| /* |
| * x86 FPU boot time init code: |
| */ |
| #include <asm/fpu/internal.h> |
| #include <asm/tlbflush.h> |
| |
| /* |
| * Initialize the TS bit in CR0 according to the style of context-switches |
| * we are using: |
| */ |
| static void fpu__init_cpu_ctx_switch(void) |
| { |
| if (!cpu_has_eager_fpu) |
| stts(); |
| else |
| clts(); |
| } |
| |
| /* |
| * Initialize the registers found in all CPUs, CR0 and CR4: |
| */ |
| static void fpu__init_cpu_generic(void) |
| { |
| unsigned long cr0; |
| unsigned long cr4_mask = 0; |
| |
| if (cpu_has_fxsr) |
| cr4_mask |= X86_CR4_OSFXSR; |
| if (cpu_has_xmm) |
| cr4_mask |= X86_CR4_OSXMMEXCPT; |
| if (cr4_mask) |
| cr4_set_bits(cr4_mask); |
| |
| cr0 = read_cr0(); |
| cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */ |
| if (!cpu_has_fpu) |
| cr0 |= X86_CR0_EM; |
| write_cr0(cr0); |
| |
| /* Flush out any pending x87 state: */ |
| asm volatile ("fninit"); |
| } |
| |
| /* |
| * Enable all supported FPU features. Called when a CPU is brought online: |
| */ |
| void fpu__init_cpu(void) |
| { |
| fpu__init_cpu_generic(); |
| fpu__init_cpu_xstate(); |
| fpu__init_cpu_ctx_switch(); |
| } |
| |
| /* |
| * The earliest FPU detection code. |
| * |
| * Set the X86_FEATURE_FPU CPU-capability bit based on |
| * trying to execute an actual sequence of FPU instructions: |
| */ |
| static void fpu__init_system_early_generic(struct cpuinfo_x86 *c) |
| { |
| unsigned long cr0; |
| u16 fsw, fcw; |
| |
| fsw = fcw = 0xffff; |
| |
| cr0 = read_cr0(); |
| cr0 &= ~(X86_CR0_TS | X86_CR0_EM); |
| write_cr0(cr0); |
| |
| asm volatile("fninit ; fnstsw %0 ; fnstcw %1" |
| : "+m" (fsw), "+m" (fcw)); |
| |
| if (fsw == 0 && (fcw & 0x103f) == 0x003f) |
| set_cpu_cap(c, X86_FEATURE_FPU); |
| else |
| clear_cpu_cap(c, X86_FEATURE_FPU); |
| |
| #ifndef CONFIG_MATH_EMULATION |
| if (!cpu_has_fpu) { |
| pr_emerg("x86/fpu: Giving up, no FPU found and no math emulation present\n"); |
| for (;;) |
| asm volatile("hlt"); |
| } |
| #endif |
| } |
| |
| /* |
| * Boot time FPU feature detection code: |
| */ |
| unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu; |
| |
| static void __init fpu__init_system_mxcsr(void) |
| { |
| unsigned int mask = 0; |
| |
| if (cpu_has_fxsr) { |
| /* Static because GCC does not get 16-byte stack alignment right: */ |
| static struct fxregs_state fxregs __initdata; |
| |
| asm volatile("fxsave %0" : "+m" (fxregs)); |
| |
| mask = fxregs.mxcsr_mask; |
| |
| /* |
| * If zero then use the default features mask, |
| * which has all features set, except the |
| * denormals-are-zero feature bit: |
| */ |
| if (mask == 0) |
| mask = 0x0000ffbf; |
| } |
| mxcsr_feature_mask &= mask; |
| } |
| |
| /* |
| * Once per bootup FPU initialization sequences that will run on most x86 CPUs: |
| */ |
| static void __init fpu__init_system_generic(void) |
| { |
| /* |
| * Set up the legacy init FPU context. (xstate init might overwrite this |
| * with a more modern format, if the CPU supports it.) |
| */ |
| fpstate_init_fxstate(&init_fpstate.fxsave); |
| |
| fpu__init_system_mxcsr(); |
| } |
| |
| /* |
| * Size of the FPU context state. All tasks in the system use the |
| * same context size, regardless of what portion they use. |
| * This is inherent to the XSAVE architecture which puts all state |
| * components into a single, continuous memory block: |
