| /* $Id: pci_common.c,v 1.29 2002/02/01 00:56:03 davem Exp $ |
| * pci_common.c: PCI controller common support. |
| * |
| * Copyright (C) 1999 David S. Miller (davem@redhat.com) |
| */ |
| |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| |
| #include <asm/pbm.h> |
| |
| /* Fix self device of BUS and hook it into BUS->self. |
| * The pci_scan_bus does not do this for the host bridge. |
| */ |
| void __init pci_fixup_host_bridge_self(struct pci_bus *pbus) |
| { |
| struct pci_dev *pdev; |
| |
| list_for_each_entry(pdev, &pbus->devices, bus_list) { |
| if (pdev->class >> 8 == PCI_CLASS_BRIDGE_HOST) { |
| pbus->self = pdev; |
| return; |
| } |
| } |
| |
| prom_printf("PCI: Critical error, cannot find host bridge PDEV.\n"); |
| prom_halt(); |
| } |
| |
| /* Find the OBP PROM device tree node for a PCI device. |
| * Return zero if not found. |
| */ |
| static int __init find_device_prom_node(struct pci_pbm_info *pbm, |
| struct pci_dev *pdev, |
| int bus_prom_node, |
| struct linux_prom_pci_registers *pregs, |
| int *nregs) |
| { |
| int node; |
| |
| /* |
| * Return the PBM's PROM node in case we are it's PCI device, |
| * as the PBM's reg property is different to standard PCI reg |
| * properties. We would delete this device entry otherwise, |
| * which confuses XFree86's device probing... |
| */ |
| if ((pdev->bus->number == pbm->pci_bus->number) && (pdev->devfn == 0) && |
| (pdev->vendor == PCI_VENDOR_ID_SUN) && |
| (pdev->device == PCI_DEVICE_ID_SUN_PBM || |
| pdev->device == PCI_DEVICE_ID_SUN_SCHIZO || |
| pdev->device == PCI_DEVICE_ID_SUN_TOMATILLO || |
| pdev->device == PCI_DEVICE_ID_SUN_SABRE || |
| pdev->device == PCI_DEVICE_ID_SUN_HUMMINGBIRD)) { |
| *nregs = 0; |
| return bus_prom_node; |
| } |
| |
| node = prom_getchild(bus_prom_node); |
| while (node != 0) { |
| int err = prom_getproperty(node, "reg", |
| (char *)pregs, |
| sizeof(*pregs) * PROMREG_MAX); |
| if (err == 0 || err == -1) |
| goto do_next_sibling; |
| if (((pregs[0].phys_hi >> 8) & 0xff) == pdev->devfn) { |
| *nregs = err / sizeof(*pregs); |
| return node; |
| } |
| |
| do_next_sibling: |
| node = prom_getsibling(node); |
| } |
| return 0; |
| } |
| |
| /* Older versions of OBP on PCI systems encode 64-bit MEM |
| * space assignments incorrectly, this fixes them up. We also |
| * take the opportunity here to hide other kinds of bogus |
| * assignments. |
| */ |
| static void __init fixup_obp_assignments(struct pci_dev *pdev, |
| struct pcidev_cookie *pcp) |
| { |
| int i; |
| |
| if (pdev->vendor == PCI_VENDOR_ID_AL && |
| (pdev->device == PCI_DEVICE_ID_AL_M7101 || |
| pdev->device == PCI_DEVICE_ID_AL_M1533)) { |
| int i; |
| |
| /* Zap all of the normal resources, they are |
| * meaningless and generate bogus resource collision |
| * messages. This is OpenBoot's ill-fated attempt to |
| * represent the implicit resources that these devices |
| * have. |
| */ |
| pcp->num_prom_assignments = 0; |
| for (i = 0; i < 6; i++) { |
| pdev->resource[i].start = |
| pdev->resource[i].end = |
| pdev->resource[i].flags = 0; |
| } |
| pdev->resource[PCI_ROM_RESOURCE].start = |
| pdev->resource[PCI_ROM_RESOURCE].end = |
| pdev->resource[PCI_ROM_RESOURCE].flags = 0; |
| return; |
| } |
| |
| for (i = 0; i < pcp->num_prom_assignments; i++) { |
| struct linux_prom_pci_registers *ap; |
| int space; |
| |
| ap = &pcp->prom_assignments[i]; |
| space = ap->phys_hi >> 24; |
| if ((space & 0x3) == 2 && |
| (space & 0x4) != 0) { |
| ap->phys_hi &= ~(0x7 << 24); |
| ap->phys_hi |= 0x3 << 24; |
| } |
| } |
| } |
| |
| /* Fill in the PCI device cookie sysdata for the given |
| * PCI device. This cookie is the means by which one |
| * can get to OBP and PCI controller specific information |
| * for a PCI device. |
| */ |
| static void __init pdev_cookie_fillin(struct pci_pbm_info *pbm, |
