write the Free Software Foundation, Inc., 59 |
| * Temple Place - Suite 330, Boston MA 02111-1307, USA. |
| * |
| * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, |
| * Mountain View, CA 94043, or: |
| * |
| * http://www.sgi.com |
| * |
| * For further information regarding this notice, see: |
| * |
| * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ |
| */ |
| |
| #include "xfs.h" |
| |
| #include "xfs_macros.h" |
| #include "xfs_types.h" |
| #include "xfs_inum.h" |
| #include "xfs_log.h" |
| #include "xfs_trans.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_dir.h" |
| #include "xfs_dir2.h" |
| #include "xfs_dmapi.h" |
| #include "xfs_mount.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_btree.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_attr_sf.h" |
| #include "xfs_dir_sf.h" |
| #include "xfs_dir2_sf.h" |
| #include "xfs_dinode.h" |
| #include "xfs_inode.h" |
| #include "xfs_quota.h" |
| #include "xfs_utils.h" |
| #include "xfs_bit.h" |
| |
| /* |
| * Initialize the inode hash table for the newly mounted file system. |
| * Choose an initial table size based on user specified value, else |
| * use a simple algorithm using the maximum number of inodes as an |
| * indicator for table size, and clamp it between one and some large |
| * number of pages. |
| */ |
| void |
| xfs_ihash_init(xfs_mount_t *mp) |
| { |
| __uint64_t icount; |
| uint i, flags = KM_SLEEP | KM_MAYFAIL; |
| |
| if (!mp->m_ihsize) { |
| icount = mp->m_maxicount ? mp->m_maxicount : |
| (mp->m_sb.sb_dblocks << mp->m_sb.sb_inopblog); |
| mp->m_ihsize = 1 << max_t(uint, 8, |
| (xfs_highbit64(icount) + 1) / 2); |
| mp->m_ihsize = min_t(uint, mp->m_ihsize, |
| (64 * NBPP) / sizeof(xfs_ihash_t)); |
| } |
| |
| while (!(mp->m_ihash = (xfs_ihash_t *)kmem_zalloc(mp->m_ihsize * |
| sizeof(xfs_ihash_t), flags))) { |
| if ((mp->m_ihsize >>= 1) <= NBPP) |
| flags = KM_SLEEP; |
| } |
| for (i = 0; i < mp->m_ihsize; i++) { |
| rwlock_init(&(mp->m_ihash[i].ih_lock)); |
| } |
| } |
| |
| /* |
| * Free up structures allocated by xfs_ihash_init, at unmount time. |
| */ |
| void |
| xfs_ihash_free(xfs_mount_t *mp) |
| { |
| kmem_free(mp->m_ihash, mp->m_ihsize*sizeof(xfs_ihash_t)); |
| mp->m_ihash = NULL; |
| } |
| |
| /* |
| * Initialize the inode cluster hash table for the newly mounted file system. |
| * Its size is derived from the ihash table size. |
| */ |
| void |
| xfs_chash_init(xfs_mount_t *mp) |
| { |
| uint i; |
| |
| mp->m_chsize = max_t(uint, 1, mp->m_ihsize / |
| (XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)); |
| mp->m_chsize = min_t(uint, mp->m_chsize, mp->m_ihsize); |
| mp->m_chash = (xfs_chash_t *)kmem_zalloc(mp->m_chsize |
| * sizeof(xfs_chash_t), |
| KM_SLEEP); |
| for (i = 0; i < mp->m_chsize; i++) { |
| spinlock_init(&mp->m_chash[i].ch_lock,"xfshash"); |
| } |
| } |
| |
| /* |
| * Free up structures allocated by xfs_chash_init, at unmount time. |
| */ |
| void |
| xfs_chash_free(xfs_mount_t *mp) |
| { |
| int i; |
| |
| for (i = 0; i < mp->m_chsize; i++) { |
| spinlock_destroy(&mp->m_chash[i].ch_lock); |
| } |
| |
| kmem_free(mp->m_chash, mp->m_chsize*sizeof(xfs_chash_t)); |
| mp->m_chash = NULL; |
| } |
| |
| /* |
| * Look up an inode by number in the given file system. |
| * The inode is looked up in the hash table for the file system |
| * represented by the mount point parameter mp. Each bucket of |
| * the hash table is guarded by an individual semaphore. |
