| /* |
| * skystar2.c - driver for the Technisat SkyStar2 PCI DVB card |
| * based on the FlexCopII by B2C2,Inc. |
| * |
| * Copyright (C) 2003 Vadim Catana, skystar@moldova.cc |
| * |
| * FIX: DISEQC Tone Burst in flexcop_diseqc_ioctl() |
| * FIX: FULL soft DiSEqC for skystar2 (FlexCopII rev 130) VP310 equipped |
| * Vincenzo Di Massa, hawk.it at tiscalinet.it |
| * |
| * Converted to Linux coding style |
| * Misc reorganization, polishing, restyling |
| * Roberto Ragusa, skystar2-c5b8 at robertoragusa dot it |
| * |
| * Added hardware filtering support, |
| * Niklas Peinecke, peinecke at gdv.uni-hannover.de |
| * |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public License |
| * as published by the Free Software Foundation; either version 2.1 |
| * of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/delay.h> |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/version.h> |
| |
| #include <asm/io.h> |
| |
| #include "dvb_frontend.h" |
| |
| #include <linux/dvb/frontend.h> |
| #include <linux/dvb/dmx.h> |
| #include "dvb_demux.h" |
| #include "dmxdev.h" |
| #include "dvb_filter.h" |
| #include "dvbdev.h" |
| #include "demux.h" |
| #include "dvb_net.h" |
| #include "stv0299.h" |
| #include "mt352.h" |
| #include "mt312.h" |
| #include "nxt2002.h" |
| |
| static int debug; |
| static int enable_hw_filters = 2; |
| |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "Set debugging level (0 = default, 1 = most messages, 2 = all messages)."); |
| module_param(enable_hw_filters, int, 0444); |
| MODULE_PARM_DESC(enable_hw_filters, "enable hardware filters: supported values: 0 (none), 1, 2"); |
| |
| #define dprintk(x...) do { if (debug>=1) printk(x); } while (0) |
| #define ddprintk(x...) do { if (debug>=2) printk(x); } while (0) |
| |
| #define SIZE_OF_BUF_DMA1 0x3ac00 |
| #define SIZE_OF_BUF_DMA2 0x758 |
| |
| #define MAX_N_HW_FILTERS (6+32) |
| #define N_PID_SLOTS 256 |
| |
| struct dmaq { |
| u32 bus_addr; |
| u32 head; |
| u32 tail; |
| u32 buffer_size; |
| u8 *buffer; |
| }; |
| |
| #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,9) |
| #define __iomem |
| #endif |
| |
| struct adapter { |
| struct pci_dev *pdev; |
| |
| u8 card_revision; |
| u32 b2c2_revision; |
| u32 pid_filter_max; |
| u32 mac_filter_max; |
| u32 irq; |
| void __iomem *io_mem; |
| unsigned long io_port; |
| u8 mac_addr[8]; |
| u32 dw_sram_type; |
| |
| struct dvb_adapter *dvb_adapter; |
| struct dvb_demux demux; |
| struct dmxdev dmxdev; |
| struct dmx_frontend hw_frontend; |
| struct dmx_frontend mem_frontend; |
| struct i2c_adapter i2c_adap; |
| struct dvb_net dvbnet; |
| |
| struct semaphore i2c_sem; |
| |
| struct dmaq dmaq1; |
| struct dmaq dmaq2; |
| |
| u32 dma_ctrl; |
| u32 dma_status; |
| |
| int capturing; |
| |
| spinlock_t lock; |
| |
| int useable_hw_filters; |
| u16 hw_pids[MAX_N_HW_FILTERS]; |
| u16 pid_list[N_PID_SLOTS]; |
| int pid_rc[N_PID_SLOTS]; // ref counters for the pids |
| int pid_count; |
| int whole_bandwidth_count; |
| u32 mac_filter; |
| |
| struct dvb_frontend* fe; |
| int (*fe_sleep)(struct dvb_frontend* fe); |
| }; |
| |
| #define write_reg_dw(adapter,reg,value) writel(value, adapter->io_mem + reg) |
| #define read_reg_dw(adapter,reg) readl(adapter->io_mem + reg) |
| |
| static void write_reg_bitfield(struct adapter *adapter, u32 reg, u32 zeromask, u32 orvalue) |
| { |
| u32 tmp; |
| |
| tmp = read_reg_dw(adapter, reg); |
| tmp = (tmp & ~zeromask) | orvalue; |
| write_reg_dw(adapter, reg, tmp); |
| } |
| |
| /* i2c functions */ |
| static int i2c_main_write_for_flex2(struct adapter *adapter, u32 command, u8 *buf, int retries) |
| { |
| int i; |
| u32 value; |
| |
| write_reg_dw(adapter, 0x100, 0); |
| write_reg_dw(adapter, 0x100, command); |
| |
| for (i = 0; i < retries; i++) { |
| value = read_reg_dw(adapter, 0x100); |
| |
| if ((value & 0x40000000) == 0) { |
| if ((value & 0x81000000) == 0x80000000) { |
| if (buf != 0) |
| *buf = (value >> 0x10) & 0xff; |
| |
| return 1; |
| } |
| } else { |
| write_reg_dw(adapter, 0x100, 0); |
| write_reg_dw(adapter, 0x100, command); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* device = 0x10000000 for tuner, 0x20000000 for eeprom */ |
| static void i2c_main_setup(u32 device, u32 chip_addr, u8 op, u8 addr, u32 value, u32 len, u32 *command) |
| { |
| *command = device | ((len - 1) << 26) | (value << 16) | (addr << 8) | chip_addr; |
| |
| if (op != 0) |
| *command = *command | 0x03000000; |
| else |
| *command = *command | 0x01000000; |
| } |
| |
| static int flex_i2c_read4(struct adapter *adapter, u32 device, u32 chip_addr, u16 addr, u8 *buf, u8 len) |
| { |
| u32 command; |
| u32 value; |
| |
| int result, i; |
| |
| i2c_main_setup(device, chip_addr, 1, addr, 0, len, &command); |
| |
| result = i2c_main_write_for_flex2(adapter, command, buf, 100000); |
| |
| if ((result & 0xff) != 0) { |
| if (len > 1) { |
| value = read_reg_dw(adapter, 0x104); |
| |
| for (i = 1; i < len; i++) { |
| buf[i] = value & 0xff; |
| value = value >> 8; |
| } |
| } |
| } |
| |
| return result; |
| } |
| |
| static int flex_i2c_write4(struct adapter *adapter, u32 device, u32 chip_addr, u32 addr, u8 *buf, u8 len) |
| { |
| u32 command; |
| u32 value; |
| int i; |
| |
| if (len > 1) { |
| value = 0; |
| |
| for (i = len; i > 1; i--) { |
| value = value << 8; |
| value = value | buf[i - 1]; |
| } |
| |
| write_reg_dw(adapter, 0x104, value); |
| } |
| |
| i2c_main_setup(device, chip_addr, 0, addr, buf[0], len, &command); |
| |
| return i2c_main_write_for_flex2(adapter, command, NULL, 100000); |
| } |
| |
| static void fixchipaddr(u32 device, u32 bus, u32 addr, u32 *ret) |
| { |
| if (device == 0x20000000) |
| *ret = bus | ((addr >> 8) & 3); |
| else |
| *ret = bus; |
| } |
| |
| static u32 flex_i2c_read(struct adapter *adapter, u32 device, u32 bus, u32 addr, u8 *buf, u32 len) |
| { |
| u32 chipaddr; |
| u32 bytes_to_transfer; |
| u8 *start; |
| |
| ddprintk("%s:\n", __FUNCTION__); |
| |
| start = buf; |
| |
| while (len != 0) { |
| bytes_to_transfer = len; |
| |
| if (bytes_to_transfer > 4) |
| bytes_to_transfer = 4; |
| |
| fixchipaddr(device, bus, addr, &chipaddr); |
| |
| if (flex_i2c_read4(adapter, device, chipaddr, addr, buf, bytes_to_transfer) == 0) |
| return buf - start; |
| |
| buf = buf + bytes_to_transfer; |
| addr = addr + bytes_to_transfer; |
| len = len - bytes_to_transfer; |
| }; |
| |
| return buf - start; |
| } |
| |
| static u32 flex_i2c_write(struct adapter *adapter, u32 device, u32 bus, u32 addr, u8 *buf, u32 len) |
| { |
| u32 chipaddr; |
| u32 bytes_to_transfer; |
| u8 *start; |
| |
| ddprintk("%s:\n", __FUNCTION__); |
| |
| start = buf; |
| |
| while (len != 0) { |
| bytes_to_transfer = len; |
| |
| if (bytes_to_transfer > 4) |
| bytes_to_transfer = 4; |
| |
| fixchipaddr(device, bus, addr, &chipaddr); |
| |
| if (flex_i2c_write4(adapter, device, chipaddr, addr, buf, bytes_to_transfer) == 0) |
| return buf - start; |
| |
| buf = buf + bytes_to_transfer; |
| addr = addr + bytes_to_transfer; |
| len = len - bytes_to_transfer; |
| } |
| |
| return buf - start; |
| } |
| |
| static int master_xfer(struct i2c_adapter* adapter, struct i2c_msg *msgs, int num) |
| { |
| struct adapter *tmp = i2c_get_adapdata(adapter); |
| int i, ret = 0; |
| |
| if (down_interruptible(&tmp->i2c_sem)) |
| return -ERESTARTSYS; |
| |
| ddprintk("%s: %d messages to transfer\n", __FUNCTION__, num); |
| |
| for (i = 0; i < num; i++) { |
| ddprintk("message %d: flags=0x%x, addr=0x%x, buf=0x%x, len=%d \n", i, |
| msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len); |
| } |
| |
| // read command |
| if ((num == 2) && (msgs[0].flags == 0) && (msgs[1].flags == I2C_M_RD) && (msgs[0].buf != NULL) && (msgs[1].buf != NULL)) { |
| |
| ret = flex_i2c_read(tmp, 0x10000000, msgs[0].addr, msgs[0].buf[0], msgs[1].buf, msgs[1].len); |
| |
| up(&tmp->i2c_sem); |
| |
| if (ret != msgs[1].len) { |
| dprintk("%s: read error !\n", __FUNCTION__); |
| |
| for (i = 0; i < 2; i++) { |
| dprintk("message %d: flags=0x%x, addr=0x%x, buf=0x%x, len=%d \n", i, |
| msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len); |
| } |
| |
| return -EREMOTEIO; |
| } |
| |
| return num; |
| } |
| // write command |
| for (i = 0; i < num; i++) { |
| |
| if ((msgs[i].flags != 0) || (msgs[i].buf == NULL) || (msgs[i].len < 2)) |
| return -EINVAL; |
| |
| ret = flex_i2c_write(tmp, 0x10000000, msgs[i].addr, msgs[i].buf[0], &msgs[i].buf[1], msgs[i].len - 1); |
| |
| up(&tmp->i2c_sem); |
| |
| if (ret != msgs[0].len - 1) { |
| dprintk("%s: write error %i !\n", __FUNCTION__, ret); |
| |
| dprintk("message %d: flags=0x%x, addr=0x%x, buf[0]=0x%x, len=%d \n", i, |
| msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len); |
| |
| return -EREMOTEIO; |
