| /* |
| * Real Time Clock interface for PPC64. |
| * |
| * Based on rtc.c by Paul Gortmaker |
| * |
| * This driver allows use of the real time clock |
| * from user space. It exports the /dev/rtc |
| * interface supporting various ioctl() and also the |
| * /proc/driver/rtc pseudo-file for status information. |
| * |
| * Interface does not support RTC interrupts nor an alarm. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * 1.0 Mike Corrigan: IBM iSeries rtc support |
| * 1.1 Dave Engebretsen: IBM pSeries rtc support |
| */ |
| |
| #define RTC_VERSION "1.1" |
| |
| #include <linux/config.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/miscdevice.h> |
| #include <linux/ioport.h> |
| #include <linux/fcntl.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/init.h> |
| #include <linux/poll.h> |
| #include <linux/proc_fs.h> |
| #include <linux/spinlock.h> |
| #include <linux/bcd.h> |
| #include <linux/interrupt.h> |
| |
| #include <asm/io.h> |
| #include <asm/uaccess.h> |
| #include <asm/system.h> |
| #include <asm/time.h> |
| #include <asm/rtas.h> |
| |
| #include <asm/iSeries/LparData.h> |
| #include <asm/iSeries/mf.h> |
| #include <asm/machdep.h> |
| #include <asm/iSeries/ItSpCommArea.h> |
| |
| extern int piranha_simulator; |
| |
| /* |
| * We sponge a minor off of the misc major. No need slurping |
| * up another valuable major dev number for this. If you add |
| * an ioctl, make sure you don't conflict with SPARC's RTC |
| * ioctls. |
| */ |
| |
| static ssize_t rtc_read(struct file *file, char __user *buf, |
| size_t count, loff_t *ppos); |
| |
| static int rtc_ioctl(struct inode *inode, struct file *file, |
| unsigned int cmd, unsigned long arg); |
| |
| static int rtc_read_proc(char *page, char **start, off_t off, |
| int count, int *eof, void *data); |
| |
| /* |
| * If this driver ever becomes modularised, it will be really nice |
| * to make the epoch retain its value across module reload... |
| */ |
| |
| static unsigned long epoch = 1900; /* year corresponding to 0x00 */ |
| |
| static const unsigned char days_in_mo[] = |
| {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; |
| |
| /* |
| * Now all the various file operations that we export. |
| */ |
| |
| static ssize_t rtc_read(struct file *file, char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| return -EIO; |
| } |
| |
| static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd, |
| unsigned long arg) |
| { |
| struct rtc_time wtime; |
| |
| switch (cmd) { |
| case RTC_RD_TIME: /* Read the time/date from RTC */ |
| { |
| memset(&wtime, 0, sizeof(struct rtc_time)); |
| ppc_md.get_rtc_time(&wtime); |
| break; |
| } |
| case RTC_SET_TIME: /* Set the RTC */ |
| { |
| struct rtc_time rtc_tm; |
| unsigned char mon, day, hrs, min, sec, leap_yr; |
| unsigned int yrs; |
| |
| if (!capable(CAP_SYS_TIME)) |
| return -EACCES; |
| |
| if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg, |
| sizeof(struct rtc_time))) |
| return -EFAULT; |
| |
| yrs = rtc_tm.tm_year; |
| mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */ |
| day = rtc_tm.tm_mday; |
| hrs = rtc_tm.tm_hour; |
| min = rtc_tm.tm_min; |
| sec = rtc_tm.tm_sec; |
| |
| if (yrs < 70) |
| return -EINVAL; |
| |
| leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400)); |
| |
| if ((mon > 12) || (day == 0)) |
| return -EINVAL; |
| |
| if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr))) |
| return -EINVAL; |
| |
| if ((hrs >= 24) || (min >= 60) || (sec >= 60)) |
| return -EINVAL; |
| |
| if ( yrs > 169 ) |
| return -EINVAL; |
| |
| ppc_md.set_rtc_time(&rtc_tm); |
| |
| return 0; |
| } |
| case RTC_EPOCH_READ: /* Read the epoch. */ |
| { |
| return put_user (epoch, (unsigned long __user *)arg); |
| } |
| case RTC_EPOCH_SET: /* Set the epoch. */ |
| { |
| /* |