| * |
| * If the inode is found in the hash table, its corresponding vnode |
| * is obtained with a call to vn_get(). This call takes care of |
| * coordination with the reclamation of the inode and vnode. Note |
| * that the vmap structure is filled in while holding the hash lock. |
| * This gives us the state of the inode/vnode when we found it and |
| * is used for coordination in vn_get(). |
| * |
| * If it is not in core, read it in from the file system's device and |
| * add the inode into the hash table. |
| * |
| * The inode is locked according to the value of the lock_flags parameter. |
| * This flag parameter indicates how and if the inode's IO lock and inode lock |
| * should be taken. |
| * |
| * mp -- the mount point structure for the current file system. It points |
| * to the inode hash table. |
| * tp -- a pointer to the current transaction if there is one. This is |
| * simply passed through to the xfs_iread() call. |
| * ino -- the number of the inode desired. This is the unique identifier |
| * within the file system for the inode being requested. |
| * lock_flags -- flags indicating how to lock the inode. See the comment |
| * for xfs_ilock() for a list of valid values. |
| * bno -- the block number starting the buffer containing the inode, |
| * if known (as by bulkstat), else 0. |
| */ |
| STATIC int |
| xfs_iget_core( |
| vnode_t *vp, |
| xfs_mount_t *mp, |
| xfs_trans_t *tp, |
| xfs_ino_t ino, |
| uint flags, |
| uint lock_flags, |
| xfs_inode_t **ipp, |
| xfs_daddr_t bno) |
| { |
| xfs_ihash_t *ih; |
| xfs_inode_t *ip; |
| xfs_inode_t *iq; |
| vnode_t *inode_vp; |
| ulong version; |
| int error; |
| /* REFERENCED */ |
| xfs_chash_t *ch; |
| xfs_chashlist_t *chl, *chlnew; |
| SPLDECL(s); |
| |
| |
| ih = XFS_IHASH(mp, ino); |
| |
| again: |
| read_lock(&ih->ih_lock); |
| |
| for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { |
| if (ip->i_ino == ino) { |
| /* |
| * If INEW is set this inode is being set up |
| * we need to pause and try again. |
| */ |
| if (ip->i_flags & XFS_INEW) { |
| read_unlock(&ih->ih_lock); |
| delay(1); |
| XFS_STATS_INC(xs_ig_frecycle); |
| |
| goto again; |
| } |
| |
| inode_vp = XFS_ITOV_NULL(ip); |
| if (inode_vp == NULL) { |
| /* |
| * If IRECLAIM is set this inode is |
| * on its way out of the system, |
| * we need to pause and try again. |
| */ |
| if (ip->i_flags & XFS_IRECLAIM) { |
| read_unlock(&ih->ih_lock); |
| delay(1); |
| XFS_STATS_INC(xs_ig_frecycle); |
| |
| goto again; |
| } |
| |
| vn_trace_exit(vp, "xfs_iget.alloc", |
| (inst_t *)__return_address); |
| |
| XFS_STATS_INC(xs_ig_found); |
| |
| ip->i_flags &= ~XFS_IRECLAIMABLE; |
| read_unlock(&ih->ih_lock); |
| |
| XFS_MOUNT_ILOCK(mp); |
| list_del_init(&ip->i_reclaim); |
| XFS_MOUNT_IUNLOCK(mp); |
| |
| goto finish_inode; |
| |
| } else if (vp != inode_vp) { |
| struct inode *inode = LINVFS_GET_IP(inode_vp); |
| |
| /* The inode is being torn down, pause and |
| * try again. |
| */ |
| if (inode->i_state & (I_FREEING | I_CLEAR)) { |
| read_unlock(&ih->ih_lock); |
| delay(1); |
| XFS_STATS_INC(xs_ig_frecycle); |
| |
| goto again; |
| } |
| /* Chances are the other vnode (the one in the inode) is being torn |
| * down right now, and we landed on top of it. Question is, what do |
| * we do? Unhook the old inode and hook up the new one? |
| */ |
| cmn_err(CE_PANIC, |
| "xfs_iget_core: ambiguous vns: vp/0x%p, invp/0x%p", |
