blob: e91186b5341a339dfdea6944446edada2e96bf36 [file] [log] [blame]
/*
* linux/arch/arm/mach-omap/clock.c
*
* Copyright (C) 2004 Nokia corporation
* Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <asm/semaphore.h>
#include <asm/hardware/clock.h>
#include <asm/arch/board.h>
#include <asm/arch/usb.h>
#include "clock.h"
static LIST_HEAD(clocks);
static DECLARE_MUTEX(clocks_sem);
static DEFINE_SPINLOCK(clockfw_lock);
static void propagate_rate(struct clk * clk);
/* External clock (MCLK & BCLK) functions */
static int set_ext_clk_rate(struct clk * clk, unsigned long rate);
static long round_ext_clk_rate(struct clk * clk, unsigned long rate);
static void init_ext_clk(struct clk * clk);
/* MPU virtual clock functions */
static int select_table_rate(struct clk * clk, unsigned long rate);
static long round_to_table_rate(struct clk * clk, unsigned long rate);
void clk_setdpll(__u16, __u16);
struct mpu_rate rate_table[] = {
/* MPU MHz, xtal MHz, dpll1 MHz, CKCTL, DPLL_CTL
* armdiv, dspdiv, dspmmu, tcdiv, perdiv, lcddiv
*/
#if defined(CONFIG_OMAP_ARM_216MHZ)
{ 216000000, 12000000, 216000000, 0x050d, 0x2910 }, /* 1/1/2/2/2/8 */
#endif
#if defined(CONFIG_OMAP_ARM_195MHZ)
{ 195000000, 13000000, 195000000, 0x050e, 0x2790 }, /* 1/1/2/2/4/8 */
#endif
#if defined(CONFIG_OMAP_ARM_192MHZ)
{ 192000000, 19200000, 192000000, 0x050f, 0x2510 }, /* 1/1/2/2/8/8 */
{ 192000000, 12000000, 192000000, 0x050f, 0x2810 }, /* 1/1/2/2/8/8 */
{ 96000000, 12000000, 192000000, 0x055f, 0x2810 }, /* 2/2/2/2/8/8 */
{ 48000000, 12000000, 192000000, 0x0ccf, 0x2810 }, /* 4/4/4/4/8/8 */
{ 24000000, 12000000, 192000000, 0x0fff, 0x2810 }, /* 8/8/8/8/8/8 */
#endif
#if defined(CONFIG_OMAP_ARM_182MHZ)
{ 182000000, 13000000, 182000000, 0x050e, 0x2710 }, /* 1/1/2/2/4/8 */
#endif
#if defined(CONFIG_OMAP_ARM_168MHZ)
{ 168000000, 12000000, 168000000, 0x010f, 0x2710 }, /* 1/1/1/2/8/8 */
#endif
#if defined(CONFIG_OMAP_ARM_150MHZ)
{ 150000000, 12000000, 150000000, 0x150a, 0x2cb0 }, /* 0/0/1/1/2/2 */
#endif
#if defined(CONFIG_OMAP_ARM_120MHZ)
{ 120000000, 12000000, 120000000, 0x010a, 0x2510 }, /* 1/1/1/2/4/4 */
#endif
#if defined(CONFIG_OMAP_ARM_96MHZ)
{ 96000000, 12000000, 96000000, 0x0005, 0x2410 }, /* 1/1/1/1/2/2 */
#endif
#if defined(CONFIG_OMAP_ARM_60MHZ)
{ 60000000, 12000000, 60000000, 0x0005, 0x2290 }, /* 1/1/1/1/2/2 */
#endif
#if defined(CONFIG_OMAP_ARM_30MHZ)
{ 30000000, 12000000, 60000000, 0x0555, 0x2290 }, /* 2/2/2/2/2/2 */
#endif
{ 0, 0, 0, 0, 0 },
};
static void ckctl_recalc(struct clk * clk)
{
int dsor;
/* Calculate divisor encoded as 2-bit exponent */
dsor = 1 << (3 & (omap_readw(ARM_CKCTL) >> clk->rate_offset));
if (unlikely(clk->rate == clk->parent->rate / dsor))
return; /* No change, quick exit */
clk->rate = clk->parent->rate / dsor;
if (unlikely(clk->flags & RATE_PROPAGATES))
propagate_rate(clk);
}
static void followparent_recalc(struct clk * clk)
{
clk->rate = clk->parent->rate;
}
static void watchdog_recalc(struct clk * clk)
{
clk->rate = clk->parent->rate / 14;
}
static struct clk ck_ref = {
.name = "ck_ref",