| } |
| |
| return num; |
| } |
| |
| printk("%s: unknown command format !\n", __FUNCTION__); |
| |
| return -EINVAL; |
| } |
| |
| /* SRAM (Skystar2 rev2.3 has one "ISSI IS61LV256" chip on board, |
| but it seems that FlexCopII can work with more than one chip) */ |
| static void sram_set_net_dest(struct adapter *adapter, u8 dest) |
| { |
| u32 tmp; |
| |
| udelay(1000); |
| |
| tmp = (read_reg_dw(adapter, 0x714) & 0xfffffffc) | (dest & 3); |
| |
| udelay(1000); |
| |
| write_reg_dw(adapter, 0x714, tmp); |
| write_reg_dw(adapter, 0x714, tmp); |
| |
| udelay(1000); |
| |
| /* return value is never used? */ |
| /* return tmp; */ |
| } |
| |
| static void sram_set_cai_dest(struct adapter *adapter, u8 dest) |
| { |
| u32 tmp; |
| |
| udelay(1000); |
| |
| tmp = (read_reg_dw(adapter, 0x714) & 0xfffffff3) | ((dest & 3) << 2); |
| |
| udelay(1000); |
| udelay(1000); |
| |
| write_reg_dw(adapter, 0x714, tmp); |
| write_reg_dw(adapter, 0x714, tmp); |
| |
| udelay(1000); |
| |
| /* return value is never used? */ |
| /* return tmp; */ |
| } |
| |
| static void sram_set_cao_dest(struct adapter *adapter, u8 dest) |
| { |
| u32 tmp; |
| |
| udelay(1000); |
| |
| tmp = (read_reg_dw(adapter, 0x714) & 0xffffffcf) | ((dest & 3) << 4); |
| |
| udelay(1000); |
| udelay(1000); |
| |
| write_reg_dw(adapter, 0x714, tmp); |
| write_reg_dw(adapter, 0x714, tmp); |
| |
| udelay(1000); |
| |
| /* return value is never used? */ |
| /* return tmp; */ |
| } |
| |
| static void sram_set_media_dest(struct adapter *adapter, u8 dest) |
| { |
| u32 tmp; |
| |
| udelay(1000); |
| |
| tmp = (read_reg_dw(adapter, 0x714) & 0xffffff3f) | ((dest & 3) << 6); |
| |
| udelay(1000); |
| udelay(1000); |
| |
| write_reg_dw(adapter, 0x714, tmp); |
| write_reg_dw(adapter, 0x714, tmp); |
| |
| udelay(1000); |
| |
| /* return value is never used? */ |
| /* return tmp; */ |
| } |
| |
| /* SRAM memory is accessed through a buffer register in the FlexCop |
| chip (0x700). This register has the following structure: |
| bits 0-14 : address |
| bit 15 : read/write flag |
| bits 16-23 : 8-bit word to write |
| bits 24-27 : = 4 |
| bits 28-29 : memory bank selector |
| bit 31 : busy flag |
| */ |
| static void flex_sram_write(struct adapter *adapter, u32 bank, u32 addr, u8 *buf, u32 len) |
| { |
| int i, retries; |
| u32 command; |
| |
| for (i = 0; i < len; i++) { |
| command = bank | addr | 0x04000000 | (*buf << 0x10); |
| |
| retries = 2; |
| |
| while (((read_reg_dw(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) { |
| mdelay(1); |
| retries--; |
| }; |
| |
| if (retries == 0) |
| printk("%s: SRAM timeout\n", __FUNCTION__); |
| |
| write_reg_dw(adapter, 0x700, command); |
| |
| buf++; |
| addr++; |
| } |
| } |
| |
| static void flex_sram_read(struct adapter *adapter, u32 bank, u32 addr, u8 *buf, u32 len) |
| { |
| int i, retries; |
| u32 command, value; |
| |
| for (i = 0; i < len; i++) { |
| command = bank | addr | 0x04008000; |
| |
| retries = 10000; |
| |
| while (((read_reg_dw(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) { |
| mdelay(1); |
| retries--; |
| }; |
| |
| if (retries == 0) |
| printk("%s: SRAM timeout\n", __FUNCTION__); |
| |
| write_reg_dw(adapter, 0x700, command); |
| |
| retries = 10000; |
| |
| while (((read_reg_dw(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) { |
| mdelay(1); |
| retries--; |
| }; |
| |
| if (retries == 0) |
| printk("%s: SRAM timeout\n", __FUNCTION__); |
| |
| value = read_reg_dw(adapter, 0x700) >> 0x10; |
| |
| *buf = (value & 0xff); |
| |
| addr++; |
| buf++; |
| } |
| } |
| |
| static void sram_write_chunk(struct adapter *adapter, u32 addr, u8 *buf, u16 len) |
| { |
| u32 bank; |
| |
| bank = 0; |
| |
| if (adapter->dw_sram_type == 0x20000) { |
| bank = (addr & 0x18000) << 0x0d; |
| } |
| |
| if (adapter->dw_sram_type == 0x00000) { |
| if ((addr >> 0x0f) == 0) |
| bank = 0x20000000; |
| else |
| bank = 0x10000000; |
| } |
| |
| flex_sram_write(adapter, bank, addr & 0x7fff, buf, len); |
| } |
| |
| static void sram_read_chunk(struct adapter *adapter, u32 addr, u8 *buf, u16 len) |
| { |
| u32 bank; |
| |
| bank = 0; |
| |
| if (adapter->dw_sram_type == 0x20000) { |
| bank = (addr & 0x18000) << 0x0d; |
| } |
| |
| if (adapter->dw_sram_type == 0x00000) { |
| if ((addr >> 0x0f) == 0) |
| bank = 0x20000000; |
| else |
| bank = 0x10000000; |
| } |
| |
| flex_sram_read(adapter, bank, addr & 0x7fff, buf, len); |
| } |
| |
| static void sram_read(struct adapter *adapter, u32 addr, u8 *buf, u32 len) |
| { |
| u32 length; |
| |
| while (len != 0) { |
| length = len; |
| |
| // check if the address range belongs to the same |
| // 32K memory chip. If not, the data is read from |
| // one chip at a time. |
| if ((addr >> 0x0f) != ((addr + len - 1) >> 0x0f)) { |
| length = (((addr >> 0x0f) + 1) << 0x0f) - addr; |
| } |
| |
| sram_read_chunk(adapter, addr, buf, length); |
| |
| addr = addr + length; |
| buf = buf + length; |
| len = len - length; |
| } |
| } |
| |
| static void sram_write(struct adapter *adapter, u32 addr, u8 *buf, u32 len) |
| { |
| u32 length; |
| |
| while (len != 0) { |
| length = len; |
| |
| // check if the address range belongs to the same |
| // 32K memory chip. If not, the data is written to |
| // one chip at a time. |
| if ((addr >> 0x0f) != ((addr + len - 1) >> 0x0f)) { |
| length = (((addr >> 0x0f) + 1) << 0x0f) - addr; |
| } |
| |
| sram_write_chunk(adapter, addr, buf, length); |
| |
| addr = addr + length; |
| buf = buf + length; |
| len = len - length; |
| } |
| } |
| |
| static void sram_set_size(struct adapter *adapter, u32 mask) |
| { |
| write_reg_dw(adapter, 0x71c, (mask | (~0x30000 & read_reg_dw(adapter, 0x71c)))); |
| } |
| |
| static void sram_init(struct adapter *adapter) |
| { |
| u32 tmp; |
| |
| tmp = read_reg_dw(adapter, 0x71c); |
| |
| write_reg_dw(adapter, 0x71c, 1); |
| |
| if (read_reg_dw(adapter, 0x71c) != 0) { |
| write_reg_dw(adapter, 0x71c, tmp); |
| |
| adapter->dw_sram_type = tmp & 0x30000; |
| |
| ddprintk("%s: dw_sram_type = %x\n", __FUNCTION__, adapter->dw_sram_type); |
| |
| } else { |
| |
| adapter->dw_sram_type = 0x10000; |
| |
| ddprintk("%s: dw_sram_type = %x\n", __FUNCTION__, adapter->dw_sram_type); |
| } |
| |
| /* return value is never used? */ |
| /* return adapter->dw_sram_type; */ |
| } |
| |
| static int sram_test_location(struct adapter *adapter, u32 mask, u32 addr) |
| { |
| u8 tmp1, tmp2; |
| |
| dprintk("%s: mask = %x, addr = %x\n", __FUNCTION__, mask, addr); |
| |
| sram_set_size(adapter, mask); |
| sram_init(adapter); |
| |
| tmp2 = 0xa5; |
| tmp1 = 0x4f; |
| |
| sram_write(adapter, addr, &tmp2, 1); |
| sram_write(adapter, addr + 4, &tmp1, 1); |
| |
| tmp2 = 0; |
| |
| mdelay(20); |
| |
| sram_read(adapter, addr, &tmp2, 1); |
| sram_read(adapter, addr, &tmp2, 1); |
| |
| dprintk("%s: wrote 0xa5, read 0x%2x\n", __FUNCTION__, tmp2); |
| |
| if (tmp2 != 0xa5) |
| return 0; |
| |
| tmp2 = 0x5a; |
| tmp1 = 0xf4; |
| |
| sram_write(adapter, addr, &tmp2, 1); |
| sram_write(adapter, addr + 4, &tmp1, 1); |
| |
| tmp2 = 0; |
| |
| mdelay(20); |
| |
| sram_read(adapter, addr, &tmp2, 1); |
| sram_read(adapter, addr, &tmp2, 1); |
| |
| dprintk("%s: wrote 0x5a, read 0x%2x\n", __FUNCTION__, tmp2); |
| |
| if (tmp2 != 0x5a) |
| return 0; |
| |
| return 1; |
| } |
| |
| static u32 sram_length(struct adapter *adapter) |
| { |
| if (adapter->dw_sram_type == 0x10000) |
| return 32768; // 32K |
| if (adapter->dw_sram_type == 0x00000) |
| return 65536; // 64K |
| if (adapter->dw_sram_type == 0x20000) |
| return 131072; // 128K |
| |
| return 32768; // 32K |
| } |
| |
| /* FlexcopII can work with 32K, 64K or 128K of external SRAM memory. |
| - for 128K there are 4x32K chips at bank 0,1,2,3. |
| - for 64K there are 2x32K chips at bank 1,2. |
| - for 32K there is one 32K chip at bank 0. |
| |
| FlexCop works only with one bank at a time. The bank is selected |
| by bits 28-29 of the 0x700 register. |
| |
| bank 0 covers addresses 0x00000-0x07fff |
| bank 1 covers addresses 0x08000-0x0ffff |
| bank 2 covers addresses 0x10000-0x17fff |
| bank 3 covers addresses 0x18000-0x1ffff |
| */ |
| static int sram_detect_for_flex2(struct adapter *adapter) |
| { |
| u32 tmp, tmp2, tmp3; |
| |
| dprintk("%s:\n", __FUNCTION__); |
| |
| tmp = read_reg_dw(adapter, 0x208); |
| write_reg_dw(adapter, 0x208, 0); |
| |
| tmp2 = read_reg_dw(adapter, 0x71c); |
| |
| dprintk("%s: tmp2 = %x\n", __FUNCTION__, tmp2); |
| |
| write_reg_dw(adapter, 0x71c, 1); |
| |
| tmp3 = read_reg_dw(adapter, 0x71c); |
| |
| dprintk("%s: tmp3 = %x\n", __FUNCTION__, tmp3); |
| |
| write_reg_dw(adapter, 0x71c, tmp2); |
| |
| // check for internal SRAM ??? |
| tmp3--; |
| if (tmp3 != 0) { |
| sram_set_size(adapter, 0x10000); |