| * There were no RTC clocks before 1900. |
| */ |
| if (arg < 1900) |
| return -EINVAL; |
| |
| if (!capable(CAP_SYS_TIME)) |
| return -EACCES; |
| |
| epoch = arg; |
| return 0; |
| } |
| default: |
| return -EINVAL; |
| } |
| return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0; |
| } |
| |
| static int rtc_open(struct inode *inode, struct file *file) |
| { |
| nonseekable_open(inode, file); |
| return 0; |
| } |
| |
| static int rtc_release(struct inode *inode, struct file *file) |
| { |
| return 0; |
| } |
| |
| /* |
| * The various file operations we support. |
| */ |
| static struct file_operations rtc_fops = { |
| .owner = THIS_MODULE, |
| .llseek = no_llseek, |
| .read = rtc_read, |
| .ioctl = rtc_ioctl, |
| .open = rtc_open, |
| .release = rtc_release, |
| }; |
| |
| static struct miscdevice rtc_dev = { |
| .minor = RTC_MINOR, |
| .name = "rtc", |
| .fops = &rtc_fops |
| }; |
| |
| static int __init rtc_init(void) |
| { |
| int retval; |
| |
| retval = misc_register(&rtc_dev); |
| if(retval < 0) |
| return retval; |
| |
| #ifdef CONFIG_PROC_FS |
| if (create_proc_read_entry("driver/rtc", 0, NULL, rtc_read_proc, NULL) |
| == NULL) { |
| misc_deregister(&rtc_dev); |
| return -ENOMEM; |
| } |
| #endif |
| |
| printk(KERN_INFO "i/pSeries Real Time Clock Driver v" RTC_VERSION "\n"); |
| |
| return 0; |
| } |
| |
| static void __exit rtc_exit (void) |
| { |
| remove_proc_entry ("driver/rtc", NULL); |
| misc_deregister(&rtc_dev); |
| } |
| |
| module_init(rtc_init); |
| module_exit(rtc_exit); |
| |
| /* |
| * Info exported via "/proc/driver/rtc". |
| */ |
| |
| static int rtc_proc_output (char *buf) |
| { |
| |
| char *p; |
| struct rtc_time tm; |
| |
| p = buf; |
| |
| ppc_md.get_rtc_time(&tm); |
| |
| /* |
| * There is no way to tell if the luser has the RTC set for local |
| * time or for Universal Standard Time (GMT). Probably local though. |
| */ |
| p += sprintf(p, |
| "rtc_time\t: %02d:%02d:%02d\n" |
| "rtc_date\t: %04d-%02d-%02d\n" |
| "rtc_epoch\t: %04lu\n", |
| tm.tm_hour, tm.tm_min, tm.tm_sec, |
| tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch); |
| |
| p += sprintf(p, |
| "DST_enable\t: no\n" |
| "BCD\t\t: yes\n" |
| "24hr\t\t: yes\n" ); |
| |
| return p - buf; |
| } |
| |
| static int rtc_read_proc(char *page, char **start, off_t off, |
| int count, int *eof, void *data) |
| { |
| int len = rtc_proc_output (page); |
| if (len <= off+count) *eof = 1; |
| *start = page + off; |
| len -= off; |
| if (len>count) len = count; |
| if (len<0) len = 0; |
| return len; |
| } |
| |
| #ifdef CONFIG_PPC_ISERIES |
| /* |
| * Get the RTC from the virtual service processor |
| * This requires flowing LpEvents to the primary partition |
| */ |
| void iSeries_get_rtc_time(struct rtc_time *rtc_tm) |
| { |
| if (piranha_simulator) |
| return; |
| |
| mf_get_rtc(rtc_tm); |
| rtc_tm->tm_mon--; |
| } |
| |
| /* |
| * Set the RTC in the virtual service processor |
| * This requires flowing LpEvents to the primary partition |
| */ |
| int iSeries_set_rtc_time(struct rtc_time *tm) |
| { |
| mf_set_rtc(tm); |
| return 0; |
| } |
| |
| void iSeries_get_boot_time(struct rtc_time *tm) |
| { |
| unsigned long time; |
| static unsigned long lastsec = 1; |
| |
| u32 dataWord1 = *((u32 *)(&xSpCommArea.xBcdTimeAtIplStart)); |
| u32 dataWord2 = *(((u32 *)&(xSpCommArea.xBcdTimeAtIplStart)) + 1); |
| int year = 1970; |
| int year1 = ( dataWord1 >> 24 ) & 0x000000FF; |
| int year2 = ( dataWord1 >> 16 ) & 0x000000FF; |
| int sec = ( dataWord1 >> 8 ) & 0x000000FF; |
| int min = dataWord1 & 0x000000FF; |
| int hour = ( dataWord2 >> 24 ) & 0x000000FF; |
| int day = ( dataWord2 >> 8 ) & 0x000000FF; |
| int mon = dataWord2 & 0x000000FF; |
| |
| if ( piranha_simulator ) |
| return; |
| |
| BCD_TO_BIN(sec); |
| BCD_TO_BIN(min); |
| BCD_TO_BIN(hour); |