.rate = 12000000,
.flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
ALWAYS_ENABLED,
};
static struct clk ck_dpll1 = {
.name = "ck_dpll1",
.parent = &ck_ref,
.flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
RATE_PROPAGATES | ALWAYS_ENABLED,
};
static struct clk ck_dpll1out = {
.name = "ck_dpll1out",
.parent = &ck_dpll1,
.flags = CLOCK_IN_OMAP16XX,
.enable_reg = ARM_IDLECT2,
.enable_bit = EN_CKOUT_ARM,
.recalc = &followparent_recalc,
};
static struct clk arm_ck = {
.name = "arm_ck",
.parent = &ck_dpll1,
.flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
RATE_CKCTL | RATE_PROPAGATES | ALWAYS_ENABLED,
.rate_offset = CKCTL_ARMDIV_OFFSET,
.recalc = &ckctl_recalc,
};
static struct clk armper_ck = {
.name = "armper_ck",
.parent = &ck_dpll1,
.flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
RATE_CKCTL,
.enable_reg = ARM_IDLECT2,
.enable_bit = EN_PERCK,
.rate_offset = CKCTL_PERDIV_OFFSET,
.recalc = &ckctl_recalc,
};
static struct clk arm_gpio_ck = {
.name = "arm_gpio_ck",
.parent = &ck_dpll1,
.flags = CLOCK_IN_OMAP1510,
.enable_reg = ARM_IDLECT2,
.enable_bit = EN_GPIOCK,
.recalc = &followparent_recalc,
};
static struct clk armxor_ck = {
.name = "armxor_ck",
.parent = &ck_ref,
.flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX,
.enable_reg = ARM_IDLECT2,
.enable_bit = EN_XORPCK,
.recalc = &followparent_recalc,
};
static struct clk armtim_ck = {
.name = "armtim_ck",
.parent = &ck_ref,
.flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX,
.enable_reg = ARM_IDLECT2,
.enable_bit = EN_TIMCK,
.recalc = &followparent_recalc,
};
static struct clk armwdt_ck = {
.name = "armwdt_ck",
.parent = &ck_ref,
.flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX,
.enable_reg = ARM_IDLECT2,
.enable_bit = EN_WDTCK,
.recalc = &watchdog_recalc,
};
static struct clk arminth_ck16xx = {
.name = "arminth_ck",
.parent = &arm_ck,
.flags = CLOCK_IN_OMAP16XX,
.recalc = &followparent_recalc,
/* Note: On 16xx the frequency can be divided by 2 by programming
* ARM_CKCTL:ARM_INTHCK_SEL(14) to 1
*
* 1510 version is in TC clocks.
*/
};
static struct clk dsp_ck = {
.name = "dsp_ck",
.parent = &ck_dpll1,
.flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
RATE_CKCTL,
.enable_reg = ARM_CKCTL,
.enable_bit = EN_DSPCK,
.rate_offset = CKCTL_DSPDIV_OFFSET,
.recalc = &ckctl_recalc,
};
static struct clk dspmmu_ck = {
.name = "dspmmu_ck",
.parent = &ck_dpll1,
.flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
RATE_CKCTL | ALWAYS_ENABLED,
.rate_offset = CKCTL_DSPMMUDIV_OFFSET,
.recalc = &ckctl_recalc,
};
static struct clk tc_ck = {
.name = "tc_ck",
.parent = &ck_dpll1,
.flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX | CLOCK_IN_OMAP730 |
RATE_CKCTL | RATE_PROPAGATES | ALWAYS_ENABLED,
.rate_offset = CKCTL_TCDIV_OFFSET,
.recalc = &ckctl_recalc,
};
static struct clk arminth_ck1510 = {
.name = "arminth_ck",
.parent = &tc_ck,
.flags = CLOCK_IN_OMAP1510,
.recalc = &followparent_recalc,
/* Note: On 1510 the frequency follows TC_CK
*
* 16xx version is in MPU clocks.