| inode_vp, vp); |
| } |
| |
| read_unlock(&ih->ih_lock); |
| |
| XFS_STATS_INC(xs_ig_found); |
| |
| finish_inode: |
| if (ip->i_d.di_mode == 0) { |
| if (!(flags & IGET_CREATE)) |
| return ENOENT; |
| xfs_iocore_inode_reinit(ip); |
| } |
| |
| if (lock_flags != 0) |
| xfs_ilock(ip, lock_flags); |
| |
| ip->i_flags &= ~XFS_ISTALE; |
| |
| vn_trace_exit(vp, "xfs_iget.found", |
| (inst_t *)__return_address); |
| goto return_ip; |
| } |
| } |
| |
| /* |
| * Inode cache miss: save the hash chain version stamp and unlock |
| * the chain, so we don't deadlock in vn_alloc. |
| */ |
| XFS_STATS_INC(xs_ig_missed); |
| |
| version = ih->ih_version; |
| |
| read_unlock(&ih->ih_lock); |
| |
| /* |
| * Read the disk inode attributes into a new inode structure and get |
| * a new vnode for it. This should also initialize i_ino and i_mount. |
| */ |
| error = xfs_iread(mp, tp, ino, &ip, bno); |
| if (error) { |
| return error; |
| } |
| |
| vn_trace_exit(vp, "xfs_iget.alloc", (inst_t *)__return_address); |
| |
| xfs_inode_lock_init(ip, vp); |
| xfs_iocore_inode_init(ip); |
| |
| if (lock_flags != 0) { |
| xfs_ilock(ip, lock_flags); |
| } |
| |
| if ((ip->i_d.di_mode == 0) && !(flags & IGET_CREATE)) { |
| xfs_idestroy(ip); |
| return ENOENT; |
| } |
| |
| /* |
| * Put ip on its hash chain, unless someone else hashed a duplicate |
| * after we released the hash lock. |
| */ |
| write_lock(&ih->ih_lock); |
| |
| if (ih->ih_version != version) { |
| for (iq = ih->ih_next; iq != NULL; iq = iq->i_next) { |
| if (iq->i_ino == ino) { |
| write_unlock(&ih->ih_lock); |
| xfs_idestroy(ip); |
| |
| XFS_STATS_INC(xs_ig_dup); |
| goto again; |
| } |
| } |
| } |
| |
| /* |
| * These values _must_ be set before releasing ihlock! |
| */ |
| ip->i_hash = ih; |
| if ((iq = ih->ih_next)) { |
| iq->i_prevp = &ip->i_next; |
| } |
| ip->i_next = iq; |
| ip->i_prevp = &ih->ih_next; |
| ih->ih_next = ip; |
| ip->i_udquot = ip->i_gdquot = NULL; |
| ih->ih_version++; |
| ip->i_flags |= XFS_INEW; |
| |
| write_unlock(&ih->ih_lock); |
| |
| /* |
| * put ip on its cluster's hash chain |
| */ |
| ASSERT(ip->i_chash == NULL && ip->i_cprev == NULL && |
| ip->i_cnext == NULL); |
| |
| chlnew = NULL; |
| ch = XFS_CHASH(mp, ip->i_blkno); |
| chlredo: |
| s = mutex_spinlock(&ch->ch_lock); |
| for (chl = ch->ch_list; chl != NULL; chl = chl->chl_next) { |
| if (chl->chl_blkno == ip->i_blkno) { |
| |
| /* insert this inode into the doubly-linked list |
| * where chl points */ |
| if ((iq = chl->chl_ip)) { |
| ip->i_cprev = iq->i_cprev; |
| iq->i_cprev->i_cnext = ip; |
| iq->i_cprev = ip; |
| ip->i_cnext = iq; |
| } else { |
| ip->i_cnext = ip; |
| ip->i_cprev = ip; |
| } |
| chl->chl_ip = ip; |
| ip->i_chash = chl; |
| break; |
| } |
| } |
| |
| /* no hash list found for this block; add a new hash list */ |
| if (chl == NULL) { |
| if (chlnew == NULL) { |
| mutex_spinunlock(&ch->ch_lock, s); |
| ASSERT(xfs_chashlist_zone != NULL); |
| chlnew = (xfs_chashlist_t *) |
| kmem_zone_alloc(xfs_chashlist_zone, |
| KM_SLEEP); |
| ASSERT(chlnew != NULL); |
| goto chlredo; |
| } else { |
| ip->i_cnext = ip; |
| ip->i_cprev = ip; |
| ip->i_chash = chlnew; |
| chlnew->chl_ip = ip; |
| chlnew->chl_blkno = ip->i_blkno; |
| chlnew->chl_next = ch->ch_list; |
| ch->ch_list = chlnew; |
| chlnew = NULL; |
| } |
| } else { |
| if (chlnew != NULL) { |
| kmem_zone_free(xfs_chashlist_zone, chlnew); |
| } |
| } |
| |
| mutex_spinunlock(&ch->ch_lock, s); |
