| /* $Id: elsa_ser.c,v 2.14.2.3 2004/02/11 13:21:33 keil Exp $ |
| * |
| * stuff for the serial modem on ELSA cards |
| * |
| * This software may be used and distributed according to the terms |
| * of the GNU General Public License, incorporated herein by reference. |
| * |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/serial.h> |
| #include <linux/serial_reg.h> |
| |
| #define MAX_MODEM_BUF 256 |
| #define WAKEUP_CHARS (MAX_MODEM_BUF/2) |
| #define RS_ISR_PASS_LIMIT 256 |
| #define BASE_BAUD ( 1843200 / 16 ) |
| |
| //#define SERIAL_DEBUG_OPEN 1 |
| //#define SERIAL_DEBUG_INTR 1 |
| //#define SERIAL_DEBUG_FLOW 1 |
| #undef SERIAL_DEBUG_OPEN |
| #undef SERIAL_DEBUG_INTR |
| #undef SERIAL_DEBUG_FLOW |
| #undef SERIAL_DEBUG_REG |
| //#define SERIAL_DEBUG_REG 1 |
| |
| #ifdef SERIAL_DEBUG_REG |
| static u_char deb[32]; |
| const char *ModemIn[] = {"RBR","IER","IIR","LCR","MCR","LSR","MSR","SCR"}; |
| const char *ModemOut[] = {"THR","IER","FCR","LCR","MCR","LSR","MSR","SCR"}; |
| #endif |
| |
| static char *MInit_1 = "AT&F&C1E0&D2\r\0"; |
| static char *MInit_2 = "ATL2M1S64=13\r\0"; |
| static char *MInit_3 = "AT+FCLASS=0\r\0"; |
| static char *MInit_4 = "ATV1S2=128X1\r\0"; |
| static char *MInit_5 = "AT\\V8\\N3\r\0"; |
| static char *MInit_6 = "ATL0M0&G0%E1\r\0"; |
| static char *MInit_7 = "AT%L1%M0%C3\r\0"; |
| |
| static char *MInit_speed28800 = "AT%G0%B28800\r\0"; |
| |
| static char *MInit_dialout = "ATs7=60 x1 d\r\0"; |
| static char *MInit_dialin = "ATs7=60 x1 a\r\0"; |
| |
| |
| static inline unsigned int serial_in(struct IsdnCardState *cs, int offset) |
| { |
| #ifdef SERIAL_DEBUG_REG |
| u_int val = inb(cs->hw.elsa.base + 8 + offset); |
| debugl1(cs,"in %s %02x",ModemIn[offset], val); |
| return(val); |
| #else |
| return inb(cs->hw.elsa.base + 8 + offset); |
| #endif |
| } |
| |
| static inline unsigned int serial_inp(struct IsdnCardState *cs, int offset) |
| { |
| #ifdef SERIAL_DEBUG_REG |
| #ifdef CONFIG_SERIAL_NOPAUSE_IO |
| u_int val = inb(cs->hw.elsa.base + 8 + offset); |
| debugl1(cs,"inp %s %02x",ModemIn[offset], val); |
| #else |
| u_int val = inb_p(cs->hw.elsa.base + 8 + offset); |
| debugl1(cs,"inP %s %02x",ModemIn[offset], val); |
| #endif |
| return(val); |
| #else |
| #ifdef CONFIG_SERIAL_NOPAUSE_IO |
| return inb(cs->hw.elsa.base + 8 + offset); |
| #else |
| return inb_p(cs->hw.elsa.base + 8 + offset); |
| #endif |
| #endif |
| } |
| |
| static inline void serial_out(struct IsdnCardState *cs, int offset, int value) |
| { |
| #ifdef SERIAL_DEBUG_REG |
| debugl1(cs,"out %s %02x",ModemOut[offset], value); |
| #endif |
| outb(value, cs->hw.elsa.base + 8 + offset); |
| } |
| |
| static inline void serial_outp(struct IsdnCardState *cs, int offset, |