| struct pci_dev *pdev, |
| int bus_prom_node) |
| { |
| struct linux_prom_pci_registers pregs[PROMREG_MAX]; |
| struct pcidev_cookie *pcp; |
| int device_prom_node, nregs, err; |
| |
| device_prom_node = find_device_prom_node(pbm, pdev, bus_prom_node, |
| pregs, &nregs); |
| if (device_prom_node == 0) { |
| /* If it is not in the OBP device tree then |
| * there must be a damn good reason for it. |
| * |
| * So what we do is delete the device from the |
| * PCI device tree completely. This scenario |
| * is seen, for example, on CP1500 for the |
| * second EBUS/HappyMeal pair if the external |
| * connector for it is not present. |
| */ |
| pci_remove_bus_device(pdev); |
| return; |
| } |
| |
| pcp = kmalloc(sizeof(*pcp), GFP_ATOMIC); |
| if (pcp == NULL) { |
| prom_printf("PCI_COOKIE: Fatal malloc error, aborting...\n"); |
| prom_halt(); |
| } |
| pcp->pbm = pbm; |
| pcp->prom_node = device_prom_node; |
| memcpy(pcp->prom_regs, pregs, sizeof(pcp->prom_regs)); |
| pcp->num_prom_regs = nregs; |
| err = prom_getproperty(device_prom_node, "name", |
| pcp->prom_name, sizeof(pcp->prom_name)); |
| if (err > 0) |
| pcp->prom_name[err] = 0; |
| else |
| pcp->prom_name[0] = 0; |
| |
| err = prom_getproperty(device_prom_node, |
| "assigned-addresses", |
| (char *)pcp->prom_assignments, |
| sizeof(pcp->prom_assignments)); |
| if (err == 0 || err == -1) |
| pcp->num_prom_assignments = 0; |
| else |
| pcp->num_prom_assignments = |
| (err / sizeof(pcp->prom_assignments[0])); |
| |
| if (strcmp(pcp->prom_name, "ebus") == 0) { |
| struct linux_prom_ebus_ranges erng[PROM_PCIRNG_MAX]; |
| int iter; |
| |
| /* EBUS is special... */ |
| err = prom_getproperty(device_prom_node, "ranges", |
| (char *)&erng[0], sizeof(erng)); |
| if (err == 0 || err == -1) { |
| prom_printf("EBUS: Fatal error, no range property\n"); |
| prom_halt(); |
| } |
| err = (err / sizeof(erng[0])); |
| for(iter = 0; iter < err; iter++) { |
| struct linux_prom_ebus_ranges *ep = &erng[iter]; |
| struct linux_prom_pci_registers *ap; |
| |
| ap = &pcp->prom_assignments[iter]; |
| |
| ap->phys_hi = ep->parent_phys_hi; |
| ap->phys_mid = ep->parent_phys_mid; |
| ap->phys_lo = ep->parent_phys_lo; |
| ap->size_hi = 0; |
| ap->size_lo = ep->size; |
| } |
| pcp->num_prom_assignments = err; |
| } |
| |
| fixup_obp_assignments(pdev, pcp); |
| |
| pdev->sysdata = pcp; |
| } |
| |
| void __init pci_fill_in_pbm_cookies(struct pci_bus *pbus, |
| struct pci_pbm_info *pbm, |
| int prom_node) |
| { |
| struct pci_dev *pdev, *pdev_next; |
| struct pci_bus *this_pbus, *pbus_next; |
| |
| /* This must be _safe because the cookie fillin |
| routine can delete devices from the tree. */ |
| list_for_each_entry_safe(pdev, pdev_next, &pbus->devices, bus_list) |
| pdev_cookie_fillin(pbm, pdev, prom_node); |
| |
| list_for_each_entry_safe(this_pbus, pbus_next, &pbus->children, node) { |
| struct pcidev_cookie *pcp = this_pbus->self->sysdata; |
| |
| pci_fill_in_pbm_cookies(this_pbus, pbm, pcp->prom_node); |
| } |
| } |
| |
| static void __init bad_assignment(struct pci_dev *pdev, |
| struct linux_prom_pci_registers *ap, |
| struct resource *res, |
| int do_prom_halt) |
| { |
| prom_printf("PCI: Bogus PROM assignment. BUS[%02x] DEVFN[%x]\n", |
| pdev->bus->number, pdev->devfn); |
| if (ap) |
| prom_printf("PCI: phys[%08x:%08x:%08x] size[%08x:%08x]\n", |
| ap->phys_hi, ap->phys_mid, ap->phys_lo, |
| ap->size_hi, ap->size_lo); |
| if (res) |
| prom_printf("PCI: RES[%016lx-->%016lx:(%lx)]\n", |
| res->start, res->end, res->flags); |
| prom_printf("Please email this information to davem@redhat.com\n"); |
| if (do_prom_halt) |
| prom_halt(); |
| } |
| |
| static struct resource * |
| __init get_root_resource(struct linux_prom_pci_registers *ap, |
| struct pci_pbm_info *pbm) |
| { |
| int space = (ap->phys_hi >> 24) & 3; |
| |