| */ |
| unsigned int xstate_size; |
| EXPORT_SYMBOL_GPL(xstate_size); |
| |
| /* |
| * Set up the xstate_size based on the legacy FPU context size. |
| * |
| * We set this up first, and later it will be overwritten by |
| * fpu__init_system_xstate() if the CPU knows about xstates. |
| */ |
| static void __init fpu__init_system_xstate_size_legacy(void) |
| { |
| static int on_boot_cpu = 1; |
| |
| WARN_ON_FPU(!on_boot_cpu); |
| on_boot_cpu = 0; |
| |
| /* |
| * Note that xstate_size might be overwriten later during |
| * fpu__init_system_xstate(). |
| */ |
| |
| if (!cpu_has_fpu) { |
| /* |
| * Disable xsave as we do not support it if i387 |
| * emulation is enabled. |
| */ |
| setup_clear_cpu_cap(X86_FEATURE_XSAVE); |
| setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); |
| xstate_size = sizeof(struct swregs_state); |
| } else { |
| if (cpu_has_fxsr) |
| xstate_size = sizeof(struct fxregs_state); |
| else |
| xstate_size = sizeof(struct fregs_state); |
| } |
| /* |
| * Quirk: we don't yet handle the XSAVES* instructions |
| * correctly, as we don't correctly convert between |
| * standard and compacted format when interfacing |
| * with user-space - so disable it for now. |
| * |
| * The difference is small: with recent CPUs the |
| * compacted format is only marginally smaller than |
| * the standard FPU state format. |
| * |
| * ( This is easy to backport while we are fixing |
| * XSAVES* support. ) |
| */ |
| setup_clear_cpu_cap(X86_FEATURE_XSAVES); |
| } |
| |
| /* |
| * FPU context switching strategies: |
| * |
| * Against popular belief, we don't do lazy FPU saves, due to the |
| * task migration complications it brings on SMP - we only do |
| * lazy FPU restores. |
| * |
| * 'lazy' is the traditional strategy, which is based on setting |
| * CR0::TS to 1 during context-switch (instead of doing a full |
| * restore of the FPU state), which causes the first FPU instruction |
| * after the context switch (whenever it is executed) to fault - at |
| * which point we lazily restore the FPU state into FPU registers. |
| * |
| * Tasks are of course under no obligation to execute FPU instructions, |
| * so it can easily happen that another context-switch occurs without |
| * a single FPU instruction being executed. If we eventually switch |
| * back to the original task (that still owns the FPU) then we have |
| * not only saved the restores along the way, but we also have the |
| * FPU ready to be used for the original task. |
| * |
| * 'eager' switching is used on modern CPUs, there we switch the FPU |
| * state during every context switch, regardless of whether the task |
| * has used FPU instructions in that time slice or not. This is done |
| * because modern FPU context saving instructions are able to optimize |
| * state saving and restoration in hardware: they can detect both |
| * unused and untouched FPU state and optimize accordingly. |
| * |
| * [ Note that even in 'lazy' mode we might optimize context switches |
| * to use 'eager' restores, if we detect that a task is using the FPU |
| * frequently. See the fpu->counter logic in fpu/internal.h for that. ] |
| */ |
| static enum { AUTO, ENABLE, DISABLE } eagerfpu = AUTO; |
| |
| static int __init eager_fpu_setup(char *s) |
| { |
| if (!strcmp(s, "on")) |
| eagerfpu = ENABLE; |
| else if (!strcmp(s, "off")) |