*/
};
static struct clk tipb_ck = {
.name = "tibp_ck",
.parent = &tc_ck,
.flags = CLOCK_IN_OMAP1510,
.recalc = &followparent_recalc,
};
static struct clk l3_ocpi_ck = {
.name = "l3_ocpi_ck",
.parent = &tc_ck,
.flags = CLOCK_IN_OMAP16XX,
.enable_reg = ARM_IDLECT3,
.enable_bit = EN_OCPI_CK,
.recalc = &followparent_recalc,
};
static struct clk tc1_ck = {
.name = "tc1_ck",
.parent = &tc_ck,
.flags = CLOCK_IN_OMAP16XX,
.enable_reg = ARM_IDLECT3,
.enable_bit = EN_TC1_CK,
.recalc = &followparent_recalc,
};
static struct clk tc2_ck = {
.name = "tc2_ck",
.parent = &tc_ck,
.flags = CLOCK_IN_OMAP16XX,
.enable_reg = ARM_IDLECT3,
.enable_bit = EN_TC2_CK,
.recalc = &followparent_recalc,
};
static struct clk dma_ck = {
.name = "dma_ck",
.parent = &tc_ck,
.flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX,
.recalc = &followparent_recalc,
};
static struct clk dma_lcdfree_ck = {
.name = "dma_lcdfree_ck",
.parent = &tc_ck,
.flags = CLOCK_IN_OMAP16XX,
.recalc = &followparent_recalc,
};
static struct clk api_ck = {
.name = "api_ck",
.parent = &tc_ck,
.flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX,
.enable_reg = ARM_IDLECT2,
.enable_bit = EN_APICK,
.recalc = &followparent_recalc,
};
static struct clk lb_ck = {
.name = "lb_ck",
.parent = &tc_ck,
.flags = CLOCK_IN_OMAP1510,
.enable_reg = ARM_IDLECT2,
.enable_bit = EN_LBCK,
.recalc = &followparent_recalc,
};
static struct clk rhea1_ck = {
.name = "rhea1_ck",
.parent = &tc_ck,
.flags = CLOCK_IN_OMAP16XX,
.recalc = &followparent_recalc,
};
static struct clk rhea2_ck = {
.name = "rhea2_ck",
.parent = &tc_ck,
.flags = CLOCK_IN_OMAP16XX,
.recalc = &followparent_recalc,
};
static struct clk lcd_ck = {
.name = "lcd_ck",
.parent = &ck_dpll1,
.flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX | CLOCK_IN_OMAP730 |
RATE_CKCTL,
.enable_reg = ARM_IDLECT2,
.enable_bit = EN_LCDCK,
.rate_offset = CKCTL_LCDDIV_OFFSET,
.recalc = &ckctl_recalc,
};
static struct clk uart1_ck = {
.name = "uart1_ck",
/* Direct from ULPD, no parent */
.rate = 48000000,
.flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
RATE_FIXED | ENABLE_REG_32BIT,
.enable_reg = MOD_CONF_CTRL_0,
.enable_bit = 29,
/* (Only on 1510)
* The "enable bit" actually chooses between 48MHz and 12MHz.
*/
};
static struct clk uart2_ck = {
.name = "uart2_ck",
/* Direct from ULPD, no parent */
.rate = 48000000,
.flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
RATE_FIXED | ENABLE_REG_32BIT,
.enable_reg = MOD_CONF_CTRL_0,
.enable_bit = 30,
/* (for both 1510 and 16xx)
* The "enable bit" actually chooses between 48MHz and 12MHz/32kHz.
*/
};
static struct clk uart3_ck = {
.name = "uart3_ck",
/* Direct from ULPD, no parent */
.rate = 48000000,
.flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
RATE_FIXED | ENABLE_REG_32BIT,
.enable_reg = MOD_CONF_CTRL_0,
.enable_bit = 31,
/* (Only on 1510)
* The "enable bit" actually chooses between 48MHz and 12MHz.