| switch (space) { |
| case 0: |
| /* Configuration space, silently ignore it. */ |
| return NULL; |
| |
| case 1: |
| /* 16-bit IO space */ |
| return &pbm->io_space; |
| |
| case 2: |
| /* 32-bit MEM space */ |
| return &pbm->mem_space; |
| |
| case 3: |
| /* 64-bit MEM space, these are allocated out of |
| * the 32-bit mem_space range for the PBM, ie. |
| * we just zero out the upper 32-bits. |
| */ |
| return &pbm->mem_space; |
| |
| default: |
| printk("PCI: What is resource space %x? " |
| "Tell davem@redhat.com about it!\n", space); |
| return NULL; |
| }; |
| } |
| |
| static struct resource * |
| __init get_device_resource(struct linux_prom_pci_registers *ap, |
| struct pci_dev *pdev) |
| { |
| struct resource *res; |
| int breg = (ap->phys_hi & 0xff); |
| |
| switch (breg) { |
| case PCI_ROM_ADDRESS: |
| /* Unfortunately I have seen several cases where |
| * buggy FCODE uses a space value of '1' (I/O space) |
| * in the register property for the ROM address |
| * so disable this sanity check for now. |
| */ |
| #if 0 |
| { |
| int space = (ap->phys_hi >> 24) & 3; |
| |
| /* It had better be MEM space. */ |
| if (space != 2) |
| bad_assignment(pdev, ap, NULL, 0); |
| } |
| #endif |
| res = &pdev->resource[PCI_ROM_RESOURCE]; |
| break; |
| |
| case PCI_BASE_ADDRESS_0: |
| case PCI_BASE_ADDRESS_1: |
| case PCI_BASE_ADDRESS_2: |
| case PCI_BASE_ADDRESS_3: |
| case PCI_BASE_ADDRESS_4: |
| case PCI_BASE_ADDRESS_5: |
| res = &pdev->resource[(breg - PCI_BASE_ADDRESS_0) / 4]; |
| break; |
| |
| default: |
| bad_assignment(pdev, ap, NULL, 0); |
| res = NULL; |
| break; |
| }; |
| |
| return res; |
| } |
| |
| static int __init pdev_resource_collisions_expected(struct pci_dev *pdev) |
| { |
| if (pdev->vendor != PCI_VENDOR_ID_SUN) |
| return 0; |
| |
| if (pdev->device == PCI_DEVICE_ID_SUN_RIO_EBUS || |
| pdev->device == PCI_DEVICE_ID_SUN_RIO_1394 || |
| pdev->device == PCI_DEVICE_ID_SUN_RIO_USB) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void __init pdev_record_assignments(struct pci_pbm_info *pbm, |
| struct pci_dev *pdev) |
| { |
| struct pcidev_cookie *pcp = pdev->sysdata; |
| int i; |
| |
| for (i = 0; i < pcp->num_prom_assignments; i++) { |
| struct linux_prom_pci_registers *ap; |
| struct resource *root, *res; |
| |
| /* The format of this property is specified in |
| * the PCI Bus Binding to IEEE1275-1994. |
| */ |
| ap = &pcp->prom_assignments[i]; |
| root = get_root_resource(ap, pbm); |
| res = get_device_resource(ap, pdev); |
| if (root == NULL || res == NULL || |
| res->flags == 0) |
| continue; |
| |
| /* Ok we know which resource this PROM assignment is |
| * for, sanity check it. |
| */ |
| if ((res->start & 0xffffffffUL) != ap->phys_lo) |
| bad_assignment(pdev, ap, res, 1); |
| |
| /* If it is a 64-bit MEM space assignment, verify that |
| * the resource is too and that the upper 32-bits match. |
| */ |
| if (((ap->phys_hi >> 24) & 3) == 3) { |
| if (((res->flags & IORESOURCE_MEM) == 0) || |
| ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK) |
| != PCI_BASE_ADDRESS_MEM_TYPE_64)) |
| bad_assignment(pdev, ap, res, 1); |
| if ((res->start >> 32) != ap->phys_mid) |
| bad_assignment(pdev, ap, res, 1); |
| |
| /* PBM cannot generate cpu initiated PIOs |
| * to the full 64-bit space. Therefore the |
| * upper 32-bits better be zero. If it is |
| * not, just skip it and we will assign it |
| * properly ourselves. |
| */ |
| if ((res->start >> 32) != 0UL) { |
| printk(KERN_ERR "PCI: OBP assigns out of range MEM address " |
| "%016lx for region %ld on device %s\n", |
| res->start, (res - &pdev->resource[0]), pci_name(pdev)); |
| continue; |
| } |
| } |
| |
| /* Adjust the resource into the physical address space |
| * of this PBM. |
| */ |
| pbm->parent->resource_adjust(pdev, res, root); |
| |
| if (request_resource(root, res) < 0) { |