| eagerfpu = DISABLE; |
| else if (!strcmp(s, "auto")) |
| eagerfpu = AUTO; |
| return 1; |
| } |
| __setup("eagerfpu=", eager_fpu_setup); |
| |
| /* |
| * Pick the FPU context switching strategy: |
| */ |
| static void __init fpu__init_system_ctx_switch(void) |
| { |
| static bool on_boot_cpu = 1; |
| |
| WARN_ON_FPU(!on_boot_cpu); |
| on_boot_cpu = 0; |
| |
| WARN_ON_FPU(current->thread.fpu.fpstate_active); |
| current_thread_info()->status = 0; |
| |
| /* Auto enable eagerfpu for xsaveopt */ |
| if (cpu_has_xsaveopt && eagerfpu != DISABLE) |
| eagerfpu = ENABLE; |
| |
| if (xfeatures_mask & XSTATE_EAGER) { |
| if (eagerfpu == DISABLE) { |
| pr_err("x86/fpu: eagerfpu switching disabled, disabling the following xstate features: 0x%llx.\n", |
| xfeatures_mask & XSTATE_EAGER); |
| xfeatures_mask &= ~XSTATE_EAGER; |
| } else { |
| eagerfpu = ENABLE; |
| } |
| } |
| |
| if (eagerfpu == ENABLE) |
| setup_force_cpu_cap(X86_FEATURE_EAGER_FPU); |
| |
| printk(KERN_INFO "x86/fpu: Using '%s' FPU context switches.\n", eagerfpu == ENABLE ? "eager" : "lazy"); |
| } |
| |
| /* |
| * Called on the boot CPU once per system bootup, to set up the initial |
| * FPU state that is later cloned into all processes: |
| */ |
| void __init fpu__init_system(struct cpuinfo_x86 *c) |
| { |
| fpu__init_system_early_generic(c); |
| |
| /* |
| * The FPU has to be operational for some of the |
| * later FPU init activities: |
| */ |
| fpu__init_cpu(); |
| |
| /* |
| * But don't leave CR0::TS set yet, as some of the FPU setup |
| * methods depend on being able to execute FPU instructions |
| * that will fault on a set TS, such as the FXSAVE in |
| * fpu__init_system_mxcsr(). |
| */ |
| clts(); |
| |
| fpu__init_system_generic(); |
| fpu__init_system_xstate_size_legacy(); |
| fpu__init_system_xstate(); |
| |
| fpu__init_system_ctx_switch(); |
| } |
| |
| /* |
| * Boot parameter to turn off FPU support and fall back to math-emu: |
| */ |
| static int __init no_387(char *s) |
| { |
| setup_clear_cpu_cap(X86_FEATURE_FPU); |
| return 1; |
| } |
| __setup("no387", no_387); |
| |
| /* |
| * Disable all xstate CPU features: |
| */ |
| static int __init x86_noxsave_setup(char *s) |
| { |
| if (strlen(s)) |
| return 0; |
| |
| setup_clear_cpu_cap(X86_FEATURE_XSAVE); |
| setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); |
| setup_clear_cpu_cap(X86_FEATURE_XSAVES); |
| setup_clear_cpu_cap(X86_FEATURE_AVX); |
| setup_clear_cpu_cap(X86_FEATURE_AVX2); |
| |
| return 1; |
| } |
| __setup("noxsave", x86_noxsave_setup); |
| |
| /* |
| * Disable the XSAVEOPT instruction specifically: |
| */ |
| static int __init x86_noxsaveopt_setup(char *s) |
| { |
| setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); |
| |
| return 1; |
| } |
| __setup("noxsaveopt", x86_noxsaveopt_setup); |
| |
| /* |
| * Disable the XSAVES instruction: |
| */ |
| static int __init x86_noxsaves_setup(char *s) |
| { |
| setup_clear_cpu_cap(X86_FEATURE_XSAVES); |
| |
| return 1; |
| } |
| __setup("noxsaves", x86_noxsaves_setup); |
| |
| /* |
| * Disable FX save/restore and SSE support: |
| */ |
| static int __init x86_nofxsr_setup(char *s) |
| { |
| setup_clear_cpu_cap(X86_FEATURE_FXSR); |
| setup_clear_cpu_cap(X86_FEATURE_FXSR_OPT); |
| setup_clear_cpu_cap(X86_FEATURE_XMM); |
| |
| return 1; |
| } |
| __setup("nofxsr", x86_nofxsr_setup); |