| |
| |
| /* |
| * Link ip to its mount and thread it on the mount's inode list. |
| */ |
| XFS_MOUNT_ILOCK(mp); |
| if ((iq = mp->m_inodes)) { |
| ASSERT(iq->i_mprev->i_mnext == iq); |
| ip->i_mprev = iq->i_mprev; |
| iq->i_mprev->i_mnext = ip; |
| iq->i_mprev = ip; |
| ip->i_mnext = iq; |
| } else { |
| ip->i_mnext = ip; |
| ip->i_mprev = ip; |
| } |
| mp->m_inodes = ip; |
| |
| XFS_MOUNT_IUNLOCK(mp); |
| |
| return_ip: |
| ASSERT(ip->i_df.if_ext_max == |
| XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t)); |
| |
| ASSERT(((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) != 0) == |
| ((ip->i_iocore.io_flags & XFS_IOCORE_RT) != 0)); |
| |
| *ipp = ip; |
| |
| /* |
| * If we have a real type for an on-disk inode, we can set ops(&unlock) |
| * now. If it's a new inode being created, xfs_ialloc will handle it. |
| */ |
| VFS_INIT_VNODE(XFS_MTOVFS(mp), vp, XFS_ITOBHV(ip), 1); |
| |
| return 0; |
| } |
| |
| |
| /* |
| * The 'normal' internal xfs_iget, if needed it will |
| * 'allocate', or 'get', the vnode. |
| */ |
| int |
| xfs_iget( |
| xfs_mount_t *mp, |
| xfs_trans_t *tp, |
| xfs_ino_t ino, |
| uint flags, |
| uint lock_flags, |
| xfs_inode_t **ipp, |
| xfs_daddr_t bno) |
| { |
| struct inode *inode; |
| vnode_t *vp = NULL; |
| int error; |
| |
| retry: |
| XFS_STATS_INC(xs_ig_attempts); |
| |
| if ((inode = iget_locked(XFS_MTOVFS(mp)->vfs_super, ino))) { |
| bhv_desc_t *bdp; |
| xfs_inode_t *ip; |
| int newnode; |
| |
| vp = LINVFS_GET_VP(inode); |
| if (inode->i_state & I_NEW) { |
| inode_allocate: |
| vn_initialize(inode); |
| error = xfs_iget_core(vp, mp, tp, ino, flags, |
| lock_flags, ipp, bno); |
| if (error) { |
| vn_mark_bad(vp); |
| if (inode->i_state & I_NEW) |
| unlock_new_inode(inode); |
| iput(inode); |
| } |
| } else { |
| /* These are true if the inode is in inactive or |
| * reclaim. The linux inode is about to go away, |
| * wait for that path to finish, and try again. |
| */ |
| if (vp->v_flag & (VINACT | VRECLM)) { |
| vn_wait(vp); |
| iput(inode); |
| goto retry; |
| } |
| |
| if (is_bad_inode(inode)) { |
| iput(inode); |
| return EIO; |
| } |
| |
| bdp = vn_bhv_lookup(VN_BHV_HEAD(vp), &xfs_vnodeops); |
| if (bdp == NULL) { |
| XFS_STATS_INC(xs_ig_dup); |
| goto inode_allocate; |
| } |
| ip = XFS_BHVTOI(bdp); |
| if (lock_flags != 0) |
| xfs_ilock(ip, lock_flags); |
| newnode = (ip->i_d.di_mode == 0); |
| if (newnode) |
| xfs_iocore_inode_reinit(ip); |
| XFS_STATS_INC(xs_ig_found); |
| *ipp = ip; |
| error = 0; |
| } |
| } else |
| error = ENOMEM; /* If we got no inode we are out of memory */ |
| |
| return error; |
| } |
| |
| /* |
| * Do the setup for the various locks within the incore inode. |
| */ |
| void |
| xfs_inode_lock_init( |
| xfs_inode_t *ip, |
| vnode_t *vp) |
| { |
| mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, |
| "xfsino", (long)vp->v_number); |
| mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", vp->v_number); |
| init_waitqueue_head(&ip->i_ipin_wait); |
| atomic_set(&ip->i_pincount, 0); |
| init_sema(&ip->i_flock, 1, "xfsfino", vp->v_number); |
| } |
| |
| /* |
| * Look for the inode corresponding to the given ino in the hash table. |
| * If it is there and its i_transp pointer matches tp, return it. |
| * Otherwise, return NULL. |
| */ |
| xfs_inode_t * |
| xfs_inode_incore(xfs_mount_t *mp, |
| xfs_ino_t ino, |
| xfs_trans_t *tp) |
| { |
| xfs_ihash_t *ih; |
| xfs_inode_t *ip; |