*/
};
static struct clk usb_clko = { /* 6 MHz output on W4_USB_CLKO */
.name = "usb_clko",
/* Direct from ULPD, no parent */
.rate = 6000000,
.flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
RATE_FIXED | ENABLE_REG_32BIT,
.enable_reg = ULPD_CLOCK_CTRL,
.enable_bit = USB_MCLK_EN_BIT,
};
static struct clk usb_hhc_ck1510 = {
.name = "usb_hhc_ck",
/* Direct from ULPD, no parent */
.rate = 48000000, /* Actually 2 clocks, 12MHz and 48MHz */
.flags = CLOCK_IN_OMAP1510 |
RATE_FIXED | ENABLE_REG_32BIT,
.enable_reg = MOD_CONF_CTRL_0,
.enable_bit = USB_HOST_HHC_UHOST_EN,
};
static struct clk usb_hhc_ck16xx = {
.name = "usb_hhc_ck",
/* Direct from ULPD, no parent */
.rate = 48000000,
/* OTG_SYSCON_2.OTG_PADEN == 0 (not 1510-compatible) */
.flags = CLOCK_IN_OMAP16XX |
RATE_FIXED | ENABLE_REG_32BIT,
.enable_reg = OTG_BASE + 0x08 /* OTG_SYSCON_2 */,
.enable_bit = 8 /* UHOST_EN */,
};
static struct clk mclk_1510 = {
.name = "mclk",
/* Direct from ULPD, no parent. May be enabled by ext hardware. */
.rate = 12000000,
.flags = CLOCK_IN_OMAP1510 | RATE_FIXED,
};
static struct clk mclk_16xx = {
.name = "mclk",
/* Direct from ULPD, no parent. May be enabled by ext hardware. */
.flags = CLOCK_IN_OMAP16XX,
.enable_reg = COM_CLK_DIV_CTRL_SEL,
.enable_bit = COM_ULPD_PLL_CLK_REQ,
.set_rate = &set_ext_clk_rate,
.round_rate = &round_ext_clk_rate,
.init = &init_ext_clk,
};
static struct clk bclk_1510 = {
.name = "bclk",
/* Direct from ULPD, no parent. May be enabled by ext hardware. */
.rate = 12000000,
.flags = CLOCK_IN_OMAP1510 | RATE_FIXED,
};
static struct clk bclk_16xx = {
.name = "bclk",
/* Direct from ULPD, no parent. May be enabled by ext hardware. */
.flags = CLOCK_IN_OMAP16XX,
.enable_reg = SWD_CLK_DIV_CTRL_SEL,
.enable_bit = SWD_ULPD_PLL_CLK_REQ,
.set_rate = &set_ext_clk_rate,
.round_rate = &round_ext_clk_rate,
.init = &init_ext_clk,
};
static struct clk mmc1_ck = {
.name = "mmc1_ck",
/* Functional clock is direct from ULPD, interface clock is ARMPER */
.parent = &armper_ck,
.rate = 48000000,
.flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
RATE_FIXED | ENABLE_REG_32BIT,
.enable_reg = MOD_CONF_CTRL_0,
.enable_bit = 23,
};
static struct clk mmc2_ck = {
.name = "mmc2_ck",
/* Functional clock is direct from ULPD, interface clock is ARMPER */
.parent = &armper_ck,
.rate = 48000000,
.flags = CLOCK_IN_OMAP16XX |
RATE_FIXED | ENABLE_REG_32BIT,
.enable_reg = MOD_CONF_CTRL_0,
.enable_bit = 20,
};
static struct clk virtual_ck_mpu = {
.name = "mpu",
.flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
VIRTUAL_CLOCK | ALWAYS_ENABLED,
.parent = &arm_ck, /* Is smarter alias for */
.recalc = &followparent_recalc,
.set_rate = &select_table_rate,
.round_rate = &round_to_table_rate,
};
static struct clk * onchip_clks[] = {
/* non-ULPD clocks */
&ck_ref,
&ck_dpll1,
/* CK_GEN1 clocks */
&ck_dpll1out,
&arm_ck,
&armper_ck,
&arm_gpio_ck,
&armxor_ck,
&armtim_ck,
&armwdt_ck,
&arminth_ck1510, &arminth_ck16xx,
/* CK_GEN2 clocks */
&dsp_ck,
&dspmmu_ck,
/* CK_GEN3 clocks */
&tc_ck,
&tipb_ck,
&l3_ocpi_ck,
&tc1_ck,
&tc2_ck,
&dma_ck,
&dma_lcdfree_ck,
&api_ck,
&lb_ck,
&rhea1_ck,
&rhea2_ck,
&lcd_ck,
/* ULPD clocks */
&uart1_ck,
&uart2_ck,
&uart3_ck,
&usb_clko,
&usb_hhc_ck1510, &usb_hhc_ck16xx,
&mclk_1510, &mclk_16xx,
&bclk_1510, &bclk_16xx,