| BCD_TO_BIN(day); |
| BCD_TO_BIN(mon); |
| BCD_TO_BIN(year1); |
| BCD_TO_BIN(year2); |
| year = year1 * 100 + year2; |
| |
| time = mktime(year, mon, day, hour, min, sec); |
| time += ( jiffies / HZ ); |
| |
| /* Now THIS is a nasty hack! |
| * It ensures that the first two calls get different answers. |
| * That way the loop in init_time (time.c) will not think |
| * the clock is stuck. |
| */ |
| if ( lastsec ) { |
| time -= lastsec; |
| --lastsec; |
| } |
| |
| to_tm(time, tm); |
| tm->tm_year -= 1900; |
| tm->tm_mon -= 1; |
| } |
| #endif |
| |
| #ifdef CONFIG_PPC_RTAS |
| #define MAX_RTC_WAIT 5000 /* 5 sec */ |
| #define RTAS_CLOCK_BUSY (-2) |
| void pSeries_get_boot_time(struct rtc_time *rtc_tm) |
| { |
| int ret[8]; |
| int error, wait_time; |
| unsigned long max_wait_tb; |
| |
| max_wait_tb = __get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT; |
| do { |
| error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret); |
| if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) { |
| wait_time = rtas_extended_busy_delay_time(error); |
| /* This is boot time so we spin. */ |
| udelay(wait_time*1000); |
| error = RTAS_CLOCK_BUSY; |
| } |
| } while (error == RTAS_CLOCK_BUSY && (__get_tb() < max_wait_tb)); |
| |
| if (error != 0 && printk_ratelimit()) { |
| printk(KERN_WARNING "error: reading the clock failed (%d)\n", |
| error); |
| return; |
| } |
| |
| rtc_tm->tm_sec = ret[5]; |
| rtc_tm->tm_min = ret[4]; |
| rtc_tm->tm_hour = ret[3]; |
| rtc_tm->tm_mday = ret[2]; |
| rtc_tm->tm_mon = ret[1] - 1; |
| rtc_tm->tm_year = ret[0] - 1900; |
| } |
| |
| /* NOTE: get_rtc_time will get an error if executed in interrupt context |
| * and if a delay is needed to read the clock. In this case we just |
| * silently return without updating rtc_tm. |
| */ |
| void pSeries_get_rtc_time(struct rtc_time *rtc_tm) |
| { |
| int ret[8]; |
| int error, wait_time; |
| unsigned long max_wait_tb; |
| |
| max_wait_tb = __get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT; |
| do { |
| error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret); |
| if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) { |
| if (in_interrupt() && printk_ratelimit()) { |
| printk(KERN_WARNING "error: reading clock would delay interrupt\n"); |
| return; /* delay not allowed */ |
| } |
| wait_time = rtas_extended_busy_delay_time(error); |
| set_current_state(TASK_INTERRUPTIBLE); |
| schedule_timeout(wait_time); |
| error = RTAS_CLOCK_BUSY; |
| } |
| } while (error == RTAS_CLOCK_BUSY && (__get_tb() < max_wait_tb)); |
| |
| if (error != 0 && printk_ratelimit()) { |
| printk(KERN_WARNING "error: reading the clock failed (%d)\n", |
| error); |
| return; |
| } |
| |
| rtc_tm->tm_sec = ret[5]; |
| rtc_tm->tm_min = ret[4]; |
| rtc_tm->tm_hour = ret[3]; |
| rtc_tm->tm_mday = ret[2]; |
| rtc_tm->tm_mon = ret[1] - 1; |
| rtc_tm->tm_year = ret[0] - 1900; |
| } |
| |
| int pSeries_set_rtc_time(struct rtc_time *tm) |
| { |
| int error, wait_time; |
| unsigned long max_wait_tb; |
| |
| max_wait_tb = __get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT; |
| do { |
| error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL, |
| tm->tm_year + 1900, tm->tm_mon + 1, |
| tm->tm_mday, tm->tm_hour, tm->tm_min, |
| tm->tm_sec, 0); |
| if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) { |
| if (in_interrupt()) |
| return 1; /* probably decrementer */ |
| wait_time = rtas_extended_busy_delay_time(error); |
| set_current_state(TASK_INTERRUPTIBLE); |
| schedule_timeout(wait_time); |
| error = RTAS_CLOCK_BUSY; |
| } |
| } while (error == RTAS_CLOCK_BUSY && (__get_tb() < max_wait_tb)); |
| |
| if (error != 0 && printk_ratelimit()) |
| printk(KERN_WARNING "error: setting the clock failed (%d)\n", |
| error); |
| |
| return 0; |
| } |
| #endif |