| |
| ih = XFS_IHASH(mp, ino); |
| read_lock(&ih->ih_lock); |
| for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { |
| if (ip->i_ino == ino) { |
| /* |
| * If we find it and tp matches, return it. |
| * Otherwise break from the loop and return |
| * NULL. |
| */ |
| if (ip->i_transp == tp) { |
| read_unlock(&ih->ih_lock); |
| return (ip); |
| } |
| break; |
| } |
| } |
| read_unlock(&ih->ih_lock); |
| return (NULL); |
| } |
| |
| /* |
| * Decrement reference count of an inode structure and unlock it. |
| * |
| * ip -- the inode being released |
| * lock_flags -- this parameter indicates the inode's locks to be |
| * to be released. See the comment on xfs_iunlock() for a list |
| * of valid values. |
| */ |
| void |
| xfs_iput(xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| vnode_t *vp = XFS_ITOV(ip); |
| |
| vn_trace_entry(vp, "xfs_iput", (inst_t *)__return_address); |
| |
| xfs_iunlock(ip, lock_flags); |
| |
| VN_RELE(vp); |
| } |
| |
| /* |
| * Special iput for brand-new inodes that are still locked |
| */ |
| void |
| xfs_iput_new(xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| vnode_t *vp = XFS_ITOV(ip); |
| struct inode *inode = LINVFS_GET_IP(vp); |
| |
| vn_trace_entry(vp, "xfs_iput_new", (inst_t *)__return_address); |
| |
| if ((ip->i_d.di_mode == 0)) { |
| ASSERT(!(ip->i_flags & XFS_IRECLAIMABLE)); |
| vn_mark_bad(vp); |
| } |
| if (inode->i_state & I_NEW) |
| unlock_new_inode(inode); |
| if (lock_flags) |
| xfs_iunlock(ip, lock_flags); |
| VN_RELE(vp); |
| } |
| |
| |
| /* |
| * This routine embodies the part of the reclaim code that pulls |
| * the inode from the inode hash table and the mount structure's |
| * inode list. |
| * This should only be called from xfs_reclaim(). |
| */ |
| void |
| xfs_ireclaim(xfs_inode_t *ip) |
| { |
| vnode_t *vp; |
| |
| /* |
| * Remove from old hash list and mount list. |
| */ |
| XFS_STATS_INC(xs_ig_reclaims); |
| |
| xfs_iextract(ip); |
| |
| /* |
| * Here we do a spurious inode lock in order to coordinate with |
| * xfs_sync(). This is because xfs_sync() references the inodes |
| * in the mount list without taking references on the corresponding |
| * vnodes. We make that OK here by ensuring that we wait until |
| * the inode is unlocked in xfs_sync() before we go ahead and |
| * free it. We get both the regular lock and the io lock because |
| * the xfs_sync() code may need to drop the regular one but will |
| * still hold the io lock. |
| */ |
| xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); |
| |
| /* |
| * Release dquots (and their references) if any. An inode may escape |
| * xfs_inactive and get here via vn_alloc->vn_reclaim path. |
| */ |
| XFS_QM_DQDETACH(ip->i_mount, ip); |
| |
| /* |
| * Pull our behavior descriptor from the vnode chain. |
| */ |
| vp = XFS_ITOV_NULL(ip); |
| if (vp) { |
| vn_bhv_remove(VN_BHV_HEAD(vp), XFS_ITOBHV(ip)); |
| } |
| |
| /* |
| * Free all memory associated with the inode. |
| */ |
| xfs_idestroy(ip); |
| } |
| |
| /* |
| * This routine removes an about-to-be-destroyed inode from |
| * all of the lists in which it is located with the exception |
| * of the behavior chain. |
| */ |
| void |
| xfs_iextract( |
| xfs_inode_t *ip) |
| { |
| xfs_ihash_t *ih; |
| xfs_inode_t *iq; |
| xfs_mount_t *mp; |
| xfs_chash_t *ch; |
| xfs_chashlist_t *chl, *chm; |
| SPLDECL(s); |
| |
| ih = ip->i_hash; |
| write_lock(&ih->ih_lock); |
| if ((iq = ip->i_next)) { |