| int value) |
| { |
| #ifdef SERIAL_DEBUG_REG |
| #ifdef CONFIG_SERIAL_NOPAUSE_IO |
| debugl1(cs,"outp %s %02x",ModemOut[offset], value); |
| #else |
| debugl1(cs,"outP %s %02x",ModemOut[offset], value); |
| #endif |
| #endif |
| #ifdef CONFIG_SERIAL_NOPAUSE_IO |
| outb(value, cs->hw.elsa.base + 8 + offset); |
| #else |
| outb_p(value, cs->hw.elsa.base + 8 + offset); |
| #endif |
| } |
| |
| /* |
| * This routine is called to set the UART divisor registers to match |
| * the specified baud rate for a serial port. |
| */ |
| static void change_speed(struct IsdnCardState *cs, int baud) |
| { |
| int quot = 0, baud_base; |
| unsigned cval, fcr = 0; |
| int bits; |
| |
| |
| /* byte size and parity */ |
| cval = 0x03; bits = 10; |
| /* Determine divisor based on baud rate */ |
| baud_base = BASE_BAUD; |
| quot = baud_base / baud; |
| /* If the quotient is ever zero, default to 9600 bps */ |
| if (!quot) |
| quot = baud_base / 9600; |
| |
| /* Set up FIFO's */ |
| if ((baud_base / quot) < 2400) |
| fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_1; |
| else |
| fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_8; |
| serial_outp(cs, UART_FCR, fcr); |
| /* CTS flow control flag and modem status interrupts */ |
| cs->hw.elsa.IER &= ~UART_IER_MSI; |
| cs->hw.elsa.IER |= UART_IER_MSI; |
| serial_outp(cs, UART_IER, cs->hw.elsa.IER); |
| |
| debugl1(cs,"modem quot=0x%x", quot); |
| serial_outp(cs, UART_LCR, cval | UART_LCR_DLAB);/* set DLAB */ |
| serial_outp(cs, UART_DLL, quot & 0xff); /* LS of divisor */ |
| serial_outp(cs, UART_DLM, quot >> 8); /* MS of divisor */ |
| serial_outp(cs, UART_LCR, cval); /* reset DLAB */ |
| serial_inp(cs, UART_RX); |
| } |
| |
| static int mstartup(struct IsdnCardState *cs) |
| { |
| int retval=0; |
| |
| /* |
| * Clear the FIFO buffers and disable them |
| * (they will be reenabled in change_speed()) |
| */ |
| serial_outp(cs, UART_FCR, (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT)); |
| |
| /* |
| * At this point there's no way the LSR could still be 0xFF; |
| * if it is, then bail out, because there's likely no UART |
| * here. |
| */ |
| if (serial_inp(cs, UART_LSR) == 0xff) { |
| retval = -ENODEV; |
| goto errout; |
| } |
| |
| /* |
| * Clear the interrupt registers. |
| */ |
| (void) serial_inp(cs, UART_RX); |
| (void) serial_inp(cs, UART_IIR); |
| (void) serial_inp(cs, UART_MSR); |
| |
| /* |
| * Now, initialize the UART |
| */ |
| serial_outp(cs, UART_LCR, UART_LCR_WLEN8); /* reset DLAB */ |
| |
| cs->hw.elsa.MCR = 0; |
| cs->hw.elsa.MCR = UART_MCR_DTR | UART_MCR_RTS | UART_MCR_OUT2; |
| serial_outp(cs, UART_MCR, cs->hw.elsa.MCR); |
| |
| /* |
| * Finally, enable interrupts |