| /* OK, there is some conflict. But this is fine |
| * since we'll reassign it in the fixup pass. |
| * |
| * We notify the user that OBP made an error if it |
| * is a case we don't expect. |
| */ |
| if (!pdev_resource_collisions_expected(pdev)) { |
| printk(KERN_ERR "PCI: Address space collision on region %ld " |
| "[%016lx:%016lx] of device %s\n", |
| (res - &pdev->resource[0]), |
| res->start, res->end, |
| pci_name(pdev)); |
| } |
| } |
| } |
| } |
| |
| void __init pci_record_assignments(struct pci_pbm_info *pbm, |
| struct pci_bus *pbus) |
| { |
| struct pci_dev *dev; |
| struct pci_bus *bus; |
| |
| list_for_each_entry(dev, &pbus->devices, bus_list) |
| pdev_record_assignments(pbm, dev); |
| |
| list_for_each_entry(bus, &pbus->children, node) |
| pci_record_assignments(pbm, bus); |
| } |
| |
| /* Return non-zero if PDEV has implicit I/O resources even |
| * though it may not have an I/O base address register |
| * active. |
| */ |
| static int __init has_implicit_io(struct pci_dev *pdev) |
| { |
| int class = pdev->class >> 8; |
| |
| if (class == PCI_CLASS_NOT_DEFINED || |
| class == PCI_CLASS_NOT_DEFINED_VGA || |
| class == PCI_CLASS_STORAGE_IDE || |
| (pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void __init pdev_assign_unassigned(struct pci_pbm_info *pbm, |
| struct pci_dev *pdev) |
| { |
| u32 reg; |
| u16 cmd; |
| int i, io_seen, mem_seen; |
| |
| io_seen = mem_seen = 0; |
| for (i = 0; i < PCI_NUM_RESOURCES; i++) { |
| struct resource *root, *res; |
| unsigned long size, min, max, align; |
| |
| res = &pdev->resource[i]; |
| |
| if (res->flags & IORESOURCE_IO) |
| io_seen++; |
| else if (res->flags & IORESOURCE_MEM) |
| mem_seen++; |
| |
| /* If it is already assigned or the resource does |
| * not exist, there is nothing to do. |
| */ |
| if (res->parent != NULL || res->flags == 0UL) |
| continue; |
| |
| /* Determine the root we allocate from. */ |
| if (res->flags & IORESOURCE_IO) { |
| root = &pbm->io_space; |
| min = root->start + 0x400UL; |
| max = root->end; |
| } else { |
| root = &pbm->mem_space; |
| min = root->start; |
| max = min + 0x80000000UL; |
| } |
| |
| size = res->end - res->start; |
| align = size + 1; |
| if (allocate_resource(root, res, size + 1, min, max, align, NULL, NULL) < 0) { |
| /* uh oh */ |
| prom_printf("PCI: Failed to allocate resource %d for %s\n", |
| i, pci_name(pdev)); |
| prom_halt(); |
| } |
| |
| /* Update PCI config space. */ |
| pbm->parent->base_address_update(pdev, i); |
| } |
| |
| /* Special case, disable the ROM. Several devices |
| * act funny (ie. do not respond to memory space writes) |
| * when it is left enabled. A good example are Qlogic,ISP |
| * adapters. |
| */ |
| pci_read_config_dword(pdev, PCI_ROM_ADDRESS, ®); |
| reg &= ~PCI_ROM_ADDRESS_ENABLE; |
| pci_write_config_dword(pdev, PCI_ROM_ADDRESS, reg); |
| |
| /* If we saw I/O or MEM resources, enable appropriate |
| * bits in PCI command register. |
| */ |
| if (io_seen || mem_seen) { |
| pci_read_config_word(pdev, PCI_COMMAND, &cmd); |
| if (io_seen || has_implicit_io(pdev)) |
| cmd |= PCI_COMMAND_IO; |
| if (mem_seen) |
| cmd |= PCI_COMMAND_MEMORY; |
| pci_write_config_word(pdev, PCI_COMMAND, cmd); |
| } |
| |
| /* If this is a PCI bridge or an IDE controller, |
| * enable bus mastering. In the former case also |
| * set the cache line size correctly. |
| */ |
| if (((pdev->class >> 8) == PCI_CLASS_BRIDGE_PCI) || |
| (((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) && |
| ((pdev->class & 0x80) != 0))) { |
| pci_read_config_word(pdev, PCI_COMMAND, &cmd); |
| cmd |= PCI_COMMAND_MASTER; |
| pci_write_config_word(pdev, PCI_COMMAND, cmd); |
| |
| if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_PCI) |
| pci_write_config_byte(pdev, |
| PCI_CACHE_LINE_SIZE, |
| (64 / sizeof(u32))); |