&mmc1_ck,
&mmc2_ck,
/* Virtual clocks */
&virtual_ck_mpu,
};
struct clk *clk_get(struct device *dev, const char *id)
{
struct clk *p, *clk = ERR_PTR(-ENOENT);
down(&clocks_sem);
list_for_each_entry(p, &clocks, node) {
if (strcmp(id, p->name) == 0 && try_module_get(p->owner)) {
clk = p;
break;
}
}
up(&clocks_sem);
return clk;
}
EXPORT_SYMBOL(clk_get);
void clk_put(struct clk *clk)
{
if (clk && !IS_ERR(clk))
module_put(clk->owner);
}
EXPORT_SYMBOL(clk_put);
int __clk_enable(struct clk *clk)
{
__u16 regval16;
__u32 regval32;
if (clk->flags & ALWAYS_ENABLED)
return 0;
if (unlikely(clk->enable_reg == 0)) {
printk(KERN_ERR "clock.c: Enable for %s without enable code\n",
clk->name);
return 0;
}
if (clk->flags & ENABLE_REG_32BIT) {
regval32 = omap_readl(clk->enable_reg);
regval32 |= (1 << clk->enable_bit);
omap_writel(regval32, clk->enable_reg);
} else {
regval16 = omap_readw(clk->enable_reg);
regval16 |= (1 << clk->enable_bit);
omap_writew(regval16, clk->enable_reg);
}
return 0;
}
void __clk_disable(struct clk *clk)
{
__u16 regval16;
__u32 regval32;
if (clk->enable_reg == 0)
return;
if (clk->flags & ENABLE_REG_32BIT) {
regval32 = omap_readl(clk->enable_reg);
regval32 &= ~(1 << clk->enable_bit);
omap_writel(regval32, clk->enable_reg);
} else {
regval16 = omap_readw(clk->enable_reg);
regval16 &= ~(1 << clk->enable_bit);
omap_writew(regval16, clk->enable_reg);
}
}
void __clk_unuse(struct clk *clk)
{
if (clk->usecount > 0 && !(--clk->usecount)) {
__clk_disable(clk);
if (likely(clk->parent))
__clk_unuse(clk->parent);
}
}
int __clk_use(struct clk *clk)
{
int ret = 0;
if (clk->usecount++ == 0) {
if (likely(clk->parent))
ret = __clk_use(clk->parent);
if (unlikely(ret != 0)) {
clk->usecount--;
return ret;
}
ret = __clk_enable(clk);
if (unlikely(ret != 0) && clk->parent) {
__clk_unuse(clk->parent);
clk->usecount--;
}
}
return ret;
}
int clk_enable(struct clk *clk)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&clockfw_lock, flags);
ret = __clk_enable(clk);
spin_unlock_irqrestore(&clockfw_lock, flags);
return ret;
}
EXPORT_SYMBOL(clk_enable);
void clk_disable(struct clk *clk)
{
unsigned long flags;
spin_lock_irqsave(&clockfw_lock, flags);
__clk_disable(clk);
spin_unlock_irqrestore(&clockfw_lock, flags);
}
EXPORT_SYMBOL(clk_disable);
int clk_use(struct clk *clk)
{
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&clockfw_lock, flags);
ret = __clk_use(clk);
spin_unlock_irqrestore(&clockfw_lock, flags);
return ret;
}
EXPORT_SYMBOL(clk_use);
void clk_unuse(struct clk *clk)
{
unsigned long flags;
spin_lock_irqsave(&clockfw_lock, flags);
__clk_unuse(clk);
spin_unlock_irqrestore(&clockfw_lock, flags);
}
EXPORT_SYMBOL(clk_unuse);
int clk_get_usecount(struct clk *clk)
{
return clk->usecount;
}
EXPORT_SYMBOL(clk_get_usecount);
unsigned long clk_get_rate(struct clk *clk)
{
return clk->rate;
}
EXPORT_SYMBOL(clk_get_rate);
static __u16 verify_ckctl_value(__u16 newval)
{
/* This function checks for following limitations set
* by the hardware (all conditions must be true):
* DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
* ARM_CK >= TC_CK
* DSP_CK >= TC_CK
* DSPMMU_CK >= TC_CK
*
* In addition following rules are enforced:
* LCD_CK <= TC_CK
* ARMPER_CK <= TC_CK
*
* However, maximum frequencies are not checked for!