| */ |
| cs->hw.elsa.IER = UART_IER_MSI | UART_IER_RLSI | UART_IER_RDI; |
| serial_outp(cs, UART_IER, cs->hw.elsa.IER); /* enable interrupts */ |
| |
| /* |
| * And clear the interrupt registers again for luck. |
| */ |
| (void)serial_inp(cs, UART_LSR); |
| (void)serial_inp(cs, UART_RX); |
| (void)serial_inp(cs, UART_IIR); |
| (void)serial_inp(cs, UART_MSR); |
| |
| cs->hw.elsa.transcnt = cs->hw.elsa.transp = 0; |
| cs->hw.elsa.rcvcnt = cs->hw.elsa.rcvp =0; |
| |
| /* |
| * and set the speed of the serial port |
| */ |
| change_speed(cs, BASE_BAUD); |
| cs->hw.elsa.MFlag = 1; |
| errout: |
| return retval; |
| } |
| |
| /* |
| * This routine will shutdown a serial port; interrupts are disabled, and |
| * DTR is dropped if the hangup on close termio flag is on. |
| */ |
| static void mshutdown(struct IsdnCardState *cs) |
| { |
| |
| #ifdef SERIAL_DEBUG_OPEN |
| printk(KERN_DEBUG"Shutting down serial ...."); |
| #endif |
| |
| /* |
| * clear delta_msr_wait queue to avoid mem leaks: we may free the irq |
| * here so the queue might never be waken up |
| */ |
| |
| cs->hw.elsa.IER = 0; |
| serial_outp(cs, UART_IER, 0x00); /* disable all intrs */ |
| cs->hw.elsa.MCR &= ~UART_MCR_OUT2; |
| |
| /* disable break condition */ |
| serial_outp(cs, UART_LCR, serial_inp(cs, UART_LCR) & ~UART_LCR_SBC); |
| |
| cs->hw.elsa.MCR &= ~(UART_MCR_DTR|UART_MCR_RTS); |
| serial_outp(cs, UART_MCR, cs->hw.elsa.MCR); |
| |
| /* disable FIFO's */ |
| serial_outp(cs, UART_FCR, (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT)); |
| serial_inp(cs, UART_RX); /* read data port to reset things */ |
| |
| #ifdef SERIAL_DEBUG_OPEN |
| printk(" done\n"); |
| #endif |
| } |
| |
| inline int |
| write_modem(struct BCState *bcs) { |
| int ret=0; |
| struct IsdnCardState *cs = bcs->cs; |
| int count, len, fp; |
| |
| if (!bcs->tx_skb) |
| return 0; |
| if (bcs->tx_skb->len <= 0) |
| return 0; |
| len = bcs->tx_skb->len; |
| if (len > MAX_MODEM_BUF - cs->hw.elsa.transcnt) |
| len = MAX_MODEM_BUF - cs->hw.elsa.transcnt; |
| fp = cs->hw.elsa.transcnt + cs->hw.elsa.transp; |
| fp &= (MAX_MODEM_BUF -1); |
| count = len; |
| if (count > MAX_MODEM_BUF - fp) { |
| count = MAX_MODEM_BUF - fp; |
| memcpy(cs->hw.elsa.transbuf + fp, bcs->tx_skb->data, count); |
| skb_pull(bcs->tx_skb, count); |
| cs->hw.elsa.transcnt += count; |
| ret = count; |
| count = len - count; |
| fp = 0; |
| } |
| memcpy((cs->hw.elsa.transbuf + fp), bcs->tx_skb->data, count); |
| skb_pull(bcs->tx_skb, count); |
| cs->hw.elsa.transcnt += count; |
| ret += count; |
| |
| if (cs->hw.elsa.transcnt && |
| !(cs->hw.elsa.IER & UART_IER_THRI)) { |
| cs->hw.elsa.IER |= UART_IER_THRI; |
| serial_outp(cs, UART_IER, cs->hw.elsa.IER); |