| } |
| } |
| |
| void __init pci_assign_unassigned(struct pci_pbm_info *pbm, |
| struct pci_bus *pbus) |
| { |
| struct pci_dev *dev; |
| struct pci_bus *bus; |
| |
| list_for_each_entry(dev, &pbus->devices, bus_list) |
| pdev_assign_unassigned(pbm, dev); |
| |
| list_for_each_entry(bus, &pbus->children, node) |
| pci_assign_unassigned(pbm, bus); |
| } |
| |
| static int __init pci_intmap_match(struct pci_dev *pdev, unsigned int *interrupt) |
| { |
| struct linux_prom_pci_intmap bridge_local_intmap[PROM_PCIIMAP_MAX], *intmap; |
| struct linux_prom_pci_intmask bridge_local_intmask, *intmask; |
| struct pcidev_cookie *dev_pcp = pdev->sysdata; |
| struct pci_pbm_info *pbm = dev_pcp->pbm; |
| struct linux_prom_pci_registers *pregs = dev_pcp->prom_regs; |
| unsigned int hi, mid, lo, irq; |
| int i, num_intmap, map_slot; |
| |
| intmap = &pbm->pbm_intmap[0]; |
| intmask = &pbm->pbm_intmask; |
| num_intmap = pbm->num_pbm_intmap; |
| map_slot = 0; |
| |
| /* If we are underneath a PCI bridge, use PROM register |
| * property of the parent bridge which is closest to |
| * the PBM. |
| * |
| * However if that parent bridge has interrupt map/mask |
| * properties of its own we use the PROM register property |
| * of the next child device on the path to PDEV. |
| * |
| * In detail the two cases are (note that the 'X' below is the |
| * 'next child on the path to PDEV' mentioned above): |
| * |
| * 1) PBM --> PCI bus lacking int{map,mask} --> X ... PDEV |
| * |
| * Here we use regs of 'PCI bus' device. |
| * |
| * 2) PBM --> PCI bus with int{map,mask} --> X ... PDEV |
| * |
| * Here we use regs of 'X'. Note that X can be PDEV. |
| */ |
| if (pdev->bus->number != pbm->pci_first_busno) { |
| struct pcidev_cookie *bus_pcp, *regs_pcp; |
| struct pci_dev *bus_dev, *regs_dev; |
| int plen; |
| |
| bus_dev = pdev->bus->self; |
| regs_dev = pdev; |
| |
| while (bus_dev->bus && |
| bus_dev->bus->number != pbm->pci_first_busno) { |
| regs_dev = bus_dev; |
| bus_dev = bus_dev->bus->self; |
| } |
| |
| regs_pcp = regs_dev->sysdata; |
| pregs = regs_pcp->prom_regs; |
| |
| bus_pcp = bus_dev->sysdata; |
| |
| /* But if the PCI bridge has it's own interrupt map |
| * and mask properties, use that and the regs of the |
| * PCI entity at the next level down on the path to the |
| * device. |
| */ |
| plen = prom_getproperty(bus_pcp->prom_node, "interrupt-map", |
| (char *) &bridge_local_intmap[0], |
| sizeof(bridge_local_intmap)); |
| if (plen != -1) { |
| intmap = &bridge_local_intmap[0]; |
| num_intmap = plen / sizeof(struct linux_prom_pci_intmap); |
| plen = prom_getproperty(bus_pcp->prom_node, |
| "interrupt-map-mask", |
| (char *) &bridge_local_intmask, |
| sizeof(bridge_local_intmask)); |
| if (plen == -1) { |
| printk("pci_intmap_match: Warning! Bridge has intmap " |
| "but no intmask.\n"); |
| printk("pci_intmap_match: Trying to recover.\n"); |
| return 0; |
| } |
| |
| if (pdev->bus->self != bus_dev) |
| map_slot = 1; |
| } else { |
| pregs = bus_pcp->prom_regs; |
| map_slot = 1; |
| } |
| } |
| |
| if (map_slot) { |
| *interrupt = ((*interrupt |
| - 1 |
| + PCI_SLOT(pdev->devfn)) & 0x3) + 1; |
| } |
| |
| hi = pregs->phys_hi & intmask->phys_hi; |
| mid = pregs->phys_mid & intmask->phys_mid; |
| lo = pregs->phys_lo & intmask->phys_lo; |
| irq = *interrupt & intmask->interrupt; |
| |
| for (i = 0; i < num_intmap; i++) { |
| if (intmap[i].phys_hi == hi && |
| intmap[i].phys_mid == mid && |
| intmap[i].phys_lo == lo && |
| intmap[i].interrupt == irq) { |
| *interrupt = intmap[i].cinterrupt; |
| printk("PCI-IRQ: Routing bus[%2x] slot[%2x] map[%d] to INO[%02x]\n", |
| pdev->bus->number, PCI_SLOT(pdev->devfn), |
| map_slot, *interrupt); |
| return 1; |
| } |
| } |
| |
| /* We will run this code even if pbm->num_pbm_intmap is zero, just so |