*/
__u8 per_exp;
__u8 lcd_exp;
__u8 arm_exp;
__u8 dsp_exp;
__u8 tc_exp;
__u8 dspmmu_exp;
per_exp = (newval >> CKCTL_PERDIV_OFFSET) & 3;
lcd_exp = (newval >> CKCTL_LCDDIV_OFFSET) & 3;
arm_exp = (newval >> CKCTL_ARMDIV_OFFSET) & 3;
dsp_exp = (newval >> CKCTL_DSPDIV_OFFSET) & 3;
tc_exp = (newval >> CKCTL_TCDIV_OFFSET) & 3;
dspmmu_exp = (newval >> CKCTL_DSPMMUDIV_OFFSET) & 3;
if (dspmmu_exp < dsp_exp)
dspmmu_exp = dsp_exp;
if (dspmmu_exp > dsp_exp+1)
dspmmu_exp = dsp_exp+1;
if (tc_exp < arm_exp)
tc_exp = arm_exp;
if (tc_exp < dspmmu_exp)
tc_exp = dspmmu_exp;
if (tc_exp > lcd_exp)
lcd_exp = tc_exp;
if (tc_exp > per_exp)
per_exp = tc_exp;
newval &= 0xf000;
newval |= per_exp << CKCTL_PERDIV_OFFSET;
newval |= lcd_exp << CKCTL_LCDDIV_OFFSET;
newval |= arm_exp << CKCTL_ARMDIV_OFFSET;
newval |= dsp_exp << CKCTL_DSPDIV_OFFSET;
newval |= tc_exp << CKCTL_TCDIV_OFFSET;
newval |= dspmmu_exp << CKCTL_DSPMMUDIV_OFFSET;
return newval;
}
static int calc_dsor_exp(struct clk *clk, unsigned long rate)
{
/* Note: If target frequency is too low, this function will return 4,
* which is invalid value. Caller must check for this value and act
* accordingly.
*
* Note: This function does not check for following limitations set
* by the hardware (all conditions must be true):
* DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
* ARM_CK >= TC_CK
* DSP_CK >= TC_CK
* DSPMMU_CK >= TC_CK
*/
unsigned long realrate;
struct clk * parent;
unsigned dsor_exp;
if (unlikely(!(clk->flags & RATE_CKCTL)))
return -EINVAL;
parent = clk->parent;
if (unlikely(parent == 0))
return -EIO;
realrate = parent->rate;
for (dsor_exp=0; dsor_exp<4; dsor_exp++) {
if (realrate <= rate)
break;
realrate /= 2;
}
return dsor_exp;
}
long clk_round_rate(struct clk *clk, unsigned long rate)
{
int dsor_exp;
if (clk->flags & RATE_FIXED)
return clk->rate;
if (clk->flags & RATE_CKCTL) {
dsor_exp = calc_dsor_exp(clk, rate);
if (dsor_exp < 0)
return dsor_exp;
if (dsor_exp > 3)
dsor_exp = 3;
return clk->parent->rate / (1 << dsor_exp);
}
if(clk->round_rate != 0)
return clk->round_rate(clk, rate);
return clk->rate;
}
EXPORT_SYMBOL(clk_round_rate);
static void propagate_rate(struct clk * clk)
{
struct clk ** clkp;
for (clkp = onchip_clks; clkp < onchip_clks+ARRAY_SIZE(onchip_clks); clkp++) {
if (likely((*clkp)->parent != clk)) continue;
if (likely((*clkp)->recalc))
(*clkp)->recalc(*clkp);
}
}