| sram_init(adapter); |
| write_reg_dw(adapter, 0x208, tmp); |
| |
| dprintk("%s: sram size = 32K\n", __FUNCTION__); |
| |
| return 32; |
| } |
| |
| if (sram_test_location(adapter, 0x20000, 0x18000) != 0) { |
| sram_set_size(adapter, 0x20000); |
| sram_init(adapter); |
| write_reg_dw(adapter, 0x208, tmp); |
| |
| dprintk("%s: sram size = 128K\n", __FUNCTION__); |
| |
| return 128; |
| } |
| |
| if (sram_test_location(adapter, 0x00000, 0x10000) != 0) { |
| sram_set_size(adapter, 0x00000); |
| sram_init(adapter); |
| write_reg_dw(adapter, 0x208, tmp); |
| |
| dprintk("%s: sram size = 64K\n", __FUNCTION__); |
| |
| return 64; |
| } |
| |
| if (sram_test_location(adapter, 0x10000, 0x00000) != 0) { |
| sram_set_size(adapter, 0x10000); |
| sram_init(adapter); |
| write_reg_dw(adapter, 0x208, tmp); |
| |
| dprintk("%s: sram size = 32K\n", __FUNCTION__); |
| |
| return 32; |
| } |
| |
| sram_set_size(adapter, 0x10000); |
| sram_init(adapter); |
| write_reg_dw(adapter, 0x208, tmp); |
| |
| dprintk("%s: SRAM detection failed. Set to 32K \n", __FUNCTION__); |
| |
| return 0; |
| } |
| |
| static void sll_detect_sram_size(struct adapter *adapter) |
| { |
| sram_detect_for_flex2(adapter); |
| } |
| |
| /* EEPROM (Skystar2 has one "24LC08B" chip on board) */ |
| /* |
| static int eeprom_write(struct adapter *adapter, u16 addr, u8 *buf, u16 len) |
| { |
| return flex_i2c_write(adapter, 0x20000000, 0x50, addr, buf, len); |
| } |
| */ |
| |
| static int eeprom_read(struct adapter *adapter, u16 addr, u8 *buf, u16 len) |
| { |
| return flex_i2c_read(adapter, 0x20000000, 0x50, addr, buf, len); |
| } |
| |
| static u8 calc_lrc(u8 *buf, int len) |
| { |
| int i; |
| u8 sum; |
| |
| sum = 0; |
| |
| for (i = 0; i < len; i++) |
| sum = sum ^ buf[i]; |
| |
| return sum; |
| } |
| |
| static int eeprom_lrc_read(struct adapter *adapter, u32 addr, u32 len, u8 *buf, int retries) |
| { |
| int i; |
| |
| for (i = 0; i < retries; i++) { |
| if (eeprom_read(adapter, addr, buf, len) == len) { |
| if (calc_lrc(buf, len - 1) == buf[len - 1]) |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| static int eeprom_lrc_write(struct adapter *adapter, u32 addr, u32 len, u8 *wbuf, u8 *rbuf, int retries) |
| { |
| int i; |
| |
| for (i = 0; i < retries; i++) { |
| if (eeprom_write(adapter, addr, wbuf, len) == len) { |
| if (eeprom_lrc_read(adapter, addr, len, rbuf, retries) == 1) |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| */ |
| |
| |
| /* These functions could be used to unlock SkyStar2 cards. */ |
| |
| /* |
| static int eeprom_writeKey(struct adapter *adapter, u8 *key, u32 len) |
| { |
| u8 rbuf[20]; |
| u8 wbuf[20]; |
| |
| if (len != 16) |
| return 0; |
| |
| memcpy(wbuf, key, len); |
| |
| wbuf[16] = 0; |
| wbuf[17] = 0; |
| wbuf[18] = 0; |
| wbuf[19] = calc_lrc(wbuf, 19); |
| |
| return eeprom_lrc_write(adapter, 0x3e4, 20, wbuf, rbuf, 4); |
| } |
| |
| static int eeprom_readKey(struct adapter *adapter, u8 *key, u32 len) |
| { |
| u8 buf[20]; |
| |
| if (len != 16) |
| return 0; |
| |
| if (eeprom_lrc_read(adapter, 0x3e4, 20, buf, 4) == 0) |
| return 0; |
| |
| memcpy(key, buf, len); |
| |
| return 1; |
| } |
| */ |
| |
| static int eeprom_get_mac_addr(struct adapter *adapter, char type, u8 *mac) |
| { |
| u8 tmp[8]; |
| |
| if (eeprom_lrc_read(adapter, 0x3f8, 8, tmp, 4) != 0) { |
| if (type != 0) { |
| mac[0] = tmp[0]; |
| mac[1] = tmp[1]; |
| mac[2] = tmp[2]; |
| mac[3] = 0xfe; |
| mac[4] = 0xff; |
| mac[5] = tmp[3]; |
| mac[6] = tmp[4]; |
| mac[7] = tmp[5]; |
| |
| } else { |
| |
| mac[0] = tmp[0]; |
| mac[1] = tmp[1]; |
| mac[2] = tmp[2]; |
| mac[3] = tmp[3]; |
| mac[4] = tmp[4]; |
| mac[5] = tmp[5]; |
| } |
| |
| return 1; |
| |
| } else { |
| |
| if (type == 0) { |
| memset(mac, 0, 6); |
| |
| } else { |
| |
| memset(mac, 0, 8); |
| } |
| |
| return 0; |
| } |
| } |
| |
| /* |
| static char eeprom_set_mac_addr(struct adapter *adapter, char type, u8 *mac) |
| { |
| u8 tmp[8]; |
| |
| if (type != 0) { |
| tmp[0] = mac[0]; |
| tmp[1] = mac[1]; |
| tmp[2] = mac[2]; |
| tmp[3] = mac[5]; |
| tmp[4] = mac[6]; |
| tmp[5] = mac[7]; |
| |
| } else { |
| |
| tmp[0] = mac[0]; |
| tmp[1] = mac[1]; |
| tmp[2] = mac[2]; |
| tmp[3] = mac[3]; |
| tmp[4] = mac[4]; |
| tmp[5] = mac[5]; |
| } |
| |
| tmp[6] = 0; |
| tmp[7] = calc_lrc(tmp, 7); |
| |
| if (eeprom_write(adapter, 0x3f8, tmp, 8) == 8) |
| return 1; |
| |
| return 0; |
| } |
| */ |
| |
| /* PID filter */ |
| |
| /* every flexcop has 6 "lower" hw PID filters */ |
| /* these are enabled by setting bits 0-5 of 0x208 */ |
| /* for the 32 additional filters we have to select one */ |
| /* of them through 0x310 and modify through 0x314 */ |
| /* op: 0=disable, 1=enable */ |
| static void filter_enable_hw_filter(struct adapter *adapter, int id, u8 op) |
| { |
| dprintk("%s: id=%d op=%d\n", __FUNCTION__, id, op); |
| if (id <= 5) { |
| u32 mask = (0x00000001 << id); |
| write_reg_bitfield(adapter, 0x208, mask, op ? mask : 0); |
| } else { |
| /* select */ |
| write_reg_bitfield(adapter, 0x310, 0x1f, (id - 6) & 0x1f); |
| /* modify */ |
| write_reg_bitfield(adapter, 0x314, 0x00006000, op ? 0x00004000 : 0); |
| } |
| } |
| |
| /* this sets the PID that should pass the specified filter */ |
| static void pid_set_hw_pid(struct adapter *adapter, int id, u16 pid) |
| { |
| dprintk("%s: id=%d pid=%d\n", __FUNCTION__, id, pid); |
| if (id <= 5) { |
| u32 adr = 0x300 + ((id & 6) << 1); |
| int shift = (id & 1) ? 16 : 0; |
| dprintk("%s: id=%d addr=%x %c pid=%d\n", __FUNCTION__, id, adr, (id & 1) ? 'h' : 'l', pid); |
| write_reg_bitfield(adapter, adr, (0x7fff) << shift, (pid & 0x1fff) << shift); |
| } else { |
| /* select */ |
| write_reg_bitfield(adapter, 0x310, 0x1f, (id - 6) & 0x1f); |
| /* modify */ |
| write_reg_bitfield(adapter, 0x314, 0x1fff, pid & 0x1fff); |
| } |
| } |
| |
| |
| /* |
| static void filter_enable_null_filter(struct adapter *adapter, u32 op) |
| { |
| dprintk("%s: op=%x\n", __FUNCTION__, op); |
| |
| write_reg_bitfield(adapter, 0x208, 0x00000040, op?0x00000040:0); |
| } |
| */ |
| |
| static void filter_enable_mask_filter(struct adapter *adapter, u32 op) |
| { |
| dprintk("%s: op=%x\n", __FUNCTION__, op); |
| |
| write_reg_bitfield(adapter, 0x208, 0x00000080, op ? 0x00000080 : 0); |
| } |
| |
| |
| static void ctrl_enable_mac(struct adapter *adapter, u32 op) |
| { |
| write_reg_bitfield(adapter, 0x208, 0x00004000, op ? 0x00004000 : 0); |
| } |
| |
| static int ca_set_mac_dst_addr_filter(struct adapter *adapter, u8 *mac) |
| { |
| u32 tmp1, tmp2; |
| |
| tmp1 = (mac[3] << 0x18) | (mac[2] << 0x10) | (mac[1] << 0x08) | mac[0]; |
| tmp2 = (mac[5] << 0x08) | mac[4]; |
| |
| write_reg_dw(adapter, 0x418, tmp1); |
| write_reg_dw(adapter, 0x41c, tmp2); |
| |
| return 0; |
| } |
| |
| /* |
| static void set_ignore_mac_filter(struct adapter *adapter, u8 op) |
| { |
| if (op != 0) { |
| write_reg_bitfield(adapter, 0x208, 0x00004000, 0); |
| adapter->mac_filter = 1; |
| } else { |
| if (adapter->mac_filter != 0) { |
| adapter->mac_filter = 0; |
| write_reg_bitfield(adapter, 0x208, 0x00004000, 0x00004000); |
| } |
| } |
| } |
| */ |
| |
| /* |
| static void check_null_filter_enable(struct adapter *adapter) |
| { |
| filter_enable_null_filter(adapter, 1); |
| filter_enable_mask_filter(adapter, 1); |
| } |
| */ |
| |
| static void pid_set_group_pid(struct adapter *adapter, u16 pid) |
| { |
| u32 value; |
| |
| dprintk("%s: pid=%x\n", __FUNCTION__, pid); |
| value = (pid & 0x3fff) | (read_reg_dw(adapter, 0x30c) & 0xffff0000); |
| write_reg_dw(adapter, 0x30c, value); |
| } |
| |
| static void pid_set_group_mask(struct adapter *adapter, u16 pid) |
| { |
| u32 value; |
| |
| dprintk("%s: pid=%x\n", __FUNCTION__, pid); |
| value = ((pid & 0x3fff) << 0x10) | (read_reg_dw(adapter, 0x30c) & 0xffff); |
| write_reg_dw(adapter, 0x30c, value); |
| } |
| |
| /* |
| static int pid_get_group_pid(struct adapter *adapter) |
| { |
| return read_reg_dw(adapter, 0x30c) & 0x00001fff; |
| } |
| |
| static int pid_get_group_mask(struct adapter *adapter) |
| { |
| return (read_reg_dw(adapter, 0x30c) >> 0x10)& 0x00001fff; |
| } |
| */ |
| |
| /* |
| static void reset_hardware_pid_filter(struct adapter *adapter) |
| { |
| pid_set_stream1_pid(adapter, 0x1fff); |
| |
| pid_set_stream2_pid(adapter, 0x1fff); |
| filter_enable_stream2_filter(adapter, 0); |
| |
| pid_set_pcr_pid(adapter, 0x1fff); |
| filter_enable_pcr_filter(adapter, 0); |
| |
| pid_set_pmt_pid(adapter, 0x1fff); |
| filter_enable_pmt_filter(adapter, 0); |
| |
| pid_set_ecm_pid(adapter, 0x1fff); |
| filter_enable_ecm_filter(adapter, 0); |
| |
| pid_set_emm_pid(adapter, 0x1fff); |
| filter_enable_emm_filter(adapter, 0); |
| } |
| */ |
| |
| static void init_pids(struct adapter *adapter) |