| * we can apply the slot mapping to the PROM interrupt property value. |
| * So do not spit out these warnings in that case. |
| */ |
| if (num_intmap != 0) { |
| /* Print it both to OBP console and kernel one so that if bootup |
| * hangs here the user has the information to report. |
| */ |
| prom_printf("pci_intmap_match: bus %02x, devfn %02x: ", |
| pdev->bus->number, pdev->devfn); |
| prom_printf("IRQ [%08x.%08x.%08x.%08x] not found in interrupt-map\n", |
| pregs->phys_hi, pregs->phys_mid, pregs->phys_lo, *interrupt); |
| prom_printf("Please email this information to davem@redhat.com\n"); |
| |
| printk("pci_intmap_match: bus %02x, devfn %02x: ", |
| pdev->bus->number, pdev->devfn); |
| printk("IRQ [%08x.%08x.%08x.%08x] not found in interrupt-map\n", |
| pregs->phys_hi, pregs->phys_mid, pregs->phys_lo, *interrupt); |
| printk("Please email this information to davem@redhat.com\n"); |
| } |
| |
| return 0; |
| } |
| |
| static void __init pdev_fixup_irq(struct pci_dev *pdev) |
| { |
| struct pcidev_cookie *pcp = pdev->sysdata; |
| struct pci_pbm_info *pbm = pcp->pbm; |
| struct pci_controller_info *p = pbm->parent; |
| unsigned int portid = pbm->portid; |
| unsigned int prom_irq; |
| int prom_node = pcp->prom_node; |
| int err; |
| |
| /* If this is an empty EBUS device, sometimes OBP fails to |
| * give it a valid fully specified interrupts property. |
| * The EBUS hooked up to SunHME on PCI I/O boards of |
| * Ex000 systems is one such case. |
| * |
| * The interrupt is not important so just ignore it. |
| */ |
| if (pdev->vendor == PCI_VENDOR_ID_SUN && |
| pdev->device == PCI_DEVICE_ID_SUN_EBUS && |
| !prom_getchild(prom_node)) { |
| pdev->irq = 0; |
| return; |
| } |
| |
| err = prom_getproperty(prom_node, "interrupts", |
| (char *)&prom_irq, sizeof(prom_irq)); |
| if (err == 0 || err == -1) { |
| pdev->irq = 0; |
| return; |
| } |
| |
| /* Fully specified already? */ |
| if (((prom_irq & PCI_IRQ_IGN) >> 6) == portid) { |
| pdev->irq = p->irq_build(pbm, pdev, prom_irq); |
| goto have_irq; |
| } |
| |
| /* An onboard device? (bit 5 set) */ |
| if ((prom_irq & PCI_IRQ_INO) & 0x20) { |
| pdev->irq = p->irq_build(pbm, pdev, (portid << 6 | prom_irq)); |
| goto have_irq; |
| } |
| |
| /* Can we find a matching entry in the interrupt-map? */ |
| if (pci_intmap_match(pdev, &prom_irq)) { |
| pdev->irq = p->irq_build(pbm, pdev, (portid << 6) | prom_irq); |
| goto have_irq; |
| } |
| |
| /* Ok, we have to do it the hard way. */ |
| { |
| unsigned int bus, slot, line; |
| |
| bus = (pbm == &pbm->parent->pbm_B) ? (1 << 4) : 0; |
| |
| /* If we have a legal interrupt property, use it as |
| * the IRQ line. |
| */ |
| if (prom_irq > 0 && prom_irq < 5) { |
| line = ((prom_irq - 1) & 3); |
| } else { |
| u8 pci_irq_line; |
| |
| /* Else just directly consult PCI config space. */ |
| pci_read_config_byte(pdev, PCI_INTERRUPT_PIN, &pci_irq_line); |
| line = ((pci_irq_line - 1) & 3); |
| } |
| |
| /* Now figure out the slot. |
| * |
| * Basically, device number zero on the top-level bus is |
| * always the PCI host controller. Slot 0 is then device 1. |
| * PBM A supports two external slots (0 and 1), and PBM B |
| * supports 4 external slots (0, 1, 2, and 3). On-board PCI |
| * devices are wired to device numbers outside of these |
| * ranges. -DaveM |
| */ |
| if (pdev->bus->number == pbm->pci_first_busno) { |
| slot = PCI_SLOT(pdev->devfn) - pbm->pci_first_slot; |
| } else { |
| struct pci_dev *bus_dev; |
| |
| /* Underneath a bridge, use slot number of parent |
| * bridge which is closest to the PBM. |
| */ |
| bus_dev = pdev->bus->self; |
| while (bus_dev->bus && |
| bus_dev->bus->number != pbm->pci_first_busno) |
| bus_dev = bus_dev->bus->self; |
| |
| slot = PCI_SLOT(bus_dev->devfn) - pbm->pci_first_slot; |
| } |
| slot = slot << 2; |
| |
| pdev->irq = p->irq_build(pbm, pdev, |