static int select_table_rate(struct clk * clk, unsigned long rate)
{
/* Find the highest supported frequency <= rate and switch to it */
struct mpu_rate * ptr;
if (clk != &virtual_ck_mpu)
return -EINVAL;
for (ptr = rate_table; ptr->rate; ptr++) {
if (ptr->xtal != ck_ref.rate)
continue;
/* DPLL1 cannot be reprogrammed without risking system crash */
if (likely(ck_dpll1.rate!=0) && ptr->pll_rate != ck_dpll1.rate)
continue;
/* Can check only after xtal frequency check */
if (ptr->rate <= rate)
break;
}
if (!ptr->rate)
return -EINVAL;
if (unlikely(ck_dpll1.rate == 0)) {
omap_writew(ptr->dpllctl_val, DPLL_CTL);
ck_dpll1.rate = ptr->pll_rate;
}
omap_writew(ptr->ckctl_val, ARM_CKCTL);
propagate_rate(&ck_dpll1);
return 0;
}
static long round_to_table_rate(struct clk * clk, unsigned long rate)
{
/* Find the highest supported frequency <= rate */
struct mpu_rate * ptr;
long highest_rate;
if (clk != &virtual_ck_mpu)
return -EINVAL;
highest_rate = -EINVAL;
for (ptr = rate_table; ptr->rate; ptr++) {
if (ptr->xtal != ck_ref.rate)
continue;
highest_rate = ptr->rate;
/* Can check only after xtal frequency check */
if (ptr->rate <= rate)
break;
}
return highest_rate;
}
int clk_set_rate(struct clk *clk, unsigned long rate)
{
int ret = -EINVAL;
int dsor_exp;
__u16 regval;
unsigned long flags;
if (clk->flags & RATE_CKCTL) {
dsor_exp = calc_dsor_exp(clk, rate);
if (dsor_exp > 3)
dsor_exp = -EINVAL;
if (dsor_exp < 0)
return dsor_exp;
spin_lock_irqsave(&clockfw_lock, flags);
regval = omap_readw(ARM_CKCTL);
regval &= ~(3 << clk->rate_offset);
regval |= dsor_exp << clk->rate_offset;
regval = verify_ckctl_value(regval);
omap_writew(regval, ARM_CKCTL);
clk->rate = clk->parent->rate / (1 << dsor_exp);
spin_unlock_irqrestore(&clockfw_lock, flags);
ret = 0;
} else if(clk->set_rate != 0) {
spin_lock_irqsave(&clockfw_lock, flags);
ret = clk->set_rate(clk, rate);
spin_unlock_irqrestore(&clockfw_lock, flags);
}
if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES)))
propagate_rate(clk);
return ret;
}
EXPORT_SYMBOL(clk_set_rate);
static unsigned calc_ext_dsor(unsigned long rate)
{
unsigned dsor;
/* MCLK and BCLK divisor selection is not linear:
* freq = 96MHz / dsor
*
* RATIO_SEL range: dsor <-> RATIO_SEL
* 0..6: (RATIO_SEL+2) <-> (dsor-2)
* 6..48: (8+(RATIO_SEL-6)*2) <-> ((dsor-8)/2+6)
* Minimum dsor is 2 and maximum is 96. Odd divisors starting from 9
* can not be used.