| { |
| int i; |
| |
| adapter->pid_count = 0; |
| adapter->whole_bandwidth_count = 0; |
| for (i = 0; i < adapter->useable_hw_filters; i++) { |
| dprintk("%s: setting filter %d to 0x1fff\n", __FUNCTION__, i); |
| adapter->hw_pids[i] = 0x1fff; |
| pid_set_hw_pid(adapter, i, 0x1fff); |
| } |
| |
| pid_set_group_pid(adapter, 0); |
| pid_set_group_mask(adapter, 0x1fe0); |
| } |
| |
| static void open_whole_bandwidth(struct adapter *adapter) |
| { |
| dprintk("%s:\n", __FUNCTION__); |
| pid_set_group_pid(adapter, 0); |
| pid_set_group_mask(adapter, 0); |
| /* |
| filter_enable_mask_filter(adapter, 1); |
| */ |
| } |
| |
| static void close_whole_bandwidth(struct adapter *adapter) |
| { |
| dprintk("%s:\n", __FUNCTION__); |
| pid_set_group_pid(adapter, 0); |
| pid_set_group_mask(adapter, 0x1fe0); |
| /* |
| filter_enable_mask_filter(adapter, 1); |
| */ |
| } |
| |
| static void whole_bandwidth_inc(struct adapter *adapter) |
| { |
| if (adapter->whole_bandwidth_count++ == 0) |
| open_whole_bandwidth(adapter); |
| } |
| |
| static void whole_bandwidth_dec(struct adapter *adapter) |
| { |
| if (--adapter->whole_bandwidth_count <= 0) |
| close_whole_bandwidth(adapter); |
| } |
| |
| /* The specified PID has to be let through the |
| hw filters. |
| We try to allocate an hardware filter and open whole |
| bandwidth when allocation is impossible. |
| All pids<=0x1f pass through the group filter. |
| Returns 1 on success, -1 on error */ |
| static int add_hw_pid(struct adapter *adapter, u16 pid) |
| { |
| int i; |
| |
| dprintk("%s: pid=%d\n", __FUNCTION__, pid); |
| |
| if (pid <= 0x1f) |
| return 1; |
| |
| /* we can't use a filter for 0x2000, so no search */ |
| if (pid != 0x2000) { |
| /* find an unused hardware filter */ |
| for (i = 0; i < adapter->useable_hw_filters; i++) { |
| dprintk("%s: pid=%d searching slot=%d\n", __FUNCTION__, pid, i); |
| if (adapter->hw_pids[i] == 0x1fff) { |
| dprintk("%s: pid=%d slot=%d\n", __FUNCTION__, pid, i); |
| adapter->hw_pids[i] = pid; |
| pid_set_hw_pid(adapter, i, pid); |
| filter_enable_hw_filter(adapter, i, 1); |
| return 1; |
| } |
| } |
| } |
| /* if we have not used a filter, this pid depends on whole bandwidth */ |
| dprintk("%s: pid=%d whole_bandwidth\n", __FUNCTION__, pid); |
| whole_bandwidth_inc(adapter); |
| return 1; |
| } |
| |
| /* returns -1 if the pid was not present in the filters */ |
| static int remove_hw_pid(struct adapter *adapter, u16 pid) |
| { |
| int i; |
| |
| dprintk("%s: pid=%d\n", __FUNCTION__, pid); |
| |
| if (pid <= 0x1f) |
| return 1; |
| |
| /* we can't use a filter for 0x2000, so no search */ |
| if (pid != 0x2000) { |
| for (i = 0; i < adapter->useable_hw_filters; i++) { |
| dprintk("%s: pid=%d searching slot=%d\n", __FUNCTION__, pid, i); |
| if (adapter->hw_pids[i] == pid) { // find the pid slot |
| dprintk("%s: pid=%d slot=%d\n", __FUNCTION__, pid, i); |
| adapter->hw_pids[i] = 0x1fff; |
| pid_set_hw_pid(adapter, i, 0x1fff); |
| filter_enable_hw_filter(adapter, i, 0); |
| return 1; |
| } |
| } |
| } |
| /* if we have not used a filter, this pid depended on whole bandwith */ |
| dprintk("%s: pid=%d whole_bandwidth\n", __FUNCTION__, pid); |
| whole_bandwidth_dec(adapter); |
| return 1; |
| } |
| |
| /* Adds a PID to the filters. |
| Adding a pid more than once is possible, we keep reference counts. |
| Whole stream available through pid==0x2000. |
| Returns 1 on success, -1 on error */ |
| static int add_pid(struct adapter *adapter, u16 pid) |
| { |
| int i; |
| |
| dprintk("%s: pid=%d\n", __FUNCTION__, pid); |
| |
| if (pid > 0x1ffe && pid != 0x2000) |
| return -1; |
| |
| // check if the pid is already present |
| for (i = 0; i < adapter->pid_count; i++) |
| if (adapter->pid_list[i] == pid) { |
| adapter->pid_rc[i]++; // increment ref counter |
| return 1; |
| } |
| |
| if (adapter->pid_count == N_PID_SLOTS) |
| return -1; // no more pids can be added |
| adapter->pid_list[adapter->pid_count] = pid; // register pid |
| adapter->pid_rc[adapter->pid_count] = 1; |
| adapter->pid_count++; |
| // hardware setting |
| add_hw_pid(adapter, pid); |
| |
| return 1; |
| } |
| |
| /* Removes a PID from the filters. */ |
| static int remove_pid(struct adapter *adapter, u16 pid) |
| { |
| int i; |
| |
| dprintk("%s: pid=%d\n", __FUNCTION__, pid); |
| |
| if (pid > 0x1ffe && pid != 0x2000) |
| return -1; |
| |
| // check if the pid is present (it must be!) |
| for (i = 0; i < adapter->pid_count; i++) { |
| if (adapter->pid_list[i] == pid) { |
| adapter->pid_rc[i]--; |
| if (adapter->pid_rc[i] <= 0) { |
| // remove from the list |
| adapter->pid_count--; |
| adapter->pid_list[i]=adapter->pid_list[adapter->pid_count]; |
| adapter->pid_rc[i] = adapter->pid_rc[adapter->pid_count]; |
| // hardware setting |
| remove_hw_pid(adapter, pid); |
| } |
| return 1; |
| } |
| } |
| |
| return -1; |
| } |
| |
| |
| /* dma & irq */ |
| static void ctrl_enable_smc(struct adapter *adapter, u32 op) |
| { |
| write_reg_bitfield(adapter, 0x208, 0x00000800, op ? 0x00000800 : 0); |
| } |
| |
| static void dma_enable_disable_irq(struct adapter *adapter, u32 flag1, u32 flag2, u32 flag3) |
| { |
| adapter->dma_ctrl = adapter->dma_ctrl & 0x000f0000; |
| |
| if (flag1 == 0) { |
| if (flag2 == 0) |
| adapter->dma_ctrl = adapter->dma_ctrl & ~0x00010000; |
| else |
| adapter->dma_ctrl = adapter->dma_ctrl | 0x00010000; |
| |
| if (flag3 == 0) |
| adapter->dma_ctrl = adapter->dma_ctrl & ~0x00020000; |
| else |
| adapter->dma_ctrl = adapter->dma_ctrl | 0x00020000; |
| |
| } else { |
| |
| if (flag2 == 0) |
| adapter->dma_ctrl = adapter->dma_ctrl & ~0x00040000; |
| else |
| adapter->dma_ctrl = adapter->dma_ctrl | 0x00040000; |
| |
| if (flag3 == 0) |
| adapter->dma_ctrl = adapter->dma_ctrl & ~0x00080000; |
| else |
| adapter->dma_ctrl = adapter->dma_ctrl | 0x00080000; |
| } |
| } |
| |
| static void irq_dma_enable_disable_irq(struct adapter *adapter, u32 op) |
| { |
| u32 value; |
| |
| value = read_reg_dw(adapter, 0x208) & 0xfff0ffff; |
| |
| if (op != 0) |
| value = value | (adapter->dma_ctrl & 0x000f0000); |
| |
| write_reg_dw(adapter, 0x208, value); |
| } |
| |
| /* FlexCopII has 2 dma channels. DMA1 is used to transfer TS data to |
| system memory. |
| |
| The DMA1 buffer is divided in 2 subbuffers of equal size. |
| FlexCopII will transfer TS data to one subbuffer, signal an interrupt |
| when the subbuffer is full and continue fillig the second subbuffer. |
| |
| For DMA1: |
| subbuffer size in 32-bit words is stored in the first 24 bits of |
| register 0x004. The last 8 bits of register 0x004 contain the number |
| of subbuffers. |
| |
| the first 30 bits of register 0x000 contain the address of the first |
| subbuffer. The last 2 bits contain 0, when dma1 is disabled and 1, |
| when dma1 is enabled. |
| |
| the first 30 bits of register 0x00c contain the address of the second |
| subbuffer. the last 2 bits contain 1. |
| |
| register 0x008 will contain the address of the subbuffer that was filled |
| with TS data, when FlexCopII will generate an interrupt. |
| |
| For DMA2: |
| subbuffer size in 32-bit words is stored in the first 24 bits of |
| register 0x014. The last 8 bits of register 0x014 contain the number |
| of subbuffers. |
| |
| the first 30 bits of register 0x010 contain the address of the first |
| subbuffer. The last 2 bits contain 0, when dma1 is disabled and 1, |
| when dma1 is enabled. |
| |
| the first 30 bits of register 0x01c contain the address of the second |
| subbuffer. the last 2 bits contain 1. |
| |
| register 0x018 contains the address of the subbuffer that was filled |
| with TS data, when FlexCopII generates an interrupt. |
| */ |
| static int dma_init_dma(struct adapter *adapter, u32 dma_channel) |
| { |
| u32 subbuffers, subbufsize, subbuf0, subbuf1; |
| |
| if (dma_channel == 0) { |
| dprintk("%s: Initializing DMA1 channel\n", __FUNCTION__); |
| |
| subbuffers = 2; |
| |
| subbufsize = (((adapter->dmaq1.buffer_size / 2) / 4) << 8) | subbuffers; |
| |
| subbuf0 = adapter->dmaq1.bus_addr & 0xfffffffc; |
| |
| subbuf1 = ((adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) & 0xfffffffc) | 1; |
| |
| dprintk("%s: first subbuffer address = 0x%x\n", __FUNCTION__, subbuf0); |
| udelay(1000); |
| write_reg_dw(adapter, 0x000, subbuf0); |
| |
| dprintk("%s: subbuffer size = 0x%x\n", __FUNCTION__, (subbufsize >> 8) * 4); |
| udelay(1000); |
| write_reg_dw(adapter, 0x004, subbufsize); |
| |
| dprintk("%s: second subbuffer address = 0x%x\n", __FUNCTION__, subbuf1); |
| udelay(1000); |
| write_reg_dw(adapter, 0x00c, subbuf1); |
| |
| dprintk("%s: counter = 0x%x\n", __FUNCTION__, adapter->dmaq1.bus_addr & 0xfffffffc); |
| write_reg_dw(adapter, 0x008, adapter->dmaq1.bus_addr & 0xfffffffc); |