| iq->i_prevp = ip->i_prevp; |
| } |
| *ip->i_prevp = iq; |
| write_unlock(&ih->ih_lock); |
| |
| /* |
| * Remove from cluster hash list |
| * 1) delete the chashlist if this is the last inode on the chashlist |
| * 2) unchain from list of inodes |
| * 3) point chashlist->chl_ip to 'chl_next' if to this inode. |
| */ |
| mp = ip->i_mount; |
| ch = XFS_CHASH(mp, ip->i_blkno); |
| s = mutex_spinlock(&ch->ch_lock); |
| |
| if (ip->i_cnext == ip) { |
| /* Last inode on chashlist */ |
| ASSERT(ip->i_cnext == ip && ip->i_cprev == ip); |
| ASSERT(ip->i_chash != NULL); |
| chm=NULL; |
| for (chl = ch->ch_list; chl != NULL; chl = chl->chl_next) { |
| if (chl->chl_blkno == ip->i_blkno) { |
| if (chm == NULL) { |
| /* first item on the list */ |
| ch->ch_list = chl->chl_next; |
| } else { |
| chm->chl_next = chl->chl_next; |
| } |
| kmem_zone_free(xfs_chashlist_zone, chl); |
| break; |
| } else { |
| ASSERT(chl->chl_ip != ip); |
| chm = chl; |
| } |
| } |
| ASSERT_ALWAYS(chl != NULL); |
| } else { |
| /* delete one inode from a non-empty list */ |
| iq = ip->i_cnext; |
| iq->i_cprev = ip->i_cprev; |
| ip->i_cprev->i_cnext = iq; |
| if (ip->i_chash->chl_ip == ip) { |
| ip->i_chash->chl_ip = iq; |
| } |
| ip->i_chash = __return_address; |
| ip->i_cprev = __return_address; |
| ip->i_cnext = __return_address; |
| } |
| mutex_spinunlock(&ch->ch_lock, s); |
| |
| /* |
| * Remove from mount's inode list. |
| */ |
| XFS_MOUNT_ILOCK(mp); |
| ASSERT((ip->i_mnext != NULL) && (ip->i_mprev != NULL)); |
| iq = ip->i_mnext; |
| iq->i_mprev = ip->i_mprev; |
| ip->i_mprev->i_mnext = iq; |
| |
| /* |
| * Fix up the head pointer if it points to the inode being deleted. |
| */ |
| if (mp->m_inodes == ip) { |
| if (ip == iq) { |
| mp->m_inodes = NULL; |
| } else { |
| mp->m_inodes = iq; |
| } |
| } |
| |
| /* Deal with the deleted inodes list */ |
| list_del_init(&ip->i_reclaim); |
| |
| mp->m_ireclaims++; |
| XFS_MOUNT_IUNLOCK(mp); |
| } |
| |
| /* |
| * This is a wrapper routine around the xfs_ilock() routine |
| * used to centralize some grungy code. It is used in places |
| * that wish to lock the inode solely for reading the extents. |
| * The reason these places can't just call xfs_ilock(SHARED) |
| * is that the inode lock also guards to bringing in of the |
| * extents from disk for a file in b-tree format. If the inode |
| * is in b-tree format, then we need to lock the inode exclusively |
| * until the extents are read in. Locking it exclusively all |
| * the time would limit our parallelism unnecessarily, though. |
| * What we do instead is check to see if the extents have been |
| * read in yet, and only lock the inode exclusively if they |
| * have not. |
| * |
| * The function returns a value which should be given to the |
| * corresponding xfs_iunlock_map_shared(). This value is |
| * the mode in which the lock was actually taken. |
| */ |
| uint |
| xfs_ilock_map_shared( |
| xfs_inode_t *ip) |
| { |
| uint lock_mode; |
| |
| if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) && |
| ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) { |
| lock_mode = XFS_ILOCK_EXCL; |
| } else { |
| lock_mode = XFS_ILOCK_SHARED; |
| } |
| |
| xfs_ilock(ip, lock_mode); |
| |
| return lock_mode; |
| } |
| |
| /* |
| * This is simply the unlock routine to go with xfs_ilock_map_shared(). |
| * All it does is call xfs_iunlock() with the given lock_mode. |
| */ |
| void |