*/
for (dsor = 2; dsor < 96; ++dsor) {
if ((dsor & 1) && dsor > 8)
continue;
if (rate >= 96000000 / dsor)
break;
}
return dsor;
}
static int set_ext_clk_rate(struct clk * clk, unsigned long rate)
{
unsigned dsor;
__u16 ratio_bits;
dsor = calc_ext_dsor(rate);
clk->rate = 96000000 / dsor;
if (dsor > 8)
ratio_bits = ((dsor - 8) / 2 + 6) << 2;
else
ratio_bits = (dsor - 2) << 2;
ratio_bits |= omap_readw(clk->enable_reg) & ~0xfd;
omap_writew(ratio_bits, clk->enable_reg);
return 0;
}
static long round_ext_clk_rate(struct clk * clk, unsigned long rate)
{
return 96000000 / calc_ext_dsor(rate);
}
static void init_ext_clk(struct clk * clk)
{
unsigned dsor;
__u16 ratio_bits;
/* Determine current rate and ensure clock is based on 96MHz APLL */
ratio_bits = omap_readw(clk->enable_reg) & ~1;
omap_writew(ratio_bits, clk->enable_reg);
ratio_bits = (ratio_bits & 0xfc) >> 2;
if (ratio_bits > 6)
dsor = (ratio_bits - 6) * 2 + 8;
else
dsor = ratio_bits + 2;
clk-> rate = 96000000 / dsor;
}
int clk_register(struct clk *clk)
{
down(&clocks_sem);
list_add(&clk->node, &clocks);
if (clk->init)
clk->init(clk);
up(&clocks_sem);
return 0;
}
EXPORT_SYMBOL(clk_register);
void clk_unregister(struct clk *clk)
{
down(&clocks_sem);
list_del(&clk->node);
up(&clocks_sem);
}
EXPORT_SYMBOL(clk_unregister);
int __init clk_init(void)
{
struct clk ** clkp;
const struct omap_clock_config *info;
int crystal_type = 0; /* Default 12 MHz */
for (clkp = onchip_clks; clkp < onchip_clks+ARRAY_SIZE(onchip_clks); clkp++) {
if (((*clkp)->flags &CLOCK_IN_OMAP1510) && cpu_is_omap1510()) {
clk_register(*clkp);
continue;
}
if (((*clkp)->flags &CLOCK_IN_OMAP16XX) && cpu_is_omap16xx()) {
clk_register(*clkp);
continue;
}
if (((*clkp)->flags &CLOCK_IN_OMAP730) && cpu_is_omap730()) {
clk_register(*clkp);
continue;
}
}
info = omap_get_config(OMAP_TAG_CLOCK, struct omap_clock_config);
if (info != NULL) {
if (!cpu_is_omap1510())
crystal_type = info->system_clock_type;
}
#if defined(CONFIG_ARCH_OMAP730)
ck_ref.rate = 13000000;
#elif defined(CONFIG_ARCH_OMAP16XX)
if (crystal_type == 2)
ck_ref.rate = 19200000;
#endif
/* We want to be in syncronous scalable mode */
omap_writew(0x1000, ARM_SYSST);
/* Find the highest supported frequency and enable it */
if (select_table_rate(&virtual_ck_mpu, ~0)) {
printk(KERN_ERR "System frequencies not set. Check your config.\n");
/* Guess sane values (60MHz) */
omap_writew(0x2290, DPLL_CTL);
omap_writew(0x1005, ARM_CKCTL);
ck_dpll1.rate = 60000000;
propagate_rate(&ck_dpll1);
printk(KERN_INFO "Clocking rate (xtal/DPLL1/MPU): %ld/%ld/%ld\n",
ck_ref.rate, ck_dpll1.rate, arm_ck.rate);
}
/* Cache rates for clocks connected to ck_ref (not dpll1) */
propagate_rate(&ck_ref);
#ifdef CONFIG_MACH_OMAP_PERSEUS2
/* Select slicer output as OMAP input clock */
omap_writew(omap_readw(OMAP730_PCC_UPLD_CTRL) & ~0x1, OMAP730_PCC_UPLD_CTRL);
#endif
/* Turn off DSP and ARM_TIMXO. Make sure ARM_INTHCK is not divided */
omap_writew(omap_readw(ARM_CKCTL) & 0x0fff, ARM_CKCTL);
/* Put DSP/MPUI into reset until needed */
omap_writew(0, ARM_RSTCT1);
omap_writew(1, ARM_RSTCT2);
omap_writew(0x400, ARM_IDLECT1);
/*
* According to OMAP5910 Erratum SYS_DMA_1, bit DMACK_REQ (bit 8)
* of the ARM_IDLECT2 register must be set to zero. The power-on
* default value of this bit is one.
*/
omap_writew(0x0000, ARM_IDLECT2); /* Turn LCD clock off also */
/*
* Only enable those clocks we will need, let the drivers
* enable other clocks as necessary
*/
clk_use(&armper_ck);
clk_use(&armxor_ck);
clk_use(&armtim_ck);
if (cpu_is_omap1510())
clk_enable(&arm_gpio_ck);
return 0;
}