| udelay(1000); |
| |
| dma_enable_disable_irq(adapter, 0, 1, subbuffers ? 1 : 0); |
| |
| irq_dma_enable_disable_irq(adapter, 1); |
| |
| sram_set_media_dest(adapter, 1); |
| sram_set_net_dest(adapter, 1); |
| sram_set_cai_dest(adapter, 2); |
| sram_set_cao_dest(adapter, 2); |
| } |
| |
| if (dma_channel == 1) { |
| dprintk("%s: Initializing DMA2 channel\n", __FUNCTION__); |
| |
| subbuffers = 2; |
| |
| subbufsize = (((adapter->dmaq2.buffer_size / 2) / 4) << 8) | subbuffers; |
| |
| subbuf0 = adapter->dmaq2.bus_addr & 0xfffffffc; |
| |
| subbuf1 = ((adapter->dmaq2.bus_addr + adapter->dmaq2.buffer_size / 2) & 0xfffffffc) | 1; |
| |
| dprintk("%s: first subbuffer address = 0x%x\n", __FUNCTION__, subbuf0); |
| udelay(1000); |
| write_reg_dw(adapter, 0x010, subbuf0); |
| |
| dprintk("%s: subbuffer size = 0x%x\n", __FUNCTION__, (subbufsize >> 8) * 4); |
| udelay(1000); |
| write_reg_dw(adapter, 0x014, subbufsize); |
| |
| dprintk("%s: second buffer address = 0x%x\n", __FUNCTION__, subbuf1); |
| udelay(1000); |
| write_reg_dw(adapter, 0x01c, subbuf1); |
| |
| sram_set_cai_dest(adapter, 2); |
| } |
| |
| return 0; |
| } |
| |
| static void ctrl_enable_receive_data(struct adapter *adapter, u32 op) |
| { |
| if (op == 0) { |
| write_reg_bitfield(adapter, 0x208, 0x00008000, 0); |
| adapter->dma_status = adapter->dma_status & ~0x00000004; |
| } else { |
| write_reg_bitfield(adapter, 0x208, 0x00008000, 0x00008000); |
| adapter->dma_status = adapter->dma_status | 0x00000004; |
| } |
| } |
| |
| /* bit 0 of dma_mask is set to 1 if dma1 channel has to be enabled/disabled |
| bit 1 of dma_mask is set to 1 if dma2 channel has to be enabled/disabled |
| */ |
| static void dma_start_stop(struct adapter *adapter, u32 dma_mask, int start_stop) |
| { |
| u32 dma_enable, dma1_enable, dma2_enable; |
| |
| dprintk("%s: dma_mask=%x\n", __FUNCTION__, dma_mask); |
| |
| if (start_stop == 1) { |
| dprintk("%s: starting dma\n", __FUNCTION__); |
| |
| dma1_enable = 0; |
| dma2_enable = 0; |
| |
| if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) == 0) && (adapter->dmaq1.bus_addr != 0)) { |
| adapter->dma_status = adapter->dma_status | 1; |
| dma1_enable = 1; |
| } |
| |
| if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) == 0) && (adapter->dmaq2.bus_addr != 0)) { |
| adapter->dma_status = adapter->dma_status | 2; |
| dma2_enable = 1; |
| } |
| // enable dma1 and dma2 |
| if ((dma1_enable == 1) && (dma2_enable == 1)) { |
| write_reg_dw(adapter, 0x000, adapter->dmaq1.bus_addr | 1); |
| write_reg_dw(adapter, 0x00c, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1); |
| write_reg_dw(adapter, 0x010, adapter->dmaq2.bus_addr | 1); |
| |
| ctrl_enable_receive_data(adapter, 1); |
| |
| return; |
| } |
| // enable dma1 |
| if ((dma1_enable == 1) && (dma2_enable == 0)) { |
| write_reg_dw(adapter, 0x000, adapter->dmaq1.bus_addr | 1); |
| write_reg_dw(adapter, 0x00c, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1); |
| |
| ctrl_enable_receive_data(adapter, 1); |
| |
| return; |
| } |
| // enable dma2 |
| if ((dma1_enable == 0) && (dma2_enable == 1)) { |
| write_reg_dw(adapter, 0x010, adapter->dmaq2.bus_addr | 1); |
| |
| ctrl_enable_receive_data(adapter, 1); |
| |
| return; |
| } |
| // start dma |
| if ((dma1_enable == 0) && (dma2_enable == 0)) { |
| ctrl_enable_receive_data(adapter, 1); |
| |
| return; |
| } |
| |
| } else { |
| |
| dprintk("%s: stopping dma\n", __FUNCTION__); |
| |
| dma_enable = adapter->dma_status & 0x00000003; |
| |
| if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) != 0)) { |
| dma_enable = dma_enable & 0xfffffffe; |
| } |
| |
| if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) != 0)) { |
| dma_enable = dma_enable & 0xfffffffd; |
| } |
| //stop dma |
| if ((dma_enable == 0) && ((adapter->dma_status & 4) != 0)) { |
| ctrl_enable_receive_data(adapter, 0); |
| |
| udelay(3000); |
| } |
| //disable dma1 |
| if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) != 0) && (adapter->dmaq1.bus_addr != 0)) { |
| write_reg_dw(adapter, 0x000, adapter->dmaq1.bus_addr); |
| write_reg_dw(adapter, 0x00c, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1); |
| |
| adapter->dma_status = adapter->dma_status & ~0x00000001; |
| } |
| //disable dma2 |
| if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) != 0) && (adapter->dmaq2.bus_addr != 0)) { |
| write_reg_dw(adapter, 0x010, adapter->dmaq2.bus_addr); |
| |
| adapter->dma_status = adapter->dma_status & ~0x00000002; |
| } |
| } |
| } |
| |
| static void open_stream(struct adapter *adapter, u16 pid) |
| { |
| u32 dma_mask; |
| |
| ++adapter->capturing; |
| |
| filter_enable_mask_filter(adapter, 1); |
| |
| add_pid(adapter, pid); |
| |
| dprintk("%s: adapter->dma_status=%x\n", __FUNCTION__, adapter->dma_status); |
| |
| if ((adapter->dma_status & 7) != 7) { |
| dma_mask = 0; |
| |
| if (((adapter->dma_status & 0x10000000) != 0) && ((adapter->dma_status & 1) == 0)) { |
| dma_mask = dma_mask | 1; |
| |
| adapter->dmaq1.head = 0; |
| adapter->dmaq1.tail = 0; |
| |
| memset(adapter->dmaq1.buffer, 0, adapter->dmaq1.buffer_size); |
| } |
| |
| if (((adapter->dma_status & 0x20000000) != 0) && ((adapter->dma_status & 2) == 0)) { |
| dma_mask = dma_mask | 2; |
| |
| adapter->dmaq2.head = 0; |
| adapter->dmaq2.tail = 0; |
| } |
| |
| if (dma_mask != 0) { |
| irq_dma_enable_disable_irq(adapter, 1); |
| |
| dma_start_stop(adapter, dma_mask, 1); |
| } |
| } |
| } |
| |
| static void close_stream(struct adapter *adapter, u16 pid) |
| { |
| if (adapter->capturing > 0) |
| --adapter->capturing; |
| |
| dprintk("%s: dma_status=%x\n", __FUNCTION__, adapter->dma_status); |
| |
| if (adapter->capturing == 0) { |
| u32 dma_mask = 0; |
| |
| if ((adapter->dma_status & 1) != 0) |
| dma_mask = dma_mask | 0x00000001; |
| if ((adapter->dma_status & 2) != 0) |
| dma_mask = dma_mask | 0x00000002; |
| |
| if (dma_mask != 0) { |
| dma_start_stop(adapter, dma_mask, 0); |
| } |
| } |
| remove_pid(adapter, pid); |
| } |
| |
| static void interrupt_service_dma1(struct adapter *adapter) |
| { |
| struct dvb_demux *dvbdmx = &adapter->demux; |
| |
| int n_cur_dma_counter; |
| u32 n_num_bytes_parsed; |
| u32 n_num_new_bytes_transferred; |
| u32 dw_default_packet_size = 188; |
| u8 gb_tmp_buffer[188]; |
| u8 *pb_dma_buf_cur_pos; |
| |
| n_cur_dma_counter = readl(adapter->io_mem + 0x008) - adapter->dmaq1.bus_addr; |
| n_cur_dma_counter = (n_cur_dma_counter / dw_default_packet_size) * dw_default_packet_size; |
| |
| if ((n_cur_dma_counter < 0) || (n_cur_dma_counter > adapter->dmaq1.buffer_size)) { |
| dprintk("%s: dma counter outside dma buffer\n", __FUNCTION__); |
| return; |
| } |
| |
| adapter->dmaq1.head = n_cur_dma_counter; |
| |
| if (adapter->dmaq1.tail <= n_cur_dma_counter) { |
| n_num_new_bytes_transferred = n_cur_dma_counter - adapter->dmaq1.tail; |
| |
| } else { |
| |
| n_num_new_bytes_transferred = (adapter->dmaq1.buffer_size - adapter->dmaq1.tail) + n_cur_dma_counter; |
| } |
| |
| ddprintk("%s: n_cur_dma_counter = %d\n", __FUNCTION__, n_cur_dma_counter); |
| ddprintk("%s: dmaq1.tail = %d\n", __FUNCTION__, adapter->dmaq1.tail); |
| ddprintk("%s: bytes_transferred = %d\n", __FUNCTION__, n_num_new_bytes_transferred); |
| |
| if (n_num_new_bytes_transferred < dw_default_packet_size) |
| return; |
| |
| n_num_bytes_parsed = 0; |
| |
| while (n_num_bytes_parsed < n_num_new_bytes_transferred) { |
| pb_dma_buf_cur_pos = adapter->dmaq1.buffer + adapter->dmaq1.tail; |
| |
| if (adapter->dmaq1.buffer + adapter->dmaq1.buffer_size < adapter->dmaq1.buffer + adapter->dmaq1.tail + 188) { |
| memcpy(gb_tmp_buffer, adapter->dmaq1.buffer + adapter->dmaq1.tail, |
| adapter->dmaq1.buffer_size - adapter->dmaq1.tail); |
| memcpy(gb_tmp_buffer + (adapter->dmaq1.buffer_size - adapter->dmaq1.tail), adapter->dmaq1.buffer, |
| (188 - (adapter->dmaq1.buffer_size - adapter->dmaq1.tail))); |
| |
| pb_dma_buf_cur_pos = gb_tmp_buffer; |
| } |
| |
| if (adapter->capturing != 0) { |
| dvb_dmx_swfilter_packets(dvbdmx, pb_dma_buf_cur_pos, dw_default_packet_size / 188); |
| } |
| |
| n_num_bytes_parsed = n_num_bytes_parsed + dw_default_packet_size; |
| |
| adapter->dmaq1.tail = adapter->dmaq1.tail + dw_default_packet_size; |
| |
| if (adapter->dmaq1.tail >= adapter->dmaq1.buffer_size) |
| adapter->dmaq1.tail = adapter->dmaq1.tail - adapter->dmaq1.buffer_size; |
| }; |
| } |
| |
| static void interrupt_service_dma2(struct adapter *adapter) |
| { |
| printk("%s:\n", __FUNCTION__); |
| } |
| |
| static irqreturn_t isr(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| struct adapter *tmp = dev_id; |
| |
| u32 value; |
| |
| ddprintk("%s:\n", __FUNCTION__); |
| |
| spin_lock_irq(&tmp->lock); |
| |