| xfs_iunlock_map_shared( |
| xfs_inode_t *ip, |
| unsigned int lock_mode) |
| { |
| xfs_iunlock(ip, lock_mode); |
| } |
| |
| /* |
| * The xfs inode contains 2 locks: a multi-reader lock called the |
| * i_iolock and a multi-reader lock called the i_lock. This routine |
| * allows either or both of the locks to be obtained. |
| * |
| * The 2 locks should always be ordered so that the IO lock is |
| * obtained first in order to prevent deadlock. |
| * |
| * ip -- the inode being locked |
| * lock_flags -- this parameter indicates the inode's locks |
| * to be locked. It can be: |
| * XFS_IOLOCK_SHARED, |
| * XFS_IOLOCK_EXCL, |
| * XFS_ILOCK_SHARED, |
| * XFS_ILOCK_EXCL, |
| * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED, |
| * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL, |
| * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED, |
| * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
| */ |
| void |
| xfs_ilock(xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| /* |
| * You can't set both SHARED and EXCL for the same lock, |
| * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, |
| * and XFS_ILOCK_EXCL are valid values to set in lock_flags. |
| */ |
| ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != |
| (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); |
| ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
| (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); |
| ASSERT((lock_flags & ~XFS_LOCK_MASK) == 0); |
| |
| if (lock_flags & XFS_IOLOCK_EXCL) { |
| mrupdate(&ip->i_iolock); |
| } else if (lock_flags & XFS_IOLOCK_SHARED) { |
| mraccess(&ip->i_iolock); |
| } |
| if (lock_flags & XFS_ILOCK_EXCL) { |
| mrupdate(&ip->i_lock); |
| } else if (lock_flags & XFS_ILOCK_SHARED) { |
| mraccess(&ip->i_lock); |
| } |
| xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address); |
| } |
| |
| /* |
| * This is just like xfs_ilock(), except that the caller |
| * is guaranteed not to sleep. It returns 1 if it gets |
| * the requested locks and 0 otherwise. If the IO lock is |
| * obtained but the inode lock cannot be, then the IO lock |
| * is dropped before returning. |
| * |
| * ip -- the inode being locked |
| * lock_flags -- this parameter indicates the inode's locks to be |
| * to be locked. See the comment for xfs_ilock() for a list |
| * of valid values. |
| * |
| */ |
| int |
| xfs_ilock_nowait(xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| int iolocked; |
| int ilocked; |
| |
| /* |
| * You can't set both SHARED and EXCL for the same lock, |
| * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, |
| * and XFS_ILOCK_EXCL are valid values to set in lock_flags. |
| */ |
| ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != |
| (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); |
| ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
| (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); |
| ASSERT((lock_flags & ~XFS_LOCK_MASK) == 0); |
| |
| iolocked = 0; |
| if (lock_flags & XFS_IOLOCK_EXCL) { |
| iolocked = mrtryupdate(&ip->i_iolock); |
| if (!iolocked) { |
| return 0; |
| } |
| } else if (lock_flags & XFS_IOLOCK_SHARED) { |
| iolocked = mrtryaccess(&ip->i_iolock); |
| if (!iolocked) { |
| return 0; |
| } |
| } |
| if (lock_flags & XFS_ILOCK_EXCL) { |
| ilocked = mrtryupdate(&ip->i_lock); |
| if (!ilocked) { |
| if (iolocked) { |
| mrunlock(&ip->i_iolock); |
| } |
| return 0; |
| } |