| } |
| return(ret); |
| } |
| |
| inline void |
| modem_fill(struct BCState *bcs) { |
| |
| if (bcs->tx_skb) { |
| if (bcs->tx_skb->len) { |
| write_modem(bcs); |
| return; |
| } else { |
| if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) && |
| (PACKET_NOACK != bcs->tx_skb->pkt_type)) { |
| u_long flags; |
| spin_lock_irqsave(&bcs->aclock, flags); |
| bcs->ackcnt += bcs->hw.hscx.count; |
| spin_unlock_irqrestore(&bcs->aclock, flags); |
| schedule_event(bcs, B_ACKPENDING); |
| } |
| dev_kfree_skb_any(bcs->tx_skb); |
| bcs->tx_skb = NULL; |
| } |
| } |
| if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) { |
| bcs->hw.hscx.count = 0; |
| test_and_set_bit(BC_FLG_BUSY, &bcs->Flag); |
| write_modem(bcs); |
| } else { |
| test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); |
| schedule_event(bcs, B_XMTBUFREADY); |
| } |
| } |
| |
| static inline void receive_chars(struct IsdnCardState *cs, |
| int *status) |
| { |
| unsigned char ch; |
| struct sk_buff *skb; |
| |
| do { |
| ch = serial_in(cs, UART_RX); |
| if (cs->hw.elsa.rcvcnt >= MAX_MODEM_BUF) |
| break; |
| cs->hw.elsa.rcvbuf[cs->hw.elsa.rcvcnt++] = ch; |
| #ifdef SERIAL_DEBUG_INTR |
| printk("DR%02x:%02x...", ch, *status); |
| #endif |
| if (*status & (UART_LSR_BI | UART_LSR_PE | |
| UART_LSR_FE | UART_LSR_OE)) { |
| |
| #ifdef SERIAL_DEBUG_INTR |
| printk("handling exept...."); |
| #endif |
| } |
| *status = serial_inp(cs, UART_LSR); |
| } while (*status & UART_LSR_DR); |
| if (cs->hw.elsa.MFlag == 2) { |
| if (!(skb = dev_alloc_skb(cs->hw.elsa.rcvcnt))) |
| printk(KERN_WARNING "ElsaSER: receive out of memory\n"); |
| else { |
| memcpy(skb_put(skb, cs->hw.elsa.rcvcnt), cs->hw.elsa.rcvbuf, |
| cs->hw.elsa.rcvcnt); |
| skb_queue_tail(& cs->hw.elsa.bcs->rqueue, skb); |
| } |
| schedule_event(cs->hw.elsa.bcs, B_RCVBUFREADY); |
| } else { |
| char tmp[128]; |
| char *t = tmp; |
| |
| t += sprintf(t, "modem read cnt %d", cs->hw.elsa.rcvcnt); |
| QuickHex(t, cs->hw.elsa.rcvbuf, cs->hw.elsa.rcvcnt); |
| debugl1(cs, tmp); |
| } |
| cs->hw.elsa.rcvcnt = 0; |
| } |
| |
| static inline void transmit_chars(struct IsdnCardState *cs, int *intr_done) |
| { |
| int count; |
| |
| debugl1(cs, "transmit_chars: p(%x) cnt(%x)", cs->hw.elsa.transp, |
| cs->hw.elsa.transcnt); |
| |
| if (cs->hw.elsa.transcnt <= 0) { |
| cs->hw.elsa.IER &= ~UART_IER_THRI; |
| serial_out(cs, UART_IER, cs->hw.elsa.IER); |
| return; |
| } |
| count = 16; |
| do { |
| serial_outp(cs, UART_TX, cs->hw.elsa.transbuf[cs->hw.elsa.transp++]); |
| if (cs->hw.elsa.transp >= MAX_MODEM_BUF) |
| cs->hw.elsa.transp=0; |
| if (--cs->hw.elsa.transcnt <= 0) |
| break; |
| } while (--count > 0); |