| if (0 == ((value = read_reg_dw(tmp, 0x20c)) & 0x0f)) { |
| spin_unlock_irq(&tmp->lock); |
| return IRQ_NONE; |
| } |
| |
| while (value != 0) { |
| if ((value & 0x03) != 0) |
| interrupt_service_dma1(tmp); |
| if ((value & 0x0c) != 0) |
| interrupt_service_dma2(tmp); |
| value = read_reg_dw(tmp, 0x20c) & 0x0f; |
| } |
| |
| spin_unlock_irq(&tmp->lock); |
| return IRQ_HANDLED; |
| } |
| |
| static int init_dma_queue_one(struct adapter *adapter, struct dmaq *dmaq, |
| int size, int dmaq_offset) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| dma_addr_t dma_addr; |
| |
| dmaq->head = 0; |
| dmaq->tail = 0; |
| |
| dmaq->buffer = pci_alloc_consistent(pdev, size + 0x80, &dma_addr); |
| if (!dmaq->buffer) |
| return -ENOMEM; |
| |
| dmaq->bus_addr = dma_addr; |
| dmaq->buffer_size = size; |
| |
| dma_init_dma(adapter, dmaq_offset); |
| |
| ddprintk("%s: allocated dma buffer at 0x%p, length=%d\n", |
| __FUNCTION__, dmaq->buffer, size); |
| |
| return 0; |
| } |
| |
| static int init_dma_queue(struct adapter *adapter) |
| { |
| struct { |
| struct dmaq *dmaq; |
| u32 dma_status; |
| int size; |
| } dmaq_desc[] = { |
| { &adapter->dmaq1, 0x10000000, SIZE_OF_BUF_DMA1 }, |
| { &adapter->dmaq2, 0x20000000, SIZE_OF_BUF_DMA2 } |
| }, *p = dmaq_desc; |
| int i; |
| |
| for (i = 0; i < 2; i++, p++) { |
| if (init_dma_queue_one(adapter, p->dmaq, p->size, i) < 0) |
| adapter->dma_status &= ~p->dma_status; |
| else |
| adapter->dma_status |= p->dma_status; |
| } |
| return (adapter->dma_status & 0x30000000) ? 0 : -ENOMEM; |
| } |
| |
| static void free_dma_queue_one(struct adapter *adapter, struct dmaq *dmaq) |
| { |
| if (dmaq->buffer) { |
| pci_free_consistent(adapter->pdev, dmaq->buffer_size + 0x80, |
| dmaq->buffer, dmaq->bus_addr); |
| memset(dmaq, 0, sizeof(*dmaq)); |
| } |
| } |
| |
| static void free_dma_queue(struct adapter *adapter) |
| { |
| struct dmaq *dmaq[] = { |
| &adapter->dmaq1, |
| &adapter->dmaq2, |
| NULL |
| }, **p; |
| |
| for (p = dmaq; *p; p++) |
| free_dma_queue_one(adapter, *p); |
| } |
| |
| static void release_adapter(struct adapter *adapter) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| |
| iounmap(adapter->io_mem); |
| pci_disable_device(pdev); |
| pci_release_region(pdev, 0); |
| pci_release_region(pdev, 1); |
| } |
| |
| static void free_adapter_object(struct adapter *adapter) |
| { |
| dprintk("%s:\n", __FUNCTION__); |
| |
| close_stream(adapter, 0); |
| free_irq(adapter->irq, adapter); |
| free_dma_queue(adapter); |
| release_adapter(adapter); |
| kfree(adapter); |
| } |
| |
| static struct pci_driver skystar2_pci_driver; |
| |
| static int claim_adapter(struct adapter *adapter) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| u16 var; |
| int ret; |
| |
| ret = pci_request_region(pdev, 1, skystar2_pci_driver.name); |
| if (ret < 0) |
| goto out; |
| |
| ret = pci_request_region(pdev, 0, skystar2_pci_driver.name); |
| if (ret < 0) |
| goto err_pci_release_1; |
| |
| pci_read_config_byte(pdev, PCI_CLASS_REVISION, &adapter->card_revision); |
| |
| dprintk("%s: card revision %x \n", __FUNCTION__, adapter->card_revision); |
| |
| ret = pci_enable_device(pdev); |
| if (ret < 0) |
| goto err_pci_release_0; |
| |
| pci_read_config_word(pdev, 4, &var); |
| |
| if ((var & 4) == 0) |
| pci_set_master(pdev); |
| |
| adapter->io_port = pdev->resource[1].start; |
| |
| adapter->io_mem = ioremap(pdev->resource[0].start, 0x800); |
| |
| if (!adapter->io_mem) { |
| dprintk("%s: can not map io memory\n", __FUNCTION__); |
| ret = -EIO; |
| goto err_pci_disable; |
| } |
| |
| dprintk("%s: io memory maped at %p\n", __FUNCTION__, adapter->io_mem); |
| |
| ret = 1; |
| out: |
| return ret; |
| |
| err_pci_disable: |
| pci_disable_device(pdev); |
| err_pci_release_0: |
| pci_release_region(pdev, 0); |
| err_pci_release_1: |
| pci_release_region(pdev, 1); |
| goto out; |
| } |
| |
| /* |
| static int sll_reset_flexcop(struct adapter *adapter) |
| { |
| write_reg_dw(adapter, 0x208, 0); |
| write_reg_dw(adapter, 0x210, 0xb2ff); |
| |
| return 0; |
| } |
| */ |
| |
| static void decide_how_many_hw_filters(struct adapter *adapter) |
| { |
| int hw_filters; |
| int mod_option_hw_filters; |
| |
| // FlexCop IIb & III have 6+32 hw filters |
| // FlexCop II has 6 hw filters, every other should have at least 6 |
| switch (adapter->b2c2_revision) { |
| case 0x82: /* II */ |
| hw_filters = 6; |
| break; |
| case 0xc3: /* IIB */ |
| hw_filters = 6 + 32; |
| break; |
| case 0xc0: /* III */ |
| hw_filters = 6 + 32; |
| break; |
| default: |
| hw_filters = 6; |
| break; |
| } |
| printk("%s: the chip has %i hardware filters", __FILE__, hw_filters); |
| |
| mod_option_hw_filters = 0; |
| if (enable_hw_filters >= 1) |
| mod_option_hw_filters += 6; |
| if (enable_hw_filters >= 2) |
| mod_option_hw_filters += 32; |
| |
| if (mod_option_hw_filters >= hw_filters) { |
| adapter->useable_hw_filters = hw_filters; |
| } else { |
| adapter->useable_hw_filters = mod_option_hw_filters; |
| printk(", but only %d will be used because of module option", mod_option_hw_filters); |
| } |
| printk("\n"); |
| dprintk("%s: useable_hardware_filters set to %i\n", __FILE__, adapter->useable_hw_filters); |
| } |
| |
| static int driver_initialize(struct pci_dev *pdev) |
| { |
| struct adapter *adapter; |
| u32 tmp; |
| int ret = -ENOMEM; |
| |
| adapter = kmalloc(sizeof(struct adapter), GFP_KERNEL); |
| if (!adapter) { |
| dprintk("%s: out of memory!\n", __FUNCTION__); |
| goto out; |
| } |
| |
| memset(adapter, 0, sizeof(struct adapter)); |
| |
| pci_set_drvdata(pdev,adapter); |
| |
| adapter->pdev = pdev; |
| adapter->irq = pdev->irq; |
| |
| ret = claim_adapter(adapter); |
| if (ret < 0) |
| goto err_kfree; |
| |
| irq_dma_enable_disable_irq(adapter, 0); |
| |
| ret = request_irq(pdev->irq, isr, 0x4000000, "Skystar2", adapter); |
| if (ret < 0) { |
| dprintk("%s: unable to allocate irq=%d !\n", __FUNCTION__, pdev->irq); |
| goto err_release_adapter; |
| } |
| |
| read_reg_dw(adapter, 0x208); |
| write_reg_dw(adapter, 0x208, 0); |
| write_reg_dw(adapter, 0x210, 0xb2ff); |
| write_reg_dw(adapter, 0x208, 0x40); |
| |
| ret = init_dma_queue(adapter); |
| if (ret < 0) |
| goto err_free_irq; |
| |
| adapter->b2c2_revision = (read_reg_dw(adapter, 0x204) >> 0x18); |
| |
| switch (adapter->b2c2_revision) { |
| case 0x82: |
| printk("%s: FlexCopII(rev.130) chip found\n", __FILE__); |
| break; |
| case 0xc3: |
| printk("%s: FlexCopIIB(rev.195) chip found\n", __FILE__); |
| break; |
| case 0xc0: |
| printk("%s: FlexCopIII(rev.192) chip found\n", __FILE__); |
| break; |
| default: |
| printk("%s: The revision of the FlexCop chip on your card is %d\n", __FILE__, adapter->b2c2_revision); |
| printk("%s: This driver works only with FlexCopII(rev.130), FlexCopIIB(rev.195) and FlexCopIII(rev.192).\n", __FILE__); |
| ret = -ENODEV; |
| goto err_free_dma_queue; |
| } |
| |
| decide_how_many_hw_filters(adapter); |
| |
| init_pids(adapter); |
| |
| tmp = read_reg_dw(adapter, 0x204); |
| |
| write_reg_dw(adapter, 0x204, 0); |
| mdelay(20); |
| |
| write_reg_dw(adapter, 0x204, tmp); |
| mdelay(10); |
| |
| tmp = read_reg_dw(adapter, 0x308); |
| write_reg_dw(adapter, 0x308, 0x4000 | tmp); |
| |
| adapter->dw_sram_type = 0x10000; |
| |
| sll_detect_sram_size(adapter); |
| |
| dprintk("%s sram length = %d, sram type= %x\n", __FUNCTION__, sram_length(adapter), adapter->dw_sram_type); |
| |
| sram_set_media_dest(adapter, 1); |
| sram_set_net_dest(adapter, 1); |
| |
| ctrl_enable_smc(adapter, 0); |
| |
| sram_set_cai_dest(adapter, 2); |
| sram_set_cao_dest(adapter, 2); |
| |
| dma_enable_disable_irq(adapter, 1, 0, 0); |
| |
| if (eeprom_get_mac_addr(adapter, 0, adapter->mac_addr) != 0) { |
| printk("%s MAC address = %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x \n", __FUNCTION__, adapter->mac_addr[0], |
| adapter->mac_addr[1], adapter->mac_addr[2], adapter->mac_addr[3], adapter->mac_addr[4], adapter->mac_addr[5], |
| adapter->mac_addr[6], adapter->mac_addr[7] |
| ); |
| |
| ca_set_mac_dst_addr_filter(adapter, adapter->mac_addr); |
| ctrl_enable_mac(adapter, 1); |
| } |
| |
| spin_lock_init(&adapter->lock); |
| |
| out: |
| return ret; |
| |
| err_free_dma_queue: |
| free_dma_queue(adapter); |
| err_free_irq: |
| free_irq(pdev->irq, adapter); |
| err_release_adapter: |
| release_adapter(adapter); |
| err_kfree: |
| pci_set_drvdata(pdev, NULL); |
| kfree(adapter); |
| goto out; |
| } |
| |
| static void driver_halt(struct pci_dev *pdev) |
| { |
| struct adapter *adapter = pci_get_drvdata(pdev); |
| |
| irq_dma_enable_disable_irq(adapter, 0); |
| |
| ctrl_enable_receive_data(adapter, 0); |
| |
| free_adapter_object(adapter); |
| |
| pci_set_drvdata(pdev, NULL); |
| } |
| |
| static int dvb_start_feed(struct dvb_demux_feed *dvbdmxfeed) |