| ((portid << 6) & PCI_IRQ_IGN) | |
| (bus | slot | line)); |
| } |
| |
| have_irq: |
| pci_write_config_byte(pdev, PCI_INTERRUPT_LINE, |
| pdev->irq & PCI_IRQ_INO); |
| } |
| |
| void __init pci_fixup_irq(struct pci_pbm_info *pbm, |
| struct pci_bus *pbus) |
| { |
| struct pci_dev *dev; |
| struct pci_bus *bus; |
| |
| list_for_each_entry(dev, &pbus->devices, bus_list) |
| pdev_fixup_irq(dev); |
| |
| list_for_each_entry(bus, &pbus->children, node) |
| pci_fixup_irq(pbm, bus); |
| } |
| |
| static void pdev_setup_busmastering(struct pci_dev *pdev, int is_66mhz) |
| { |
| u16 cmd; |
| u8 hdr_type, min_gnt, ltimer; |
| |
| pci_read_config_word(pdev, PCI_COMMAND, &cmd); |
| cmd |= PCI_COMMAND_MASTER; |
| pci_write_config_word(pdev, PCI_COMMAND, cmd); |
| |
| /* Read it back, if the mastering bit did not |
| * get set, the device does not support bus |
| * mastering so we have nothing to do here. |
| */ |
| pci_read_config_word(pdev, PCI_COMMAND, &cmd); |
| if ((cmd & PCI_COMMAND_MASTER) == 0) |
| return; |
| |
| /* Set correct cache line size, 64-byte on all |
| * Sparc64 PCI systems. Note that the value is |
| * measured in 32-bit words. |
| */ |
| pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, |
| 64 / sizeof(u32)); |
| |
| pci_read_config_byte(pdev, PCI_HEADER_TYPE, &hdr_type); |
| hdr_type &= ~0x80; |
| if (hdr_type != PCI_HEADER_TYPE_NORMAL) |
| return; |
| |
| /* If the latency timer is already programmed with a non-zero |
| * value, assume whoever set it (OBP or whoever) knows what |
| * they are doing. |
| */ |
| pci_read_config_byte(pdev, PCI_LATENCY_TIMER, <imer); |
| if (ltimer != 0) |
| return; |
| |
| /* XXX Since I'm tipping off the min grant value to |
| * XXX choose a suitable latency timer value, I also |
| * XXX considered making use of the max latency value |
| * XXX as well. Unfortunately I've seen too many bogusly |
| * XXX low settings for it to the point where it lacks |
| * XXX any usefulness. In one case, an ethernet card |
| * XXX claimed a min grant of 10 and a max latency of 5. |
| * XXX Now, if I had two such cards on the same bus I |
| * XXX could not set the desired burst period (calculated |
| * XXX from min grant) without violating the max latency |
| * XXX bound. Duh... |
| * XXX |
| * XXX I blame dumb PC bios implementors for stuff like |
| * XXX this, most of them don't even try to do something |
| * XXX sensible with latency timer values and just set some |
| * XXX default value (usually 32) into every device. |
| */ |
| |
| pci_read_config_byte(pdev, PCI_MIN_GNT, &min_gnt); |
| |
| if (min_gnt == 0) { |
| /* If no min_gnt setting then use a default |
| * value. |
| */ |
| if (is_66mhz) |
| ltimer = 16; |
| else |
| ltimer = 32; |
| } else { |
| int shift_factor; |
| |
| if (is_66mhz) |
| shift_factor = 2; |
| else |
| shift_factor = 3; |
| |
| /* Use a default value when the min_gnt value |
| * is erroneously high. |
| */ |
| if (((unsigned int) min_gnt << shift_factor) > 512 || |
| ((min_gnt << shift_factor) & 0xff) == 0) { |
| ltimer = 8 << shift_factor; |
| } else { |
| ltimer = min_gnt << shift_factor; |
| } |
| } |
| |
| pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ltimer); |
| } |
| |
| void pci_determine_66mhz_disposition(struct pci_pbm_info *pbm, |
| struct pci_bus *pbus) |
| { |
| struct pci_dev *pdev; |
| int all_are_66mhz; |
| u16 status; |
| |
| if (pbm->is_66mhz_capable == 0) { |
| all_are_66mhz = 0; |
| goto out; |
| } |
| |
| all_are_66mhz = 1; |
| list_for_each_entry(pdev, &pbus->devices, bus_list) { |
| pci_read_config_word(pdev, PCI_STATUS, &status); |
| if (!(status & PCI_STATUS_66MHZ)) { |
| all_are_66mhz = 0; |
| break; |
| } |
| } |
| out: |
| pbm->all_devs_66mhz = all_are_66mhz; |
| |
| printk("PCI%d(PBM%c): Bus running at %dMHz\n", |
| pbm->parent->index, |