| if ((cs->hw.elsa.transcnt < WAKEUP_CHARS) && (cs->hw.elsa.MFlag==2)) |
| modem_fill(cs->hw.elsa.bcs); |
| |
| #ifdef SERIAL_DEBUG_INTR |
| printk("THRE..."); |
| #endif |
| if (intr_done) |
| *intr_done = 0; |
| if (cs->hw.elsa.transcnt <= 0) { |
| cs->hw.elsa.IER &= ~UART_IER_THRI; |
| serial_outp(cs, UART_IER, cs->hw.elsa.IER); |
| } |
| } |
| |
| |
| static void rs_interrupt_elsa(int irq, struct IsdnCardState *cs) |
| { |
| int status, iir, msr; |
| int pass_counter = 0; |
| |
| #ifdef SERIAL_DEBUG_INTR |
| printk("rs_interrupt_single(%d)...", irq); |
| #endif |
| |
| do { |
| status = serial_inp(cs, UART_LSR); |
| debugl1(cs,"rs LSR %02x", status); |
| #ifdef SERIAL_DEBUG_INTR |
| printk("status = %x...", status); |
| #endif |
| if (status & UART_LSR_DR) |
| receive_chars(cs, &status); |
| if (status & UART_LSR_THRE) |
| transmit_chars(cs, NULL); |
| if (pass_counter++ > RS_ISR_PASS_LIMIT) { |
| printk("rs_single loop break.\n"); |
| break; |
| } |
| iir = serial_inp(cs, UART_IIR); |
| debugl1(cs,"rs IIR %02x", iir); |
| if ((iir & 0xf) == 0) { |
| msr = serial_inp(cs, UART_MSR); |
| debugl1(cs,"rs MSR %02x", msr); |
| } |
| } while (!(iir & UART_IIR_NO_INT)); |
| #ifdef SERIAL_DEBUG_INTR |
| printk("end.\n"); |
| #endif |
| } |
| |
| extern int open_hscxstate(struct IsdnCardState *cs, struct BCState *bcs); |
| extern void modehscx(struct BCState *bcs, int mode, int bc); |
| extern void hscx_l2l1(struct PStack *st, int pr, void *arg); |
| |
| void |
| close_elsastate(struct BCState *bcs) |
| { |
| modehscx(bcs, 0, bcs->channel); |
| if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) { |
| if (bcs->hw.hscx.rcvbuf) { |
| if (bcs->mode != L1_MODE_MODEM) |
| kfree(bcs->hw.hscx.rcvbuf); |
| bcs->hw.hscx.rcvbuf = NULL; |
| } |
| skb_queue_purge(&bcs->rqueue); |
| skb_queue_purge(&bcs->squeue); |
| if (bcs->tx_skb) { |
| dev_kfree_skb_any(bcs->tx_skb); |
| bcs->tx_skb = NULL; |
| test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); |
| } |
| } |
| } |
| |
| void |
| modem_write_cmd(struct IsdnCardState *cs, u_char *buf, int len) { |
| int count, fp; |
| u_char *msg = buf; |
| |
| if (!len) |
| return; |
| if (len > (MAX_MODEM_BUF - cs->hw.elsa.transcnt)) { |
| return; |
| } |
| fp = cs->hw.elsa.transcnt + cs->hw.elsa.transp; |
| fp &= (MAX_MODEM_BUF -1); |
| count = len; |
| if (count > MAX_MODEM_BUF - fp) { |
| count = MAX_MODEM_BUF - fp; |
| memcpy(cs->hw.elsa.transbuf + fp, msg, count); |
| cs->hw.elsa.transcnt += count; |
| msg += count; |
| count = len - count; |
| fp = 0; |
| } |
| memcpy(cs->hw.elsa.transbuf + fp, msg, count); |
| cs->hw.elsa.transcnt += count; |
| if (cs->hw.elsa.transcnt && |
| !(cs->hw.elsa.IER & UART_IER_THRI)) { |