| { |
| struct dvb_demux *dvbdmx = dvbdmxfeed->demux; |
| struct adapter *adapter = (struct adapter *) dvbdmx->priv; |
| |
| dprintk("%s: PID=%d, type=%d\n", __FUNCTION__, dvbdmxfeed->pid, dvbdmxfeed->type); |
| |
| open_stream(adapter, dvbdmxfeed->pid); |
| |
| return 0; |
| } |
| |
| static int dvb_stop_feed(struct dvb_demux_feed *dvbdmxfeed) |
| { |
| struct dvb_demux *dvbdmx = dvbdmxfeed->demux; |
| struct adapter *adapter = (struct adapter *) dvbdmx->priv; |
| |
| dprintk("%s: PID=%d, type=%d\n", __FUNCTION__, dvbdmxfeed->pid, dvbdmxfeed->type); |
| |
| close_stream(adapter, dvbdmxfeed->pid); |
| |
| return 0; |
| } |
| |
| /* lnb control */ |
| static void set_tuner_tone(struct adapter *adapter, u8 tone) |
| { |
| u16 wz_half_period_for_45_mhz[] = { 0x01ff, 0x0154, 0x00ff, 0x00cc }; |
| u16 ax; |
| |
| dprintk("%s: %u\n", __FUNCTION__, tone); |
| |
| switch (tone) { |
| case 1: |
| ax = wz_half_period_for_45_mhz[0]; |
| break; |
| case 2: |
| ax = wz_half_period_for_45_mhz[1]; |
| break; |
| case 3: |
| ax = wz_half_period_for_45_mhz[2]; |
| break; |
| case 4: |
| ax = wz_half_period_for_45_mhz[3]; |
| break; |
| |
| default: |
| ax = 0; |
| } |
| |
| if (ax != 0) { |
| write_reg_dw(adapter, 0x200, ((ax << 0x0f) + (ax & 0x7fff)) | 0x40000000); |
| |
| } else { |
| |
| write_reg_dw(adapter, 0x200, 0x40ff8000); |
| } |
| } |
| |
| static void set_tuner_polarity(struct adapter *adapter, u8 polarity) |
| { |
| u32 var; |
| |
| dprintk("%s : polarity = %u \n", __FUNCTION__, polarity); |
| |
| var = read_reg_dw(adapter, 0x204); |
| |
| if (polarity == 0) { |
| dprintk("%s: LNB power off\n", __FUNCTION__); |
| var = var | 1; |
| }; |
| |
| if (polarity == 1) { |
| var = var & ~1; |
| var = var & ~4; |
| }; |
| |
| if (polarity == 2) { |
| var = var & ~1; |
| var = var | 4; |
| } |
| |
| write_reg_dw(adapter, 0x204, var); |
| } |
| |
| static void diseqc_send_bit(struct adapter *adapter, int data) |
| { |
| set_tuner_tone(adapter, 1); |
| udelay(data ? 500 : 1000); |
| set_tuner_tone(adapter, 0); |
| udelay(data ? 1000 : 500); |
| } |
| |
| |
| static void diseqc_send_byte(struct adapter *adapter, int data) |
| { |
| int i, par = 1, d; |
| |
| for (i = 7; i >= 0; i--) { |
| d = (data >> i) & 1; |
| par ^= d; |
| diseqc_send_bit(adapter, d); |
| } |
| |
| diseqc_send_bit(adapter, par); |
| } |
| |
| |
| static int send_diseqc_msg(struct adapter *adapter, int len, u8 *msg, unsigned long burst) |
| { |
| int i; |
| |
| set_tuner_tone(adapter, 0); |
| mdelay(16); |
| |
| for (i = 0; i < len; i++) |
| diseqc_send_byte(adapter, msg[i]); |
| |
| mdelay(16); |
| |
| if (burst != -1) { |
| if (burst) |
| diseqc_send_byte(adapter, 0xff); |
| else { |
| set_tuner_tone(adapter, 1); |
| udelay(12500); |
| set_tuner_tone(adapter, 0); |
| } |
| msleep(20); |
| } |
| |
| return 0; |
| } |
| |
| static int flexcop_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone) |
| { |
| struct adapter* adapter = (struct adapter*) fe->dvb->priv; |
| |
| switch(tone) { |
| case SEC_TONE_ON: |
| set_tuner_tone(adapter, 1); |
| break; |
| case SEC_TONE_OFF: |
| set_tuner_tone(adapter, 0); |
| break; |
| default: |
| return -EINVAL; |
| }; |
| |
| return 0; |
| } |
| |
| static int flexcop_diseqc_send_master_cmd(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd* cmd) |
| { |
| struct adapter* adapter = (struct adapter*) fe->dvb->priv; |
| |
| send_diseqc_msg(adapter, cmd->msg_len, cmd->msg, 0); |
| |
| return 0; |
| } |
| |
| static int flexcop_diseqc_send_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t minicmd) |
| { |
| struct adapter* adapter = (struct adapter*) fe->dvb->priv; |
| |
| send_diseqc_msg(adapter, 0, NULL, minicmd); |
| |
| return 0; |
| } |
| |
| static int flexcop_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage) |
| { |
| struct adapter* adapter = (struct adapter*) fe->dvb->priv; |
| |
| dprintk("%s: FE_SET_VOLTAGE\n", __FUNCTION__); |
| |
| switch (voltage) { |
| case SEC_VOLTAGE_13: |
| dprintk("%s: SEC_VOLTAGE_13, %x\n", __FUNCTION__, SEC_VOLTAGE_13); |
| set_tuner_polarity(adapter, 1); |
| return 0; |
| |
| case SEC_VOLTAGE_18: |
| dprintk("%s: SEC_VOLTAGE_18, %x\n", __FUNCTION__, SEC_VOLTAGE_18); |
| set_tuner_polarity(adapter, 2); |
| return 0; |
| |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int flexcop_sleep(struct dvb_frontend* fe) |
| { |
| struct adapter* adapter = (struct adapter*) fe->dvb->priv; |
| |
| dprintk("%s: FE_SLEEP\n", __FUNCTION__); |
| set_tuner_polarity(adapter, 0); |
| |
| if (adapter->fe_sleep) return adapter->fe_sleep(fe); |
| return 0; |
| } |
| |
| static u32 flexcop_i2c_func(struct i2c_adapter *adapter) |
| { |
| printk("flexcop_i2c_func\n"); |
| |
| return I2C_FUNC_I2C; |
| } |
| |
| static struct i2c_algorithm flexcop_algo = { |
| .name = "flexcop i2c algorithm", |
| .id = I2C_ALGO_BIT, |
| .master_xfer = master_xfer, |
| .functionality = flexcop_i2c_func, |
| }; |
| |
| |
| |
| |
| static int samsung_tbmu24112_set_symbol_rate(struct dvb_frontend* fe, u32 srate, u32 ratio) |
| { |
| u8 aclk = 0; |
| u8 bclk = 0; |
| |
| if (srate < 1500000) { aclk = 0xb7; bclk = 0x47; } |
| else if (srate < 3000000) { aclk = 0xb7; bclk = 0x4b; } |
| else if (srate < 7000000) { aclk = 0xb7; bclk = 0x4f; } |
| else if (srate < 14000000) { aclk = 0xb7; bclk = 0x53; } |
| else if (srate < 30000000) { aclk = 0xb6; bclk = 0x53; } |
| else if (srate < 45000000) { aclk = 0xb4; bclk = 0x51; } |
| |
| stv0299_writereg (fe, 0x13, aclk); |
| stv0299_writereg (fe, 0x14, bclk); |
| stv0299_writereg (fe, 0x1f, (ratio >> 16) & 0xff); |
| stv0299_writereg (fe, 0x20, (ratio >> 8) & 0xff); |
| stv0299_writereg (fe, 0x21, (ratio ) & 0xf0); |
| |
| return 0; |
| } |
| |
| static int samsung_tbmu24112_pll_set(struct dvb_frontend* fe, struct dvb_frontend_parameters* params) |
| { |
| u8 buf[4]; |
| u32 div; |
| struct i2c_msg msg = { .addr = 0x61, .flags = 0, .buf = buf, .len = sizeof(buf) }; |
| struct adapter* adapter = (struct adapter*) fe->dvb->priv; |
| |
| div = params->frequency / 125; |
| |
| buf[0] = (div >> 8) & 0x7f; |
| buf[1] = div & 0xff; |
| buf[2] = 0x84; // 0xC4 |
| buf[3] = 0x08; |
| |
| if (params->frequency < 1500000) buf[3] |= 0x10; |
| |
| if (i2c_transfer (&adapter->i2c_adap, &msg, 1) != 1) return -EIO; |
| return 0; |
| } |
| |
| static u8 samsung_tbmu24112_inittab[] = { |
| 0x01, 0x15, |
| 0x02, 0x30, |
| 0x03, 0x00, |
| 0x04, 0x7D, |
| 0x05, 0x35, |
| 0x06, 0x02, |
| 0x07, 0x00, |
| 0x08, 0xC3, |
| 0x0C, 0x00, |
| 0x0D, 0x81, |
| 0x0E, 0x23, |
| 0x0F, 0x12, |
| 0x10, 0x7E, |
| 0x11, 0x84, |
| 0x12, 0xB9, |
| 0x13, 0x88, |
| 0x14, 0x89, |
| 0x15, 0xC9, |
| 0x16, 0x00, |
| 0x17, 0x5C, |
| 0x18, 0x00, |
| 0x19, 0x00, |
| 0x1A, 0x00, |
| 0x1C, 0x00, |
| 0x1D, 0x00, |
| 0x1E, 0x00, |
| 0x1F, 0x3A, |
| 0x20, 0x2E, |
| 0x21, 0x80, |
| 0x22, 0xFF, |
| 0x23, 0xC1, |
| 0x28, 0x00, |
| 0x29, 0x1E, |
| 0x2A, 0x14, |
| 0x2B, 0x0F, |
| 0x2C, 0x09, |
| 0x2D, 0x05, |
| 0x31, 0x1F, |
| 0x32, 0x19, |
| 0x33, 0xFE, |
| 0x34, 0x93, |
| 0xff, 0xff, |
| }; |
| |
| static struct stv0299_config samsung_tbmu24112_config = { |
| .demod_address = 0x68, |
| .inittab = samsung_tbmu24112_inittab, |
| .mclk = 88000000UL, |
| .invert = 0, |
| .enhanced_tuning = 0, |
| .skip_reinit = 0, |
| .lock_output = STV0229_LOCKOUTPUT_LK, |
| .volt13_op0_op1 = STV0299_VOLT13_OP1, |
| .min_delay_ms = 100, |
| .set_symbol_rate = samsung_tbmu24112_set_symbol_rate, |
| .pll_set = samsung_tbmu24112_pll_set, |
| }; |
| |
| |
| |
| static int nxt2002_request_firmware(struct dvb_frontend* fe, const struct firmware **fw, char* name) |
| { |
| struct adapter* adapter = (struct adapter*) fe->dvb->priv; |
| |
| return request_firmware(fw, name, &adapter->pdev->dev); |
| } |
| |
| |
| static struct nxt2002_config samsung_tbmv_config = { |
| .demod_address = 0x0A, |
| .request_firmware = nxt2002_request_firmware, |
| }; |
| |
| static int samsung_tdtc9251dh0_demod_init(struct dvb_frontend* fe) |
| { |
| static u8 mt352_clock_config [] = { 0x89, 0x18, 0x2d }; |
| static u8 mt352_reset [] = { 0x50, 0x80 }; |
| static u8 mt352_adc_ctl_1_cfg [] = { 0x8E, 0x40 }; |
| static u8 mt352_agc_cfg [] = { 0x67, 0x28, 0xa1 }; |
| static u8 mt352_capt_range_cfg[] = { 0x75, 0x32 }; |
| |
| mt352_write(fe, mt352_clock_config, sizeof(mt352_clock_config)); |
| udelay(2000); |
| mt352_write(fe, mt352_reset, sizeof(mt352_reset)); |
| mt352_write(fe, mt352_adc_ctl_1_cfg, sizeof(mt352_adc_ctl_1_cfg)); |
| |
| mt352_write(fe, mt352_agc_cfg, sizeof(mt352_agc_cfg)); |
| mt352_write(fe, mt352_capt_range_cfg, sizeof(mt352_capt_range_cfg)); |
| |
| return 0; |
| } |
| |
| static int samsung_tdtc9251dh0_pll_set(struct dvb_frontend* fe, struct dvb_frontend_parameters* params, u8* pllbuf) |