| (pbm == &pbm->parent->pbm_A) ? 'A' : 'B', |
| (all_are_66mhz ? 66 : 33)); |
| } |
| |
| void pci_setup_busmastering(struct pci_pbm_info *pbm, |
| struct pci_bus *pbus) |
| { |
| struct pci_dev *dev; |
| struct pci_bus *bus; |
| int is_66mhz; |
| |
| is_66mhz = pbm->is_66mhz_capable && pbm->all_devs_66mhz; |
| |
| list_for_each_entry(dev, &pbus->devices, bus_list) |
| pdev_setup_busmastering(dev, is_66mhz); |
| |
| list_for_each_entry(bus, &pbus->children, node) |
| pci_setup_busmastering(pbm, bus); |
| } |
| |
| void pci_register_legacy_regions(struct resource *io_res, |
| struct resource *mem_res) |
| { |
| struct resource *p; |
| |
| /* VGA Video RAM. */ |
| p = kmalloc(sizeof(*p), GFP_KERNEL); |
| if (!p) |
| return; |
| |
| memset(p, 0, sizeof(*p)); |
| p->name = "Video RAM area"; |
| p->start = mem_res->start + 0xa0000UL; |
| p->end = p->start + 0x1ffffUL; |
| p->flags = IORESOURCE_BUSY; |
| request_resource(mem_res, p); |
| |
| p = kmalloc(sizeof(*p), GFP_KERNEL); |
| if (!p) |
| return; |
| |
| memset(p, 0, sizeof(*p)); |
| p->name = "System ROM"; |
| p->start = mem_res->start + 0xf0000UL; |
| p->end = p->start + 0xffffUL; |
| p->flags = IORESOURCE_BUSY; |
| request_resource(mem_res, p); |
| |
| p = kmalloc(sizeof(*p), GFP_KERNEL); |
| if (!p) |
| return; |
| |
| memset(p, 0, sizeof(*p)); |
| p->name = "Video ROM"; |
| p->start = mem_res->start + 0xc0000UL; |
| p->end = p->start + 0x7fffUL; |
| p->flags = IORESOURCE_BUSY; |
| request_resource(mem_res, p); |
| } |
| |
| /* Generic helper routines for PCI error reporting. */ |
| void pci_scan_for_target_abort(struct pci_controller_info *p, |
| struct pci_pbm_info *pbm, |
| struct pci_bus *pbus) |
| { |
| struct pci_dev *pdev; |
| struct pci_bus *bus; |
| |
| list_for_each_entry(pdev, &pbus->devices, bus_list) { |
| u16 status, error_bits; |
| |
| pci_read_config_word(pdev, PCI_STATUS, &status); |
| error_bits = |
| (status & (PCI_STATUS_SIG_TARGET_ABORT | |
| PCI_STATUS_REC_TARGET_ABORT)); |
| if (error_bits) { |
| pci_write_config_word(pdev, PCI_STATUS, error_bits); |
| printk("PCI%d(PBM%c): Device [%s] saw Target Abort [%016x]\n", |
| p->index, ((pbm == &p->pbm_A) ? 'A' : 'B'), |
| pci_name(pdev), status); |
| } |
| } |
| |
| list_for_each_entry(bus, &pbus->children, node) |
| pci_scan_for_target_abort(p, pbm, bus); |
| } |
| |
| void pci_scan_for_master_abort(struct pci_controller_info *p, |
| struct pci_pbm_info *pbm, |
| struct pci_bus *pbus) |
| { |
| struct pci_dev *pdev; |
| struct pci_bus *bus; |
| |
| list_for_each_entry(pdev, &pbus->devices, bus_list) { |
| u16 status, error_bits; |
| |
| pci_read_config_word(pdev, PCI_STATUS, &status); |
| error_bits = |
| (status & (PCI_STATUS_REC_MASTER_ABORT)); |
| if (error_bits) { |
| pci_write_config_word(pdev, PCI_STATUS, error_bits); |
| printk("PCI%d(PBM%c): Device [%s] received Master Abort [%016x]\n", |
| p->index, ((pbm == &p->pbm_A) ? 'A' : 'B'), |
| pci_name(pdev), status); |
| } |
| } |
| |
| list_for_each_entry(bus, &pbus->children, node) |
| pci_scan_for_master_abort(p, pbm, bus); |
| } |
| |
| void pci_scan_for_parity_error(struct pci_controller_info *p, |
| struct pci_pbm_info *pbm, |
| struct pci_bus *pbus) |
| { |
| struct pci_dev *pdev; |
| struct pci_bus *bus; |
| |
| list_for_each_entry(pdev, &pbus->devices, bus_list) { |
| u16 status, error_bits; |
| |
| pci_read_config_word(pdev, PCI_STATUS, &status); |
| error_bits = |
| (status & (PCI_STATUS_PARITY | |
| PCI_STATUS_DETECTED_PARITY)); |
| if (error_bits) { |
| pci_write_config_word(pdev, PCI_STATUS, error_bits); |
| printk("PCI%d(PBM%c): Device [%s] saw Parity Error [%016x]\n", |
| p->index, ((pbm == &p->pbm_A) ? 'A' : 'B'), |
| pci_name(pdev), status); |
| } |
| } |
| |
| list_for_each_entry(bus, &pbus->children, node) |
| pci_scan_for_parity_error(p, pbm, bus); |
| } |