| cs->hw.elsa.IER |= UART_IER_THRI; |
| serial_outp(cs, UART_IER, cs->hw.elsa.IER); |
| } |
| } |
| |
| void |
| modem_set_init(struct IsdnCardState *cs) { |
| int timeout; |
| |
| #define RCV_DELAY 20000 |
| modem_write_cmd(cs, MInit_1, strlen(MInit_1)); |
| timeout = 1000; |
| while(timeout-- && cs->hw.elsa.transcnt) |
| udelay(1000); |
| debugl1(cs, "msi tout=%d", timeout); |
| udelay(RCV_DELAY); |
| modem_write_cmd(cs, MInit_2, strlen(MInit_2)); |
| timeout = 1000; |
| while(timeout-- && cs->hw.elsa.transcnt) |
| udelay(1000); |
| debugl1(cs, "msi tout=%d", timeout); |
| udelay(RCV_DELAY); |
| modem_write_cmd(cs, MInit_3, strlen(MInit_3)); |
| timeout = 1000; |
| while(timeout-- && cs->hw.elsa.transcnt) |
| udelay(1000); |
| debugl1(cs, "msi tout=%d", timeout); |
| udelay(RCV_DELAY); |
| modem_write_cmd(cs, MInit_4, strlen(MInit_4)); |
| timeout = 1000; |
| while(timeout-- && cs->hw.elsa.transcnt) |
| udelay(1000); |
| debugl1(cs, "msi tout=%d", timeout); |
| udelay(RCV_DELAY ); |
| modem_write_cmd(cs, MInit_5, strlen(MInit_5)); |
| timeout = 1000; |
| while(timeout-- && cs->hw.elsa.transcnt) |
| udelay(1000); |
| debugl1(cs, "msi tout=%d", timeout); |
| udelay(RCV_DELAY); |
| modem_write_cmd(cs, MInit_6, strlen(MInit_6)); |
| timeout = 1000; |
| while(timeout-- && cs->hw.elsa.transcnt) |
| udelay(1000); |
| debugl1(cs, "msi tout=%d", timeout); |
| udelay(RCV_DELAY); |
| modem_write_cmd(cs, MInit_7, strlen(MInit_7)); |
| timeout = 1000; |
| while(timeout-- && cs->hw.elsa.transcnt) |
| udelay(1000); |
| debugl1(cs, "msi tout=%d", timeout); |
| udelay(RCV_DELAY); |
| } |
| |
| void |
| modem_set_dial(struct IsdnCardState *cs, int outgoing) { |
| int timeout; |
| #define RCV_DELAY 20000 |
| |
| modem_write_cmd(cs, MInit_speed28800, strlen(MInit_speed28800)); |
| timeout = 1000; |
| while(timeout-- && cs->hw.elsa.transcnt) |
| udelay(1000); |
| debugl1(cs, "msi tout=%d", timeout); |
| udelay(RCV_DELAY); |
| if (outgoing) |
| modem_write_cmd(cs, MInit_dialout, strlen(MInit_dialout)); |
| else |
| modem_write_cmd(cs, MInit_dialin, strlen(MInit_dialin)); |
| timeout = 1000; |
| while(timeout-- && cs->hw.elsa.transcnt) |
| udelay(1000); |
| debugl1(cs, "msi tout=%d", timeout); |
| udelay(RCV_DELAY); |
| } |
| |
| void |
| modem_l2l1(struct PStack *st, int pr, void *arg) |
| { |
| struct BCState *bcs = st->l1.bcs; |
| struct sk_buff *skb = arg; |
| u_long flags; |
| |
| if (pr == (PH_DATA | REQUEST)) { |
| spin_lock_irqsave(&bcs->cs->lock, flags); |
| if (bcs->tx_skb) { |
| skb_queue_tail(&bcs->squeue, skb); |
| } else { |
| bcs->tx_skb = skb; |
| test_and_set_bit(BC_FLG_BUSY, &bcs->Flag); |
| bcs->hw.hscx.count = 0; |
| write_modem(bcs); |
| } |