| { |
| u32 div; |
| unsigned char bs = 0; |
| |
| #define IF_FREQUENCYx6 217 /* 6 * 36.16666666667MHz */ |
| div = (((params->frequency + 83333) * 3) / 500000) + IF_FREQUENCYx6; |
| |
| if (params->frequency >= 48000000 && params->frequency <= 154000000) bs = 0x09; |
| if (params->frequency >= 161000000 && params->frequency <= 439000000) bs = 0x0a; |
| if (params->frequency >= 447000000 && params->frequency <= 863000000) bs = 0x08; |
| |
| pllbuf[0] = 0xc2; // Note: non-linux standard PLL i2c address |
| pllbuf[1] = div >> 8; |
| pllbuf[2] = div & 0xff; |
| pllbuf[3] = 0xcc; |
| pllbuf[4] = bs; |
| |
| return 0; |
| } |
| |
| static struct mt352_config samsung_tdtc9251dh0_config = { |
| |
| .demod_address = 0x0f, |
| .demod_init = samsung_tdtc9251dh0_demod_init, |
| .pll_set = samsung_tdtc9251dh0_pll_set, |
| }; |
| |
| static int skystar23_samsung_tbdu18132_pll_set(struct dvb_frontend* fe, struct dvb_frontend_parameters* params) |
| { |
| u8 buf[4]; |
| u32 div; |
| struct i2c_msg msg = { .addr = 0x61, .flags = 0, .buf = buf, .len = sizeof(buf) }; |
| struct adapter* adapter = (struct adapter*) fe->dvb->priv; |
| |
| div = (params->frequency + (125/2)) / 125; |
| |
| buf[0] = (div >> 8) & 0x7f; |
| buf[1] = (div >> 0) & 0xff; |
| buf[2] = 0x84 | ((div >> 10) & 0x60); |
| buf[3] = 0x80; |
| |
| if (params->frequency < 1550000) |
| buf[3] |= 0x02; |
| |
| if (i2c_transfer (&adapter->i2c_adap, &msg, 1) != 1) return -EIO; |
| return 0; |
| } |
| |
| static struct mt312_config skystar23_samsung_tbdu18132_config = { |
| |
| .demod_address = 0x0e, |
| .pll_set = skystar23_samsung_tbdu18132_pll_set, |
| }; |
| |
| |
| |
| |
| static void frontend_init(struct adapter *skystar2) |
| { |
| switch(skystar2->pdev->device) { |
| case 0x2103: // Technisat Skystar2 OR Technisat Airstar2 (DVB-T or ATSC) |
| |
| // Attempt to load the Nextwave nxt2002 for ATSC support |
| skystar2->fe = nxt2002_attach(&samsung_tbmv_config, &skystar2->i2c_adap); |
| if (skystar2->fe != NULL) { |
| skystar2->fe_sleep = skystar2->fe->ops->sleep; |
| skystar2->fe->ops->sleep = flexcop_sleep; |
| break; |
| } |
| |
| // try the skystar2 v2.6 first (stv0299/Samsung tbmu24112(sl1935)) |
| skystar2->fe = stv0299_attach(&samsung_tbmu24112_config, &skystar2->i2c_adap); |
| if (skystar2->fe != NULL) { |
| skystar2->fe->ops->set_voltage = flexcop_set_voltage; |
| skystar2->fe_sleep = skystar2->fe->ops->sleep; |
| skystar2->fe->ops->sleep = flexcop_sleep; |
| break; |
| } |
| |
| // try the airstar2 (mt352/Samsung tdtc9251dh0(??)) |
| skystar2->fe = mt352_attach(&samsung_tdtc9251dh0_config, &skystar2->i2c_adap); |
| if (skystar2->fe != NULL) { |
| skystar2->fe->ops->info.frequency_min = 474000000; |
| skystar2->fe->ops->info.frequency_max = 858000000; |
| break; |
| } |
| |
| // try the skystar2 v2.3 (vp310/Samsung tbdu18132(tsa5059)) |
| skystar2->fe = vp310_attach(&skystar23_samsung_tbdu18132_config, &skystar2->i2c_adap); |
| if (skystar2->fe != NULL) { |
| skystar2->fe->ops->diseqc_send_master_cmd = flexcop_diseqc_send_master_cmd; |
| skystar2->fe->ops->diseqc_send_burst = flexcop_diseqc_send_burst; |
| skystar2->fe->ops->set_tone = flexcop_set_tone; |
| skystar2->fe->ops->set_voltage = flexcop_set_voltage; |
| skystar2->fe_sleep = skystar2->fe->ops->sleep; |
| skystar2->fe->ops->sleep = flexcop_sleep; |
| break; |
| } |
| break; |
| } |
| |
| if (skystar2->fe == NULL) { |
| printk("skystar2: A frontend driver was not found for device %04x/%04x subsystem %04x/%04x\n", |
| skystar2->pdev->vendor, |
| skystar2->pdev->device, |
| skystar2->pdev->subsystem_vendor, |
| skystar2->pdev->subsystem_device); |
| } else { |
| if (dvb_register_frontend(skystar2->dvb_adapter, skystar2->fe)) { |
| printk("skystar2: Frontend registration failed!\n"); |
| if (skystar2->fe->ops->release) |
| skystar2->fe->ops->release(skystar2->fe); |
| skystar2->fe = NULL; |
| } |
| } |
| } |
| |
| |
| static int skystar2_probe(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| struct adapter *adapter; |
| struct dvb_adapter *dvb_adapter; |
| struct dvb_demux *dvbdemux; |
| struct dmx_demux *dmx; |
| int ret = -ENODEV; |
| |
| if (!pdev) |
| goto out; |
| |
| ret = driver_initialize(pdev); |
| if (ret < 0) |
| goto out; |
| |
| ret = dvb_register_adapter(&dvb_adapter, skystar2_pci_driver.name, |
| THIS_MODULE); |
| if (ret < 0) { |
| printk("%s: Error registering DVB adapter\n", __FUNCTION__); |
| goto err_halt; |
| } |
| |
| adapter = pci_get_drvdata(pdev); |
| |
| dvb_adapter->priv = adapter; |
| adapter->dvb_adapter = dvb_adapter; |
| |
| |
| init_MUTEX(&adapter->i2c_sem); |
| |
| |
| memset(&adapter->i2c_adap, 0, sizeof(struct i2c_adapter)); |
| strcpy(adapter->i2c_adap.name, "SkyStar2"); |
| |
| i2c_set_adapdata(&adapter->i2c_adap, adapter); |
| |
| #ifdef I2C_ADAP_CLASS_TV_DIGITAL |
| adapter->i2c_adap.class = I2C_ADAP_CLASS_TV_DIGITAL; |
| #else |
| adapter->i2c_adap.class = I2C_CLASS_TV_DIGITAL; |
| #endif |
| adapter->i2c_adap.algo = &flexcop_algo; |
| adapter->i2c_adap.algo_data = NULL; |
| adapter->i2c_adap.id = I2C_ALGO_BIT; |
| |
| ret = i2c_add_adapter(&adapter->i2c_adap); |
| if (ret < 0) |
| goto err_dvb_unregister; |
| |
| dvbdemux = &adapter->demux; |
| |
| dvbdemux->priv = adapter; |
| dvbdemux->filternum = N_PID_SLOTS; |
| dvbdemux->feednum = N_PID_SLOTS; |
| dvbdemux->start_feed = dvb_start_feed; |
| dvbdemux->stop_feed = dvb_stop_feed; |
| dvbdemux->write_to_decoder = NULL; |
| dvbdemux->dmx.capabilities = (DMX_TS_FILTERING | DMX_SECTION_FILTERING | DMX_MEMORY_BASED_FILTERING); |
| |
| ret = dvb_dmx_init(&adapter->demux); |
| if (ret < 0) |
| goto err_i2c_del; |
| |
| dmx = &dvbdemux->dmx; |
| |
| adapter->hw_frontend.source = DMX_FRONTEND_0; |
| adapter->dmxdev.filternum = N_PID_SLOTS; |
| adapter->dmxdev.demux = dmx; |
| adapter->dmxdev.capabilities = 0; |
| |
| ret = dvb_dmxdev_init(&adapter->dmxdev, adapter->dvb_adapter); |
| if (ret < 0) |
| goto err_dmx_release; |
| |
| ret = dmx->add_frontend(dmx, &adapter->hw_frontend); |
| if (ret < 0) |
| goto err_dmxdev_release; |
| |
| adapter->mem_frontend.source = DMX_MEMORY_FE; |
| |
| ret = dmx->add_frontend(dmx, &adapter->mem_frontend); |
| if (ret < 0) |
| goto err_remove_hw_frontend; |
| |
| ret = dmx->connect_frontend(dmx, &adapter->hw_frontend); |
| if (ret < 0) |
| goto err_remove_mem_frontend; |
| |
| dvb_net_init(adapter->dvb_adapter, &adapter->dvbnet, &dvbdemux->dmx); |
| |
| frontend_init(adapter); |
| out: |
| return ret; |
| |
| err_remove_mem_frontend: |
| dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &adapter->mem_frontend); |
| err_remove_hw_frontend: |
| dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &adapter->hw_frontend); |
| err_dmxdev_release: |
| dvb_dmxdev_release(&adapter->dmxdev); |
| err_dmx_release: |
| dvb_dmx_release(&adapter->demux); |
| err_i2c_del: |
| i2c_del_adapter(&adapter->i2c_adap); |
| err_dvb_unregister: |
| dvb_unregister_adapter(adapter->dvb_adapter); |
| err_halt: |
| driver_halt(pdev); |
| goto out; |
| } |
| |
| static void skystar2_remove(struct pci_dev *pdev) |
| { |
| struct adapter *adapter = pci_get_drvdata(pdev); |
| struct dvb_demux *dvbdemux; |
| struct dmx_demux *dmx; |
| |
| if (!adapter) |
| return; |
| |
| dvb_net_release(&adapter->dvbnet); |
| dvbdemux = &adapter->demux; |
| dmx = &dvbdemux->dmx; |
| |
| dmx->close(dmx); |
| dmx->remove_frontend(dmx, &adapter->hw_frontend); |
| dmx->remove_frontend(dmx, &adapter->mem_frontend); |
| |
| dvb_dmxdev_release(&adapter->dmxdev); |
| dvb_dmx_release(dvbdemux); |
| |
| if (adapter->fe != NULL) |
| dvb_unregister_frontend(adapter->fe); |
| |
| dvb_unregister_adapter(adapter->dvb_adapter); |
| |
| i2c_del_adapter(&adapter->i2c_adap); |
| |
| driver_halt(pdev); |
| } |
| |
| static struct pci_device_id skystar2_pci_tbl[] = { |
| {0x000013d0, 0x00002103, 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x00000000}, |
| /* {0x000013d0, 0x00002200, 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x00000000}, UNDEFINED HARDWARE - mail linuxtv.org list */ //FCIII |
| {0,}, |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, skystar2_pci_tbl); |
| |
| static struct pci_driver skystar2_pci_driver = { |
| .name = "SkyStar2", |
| .id_table = skystar2_pci_tbl, |
| .probe = skystar2_probe, |
| .remove = skystar2_remove, |
| }; |
| |
| static int skystar2_init(void) |
| { |
| return pci_register_driver(&skystar2_pci_driver); |
| } |
| |
| static void skystar2_cleanup(void) |
| { |
| pci_unregister_driver(&skystar2_pci_driver); |
| } |
| |
| module_init(skystar2_init); |
| module_exit(skystar2_cleanup); |
| |
| MODULE_DESCRIPTION("Technisat SkyStar2 DVB PCI Driver"); |
| MODULE_LICENSE("GPL"); |