| } else if (lock_flags & XFS_ILOCK_SHARED) { |
| ilocked = mrtryaccess(&ip->i_lock); |
| if (!ilocked) { |
| if (iolocked) { |
| mrunlock(&ip->i_iolock); |
| } |
| return 0; |
| } |
| } |
| xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address); |
| return 1; |
| } |
| |
| /* |
| * xfs_iunlock() is used to drop the inode locks acquired with |
| * xfs_ilock() and xfs_ilock_nowait(). The caller must pass |
| * in the flags given to xfs_ilock() or xfs_ilock_nowait() so |
| * that we know which locks to drop. |
| * |
| * ip -- the inode being unlocked |
| * lock_flags -- this parameter indicates the inode's locks to be |
| * to be unlocked. See the comment for xfs_ilock() for a list |
| * of valid values for this parameter. |
| * |
| */ |
| void |
| xfs_iunlock(xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| /* |
| * You can't set both SHARED and EXCL for the same lock, |
| * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, |
| * and XFS_ILOCK_EXCL are valid values to set in lock_flags. |
| */ |
| ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != |
| (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); |
| ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
| (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); |
| ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY)) == 0); |
| ASSERT(lock_flags != 0); |
| |
| if (lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) { |
| ASSERT(!(lock_flags & XFS_IOLOCK_SHARED) || |
| (ismrlocked(&ip->i_iolock, MR_ACCESS))); |
| ASSERT(!(lock_flags & XFS_IOLOCK_EXCL) || |
| (ismrlocked(&ip->i_iolock, MR_UPDATE))); |
| mrunlock(&ip->i_iolock); |
| } |
| |
| if (lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) { |
| ASSERT(!(lock_flags & XFS_ILOCK_SHARED) || |
| (ismrlocked(&ip->i_lock, MR_ACCESS))); |
| ASSERT(!(lock_flags & XFS_ILOCK_EXCL) || |
| (ismrlocked(&ip->i_lock, MR_UPDATE))); |
| mrunlock(&ip->i_lock); |
| |
| /* |
| * Let the AIL know that this item has been unlocked in case |
| * it is in the AIL and anyone is waiting on it. Don't do |
| * this if the caller has asked us not to. |
| */ |
| if (!(lock_flags & XFS_IUNLOCK_NONOTIFY) && |
| ip->i_itemp != NULL) { |
| xfs_trans_unlocked_item(ip->i_mount, |
| (xfs_log_item_t*)(ip->i_itemp)); |
| } |
| } |
| xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address); |
| } |
| |
| /* |
| * give up write locks. the i/o lock cannot be held nested |
| * if it is being demoted. |
| */ |
| void |
| xfs_ilock_demote(xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)); |
| ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); |
| |
| if (lock_flags & XFS_ILOCK_EXCL) { |
| ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); |
| mrdemote(&ip->i_lock); |
| } |
| if (lock_flags & XFS_IOLOCK_EXCL) { |
| ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE)); |
| mrdemote(&ip->i_iolock); |
| } |
| } |
| |
| /* |
| * The following three routines simply manage the i_flock |
| * semaphore embedded in the inode. This semaphore synchronizes |
| * processes attempting to flush the in-core inode back to disk. |
| */ |
| void |
| xfs_iflock(xfs_inode_t *ip) |
| { |
| psema(&(ip->i_flock), PINOD|PLTWAIT); |
| } |
| |
| int |
| xfs_iflock_nowait(xfs_inode_t *ip) |
| { |
| return (cpsema(&(ip->i_flock))); |
| } |
| |
| void |
| xfs_ifunlock(xfs_inode_t *ip) |
| { |
| ASSERT(valusema(&(ip->i_flock)) <= 0); |
| vsema(&(ip->i_flock)); |
| } |