| spin_unlock_irqrestore(&bcs->cs->lock, flags); |
| } else if (pr == (PH_ACTIVATE | REQUEST)) { |
| test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag); |
| st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL); |
| set_arcofi(bcs->cs, st->l1.bc); |
| mstartup(bcs->cs); |
| modem_set_dial(bcs->cs, test_bit(FLG_ORIG, &st->l2.flag)); |
| bcs->cs->hw.elsa.MFlag=2; |
| } else if (pr == (PH_DEACTIVATE | REQUEST)) { |
| test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag); |
| bcs->cs->dc.isac.arcofi_bc = st->l1.bc; |
| arcofi_fsm(bcs->cs, ARCOFI_START, &ARCOFI_XOP_0); |
| interruptible_sleep_on(&bcs->cs->dc.isac.arcofi_wait); |
| bcs->cs->hw.elsa.MFlag=1; |
| } else { |
| printk(KERN_WARNING"ElsaSer: unknown pr %x\n", pr); |
| } |
| } |
| |
| int |
| setstack_elsa(struct PStack *st, struct BCState *bcs) |
| { |
| |
| bcs->channel = st->l1.bc; |
| switch (st->l1.mode) { |
| case L1_MODE_HDLC: |
| case L1_MODE_TRANS: |
| if (open_hscxstate(st->l1.hardware, bcs)) |
| return (-1); |
| st->l2.l2l1 = hscx_l2l1; |
| break; |
| case L1_MODE_MODEM: |
| bcs->mode = L1_MODE_MODEM; |
| if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) { |
| bcs->hw.hscx.rcvbuf = bcs->cs->hw.elsa.rcvbuf; |
| skb_queue_head_init(&bcs->rqueue); |
| skb_queue_head_init(&bcs->squeue); |
| } |
| bcs->tx_skb = NULL; |
| test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); |
| bcs->event = 0; |
| bcs->hw.hscx.rcvidx = 0; |
| bcs->tx_cnt = 0; |
| bcs->cs->hw.elsa.bcs = bcs; |
| st->l2.l2l1 = modem_l2l1; |
| break; |
| } |
| st->l1.bcs = bcs; |
| setstack_manager(st); |
| bcs->st = st; |
| setstack_l1_B(st); |
| return (0); |
| } |
| |
| void |
| init_modem(struct IsdnCardState *cs) { |
| |
| cs->bcs[0].BC_SetStack = setstack_elsa; |
| cs->bcs[1].BC_SetStack = setstack_elsa; |
| cs->bcs[0].BC_Close = close_elsastate; |
| cs->bcs[1].BC_Close = close_elsastate; |
| if (!(cs->hw.elsa.rcvbuf = kmalloc(MAX_MODEM_BUF, |
| GFP_ATOMIC))) { |
| printk(KERN_WARNING |
| "Elsa: No modem mem hw.elsa.rcvbuf\n"); |
| return; |
| } |
| if (!(cs->hw.elsa.transbuf = kmalloc(MAX_MODEM_BUF, |
| GFP_ATOMIC))) { |
| printk(KERN_WARNING |
| "Elsa: No modem mem hw.elsa.transbuf\n"); |
| kfree(cs->hw.elsa.rcvbuf); |
| cs->hw.elsa.rcvbuf = NULL; |
| return; |
| } |
| if (mstartup(cs)) { |
| printk(KERN_WARNING "Elsa: problem startup modem\n"); |
| } |
| modem_set_init(cs); |
| } |
| |
| void |
| release_modem(struct IsdnCardState *cs) { |
| |
| cs->hw.elsa.MFlag = 0; |
| if (cs->hw.elsa.transbuf) { |
| if (cs->hw.elsa.rcvbuf) { |
| mshutdown(cs); |
| kfree(cs->hw.elsa.rcvbuf); |
| cs->hw.elsa.rcvbuf = NULL; |
| } |
| kfree(cs->hw.elsa.transbuf); |
| cs->hw.elsa.transbuf = NULL; |
| } |
| } |