blob: 0539e911aa1227c6b195fb435210d58fb8a732e2 [file] [log] [blame]
/*
* max17050_fuelgauge.c
* Samsung MAX17050 Fuel Gauge Driver
*
* Copyright (C) 2012 Samsung Electronics
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define DEBUG
#include <linux/battery/sec_fuelgauge.h>
#ifdef CONFIG_FUELGAUGE_MAX17050_VOLTAGE_TRACKING
static int max17050_write_reg(struct i2c_client *client, int reg, u8 *buf)
{
int ret;
ret = i2c_smbus_write_i2c_block_data(client, reg, 2, buf);
if (ret < 0)
dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret);
return ret;
}
static int max17050_read_reg(struct i2c_client *client, int reg, u8 *buf)
{
int ret;
ret = i2c_smbus_read_i2c_block_data(client, reg, 2, buf);
if (ret < 0)
dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret);
return ret;
}
static void max17050_write_reg_array(struct i2c_client *client,
u8 *buf, int size)
{
int i;
for (i = 0; i < size; i += 3)
max17050_write_reg(client, (u8) (*(buf + i)), (buf + i) + 1);
}
static void max17050_init_regs(struct i2c_client *client)
{
u8 data[2];
if (max17050_read_reg(client, MAX17050_REG_FILTERCFG, data) < 0)
return;
/* Clear average vcell (12 sec) */
data[0] &= 0x8f;
max17050_write_reg(client, MAX17050_REG_FILTERCFG, data);
}
static void max17050_get_version(struct i2c_client *client)
{
u8 data[2];
if (max17050_read_reg(client, MAX17050_REG_VERSION, data) < 0)
return;
dev_dbg(&client->dev, "MAX17050 Fuel-Gauge Ver %d%d\n",
data[0], data[1]);
}
static void max17050_alert_init(struct i2c_client *client)
{
struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client);
u8 data[2];
/* SALRT Threshold setting */
data[0] = fuelgauge->pdata->fuel_alert_soc;
data[1] = 0xff;
max17050_write_reg(client, MAX17050_REG_SALRT_TH, data);
/* VALRT Threshold setting */
data[0] = 0x00;
data[1] = 0xff;
max17050_write_reg(client, MAX17050_REG_VALRT_TH, data);
/* TALRT Threshold setting */
data[0] = 0x80;
data[1] = 0x7f;
max17050_write_reg(client, MAX17050_REG_TALRT_TH, data);
}
static bool max17050_check_status(struct i2c_client *client)
{
u8 data[2];
bool ret = false;
/* check if Smn was generated */
if (max17050_read_reg(client, MAX17050_REG_STATUS, data) < 0)
return ret;
dev_info(&client->dev, "%s: status_reg(%02x%02x)\n",
__func__, data[1], data[0]);
/* minimum SOC threshold exceeded. */
if (data[1] & (0x1 << 2))
ret = true;
/* clear status reg */
if (!ret) {
data[1] = 0;
max17050_write_reg(client, MAX17050_REG_STATUS, data);
msleep(200);
}
return ret;
}
static int max17050_set_temperature(struct i2c_client *client, int temperature)
{
u8 data[2];
data[0] = 0;
data[1] = temperature;
max17050_write_reg(client, MAX17050_REG_TEMPERATURE, data);
dev_dbg(&client->dev, "%s: temperature to (%d)\n",
__func__, temperature);
return temperature;
}
static int max17050_get_temperature(struct i2c_client *client)
{
u8 data[2];
s32 temperature = 0;
if (max17050_read_reg(client, MAX17050_REG_TEMPERATURE, data) < 0)
return -ERANGE;
/* data[] store 2's compliment format number */
if (data[1] & (0x1 << 7)) {
/* Negative */
temperature = ((~(data[1])) & 0xFF) + 1;
temperature *= (-1000);
} else {
temperature = data[1] & 0x7F;
temperature *= 1000;
temperature += data[0] * 39 / 10;
}
dev_dbg(&client->dev, "%s: temperature (%d)\n",
__func__, temperature);
return temperature;
}
/* soc should be 0.01% unit */
static int max17050_get_soc(struct i2c_client *client)
{
u8 data[2];
int soc;
if (max17050_read_reg(client, MAX17050_REG_SOC_VF, data) < 0)
return -EINVAL;
soc = ((data[1] * 100) + (data[0] * 100 / 256));
dev_dbg(&client->dev, "%s: raw capacity (%d)\n", __func__, soc);
return min(soc, 10000);
}
static int max17050_get_vfocv(struct i2c_client *client)
{
u8 data[2];
u32 vfocv = 0;
if (max17050_read_reg(client, MAX17050_REG_VFOCV, data) < 0)
return -EINVAL;
vfocv = ((data[0] >> 3) + (data[1] << 5)) * 625 / 1000;
dev_dbg(&client->dev, "%s: vfocv (%d)\n", __func__, vfocv);
return vfocv;
}
static int max17050_get_vcell(struct i2c_client *client)
{
u8 data[2];
u32 vcell = 0;
if (max17050_read_reg(client, MAX17050_REG_VCELL, data) < 0)
return -EINVAL;
vcell = ((data[0] >> 3) + (data[1] << 5)) * 625 / 1000;
dev_dbg(&client->dev, "%s: vcell (%d)\n", __func__, vcell);
return vcell;
}
static int max17050_get_avgvcell(struct i2c_client *client)
{
u8 data[2];
u32 avgvcell = 0;
if (max17050_read_reg(client, MAX17050_REG_AVGVCELL, data) < 0)
return -EINVAL;
avgvcell = ((data[0] >> 3) + (data[1] << 5)) * 625 / 1000;
dev_dbg(&client->dev, "%s: avgvcell (%d)\n", __func__, avgvcell);
return avgvcell;
}
bool sec_hal_fg_init(struct i2c_client *client)
{
/* initialize fuel gauge registers */
max17050_init_regs(client);
max17050_get_version(client);
return true;
}
bool sec_hal_fg_suspend(struct i2c_client *client)
{
return true;
}
bool sec_hal_fg_resume(struct i2c_client *client)
{
return true;
}
bool sec_hal_fg_fuelalert_init(struct i2c_client *client, int soc)
{
struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client);
u8 data[2];
/* 1. Set max17050 alert configuration. */
max17050_alert_init(client);
if (max17050_read_reg(client, MAX17050_REG_CONFIG, data)
< 0)
return -1;
/*Enable Alert (Aen = 1) */
data[0] |= (0x1 << 2);
max17050_write_reg(client, MAX17050_REG_CONFIG, data);
dev_dbg(&client->dev, "%s: config_reg(%02x%02x) irq(%d)\n",
__func__, data[1], data[0], fuelgauge->pdata->fg_irq);
return true;
}
bool sec_hal_fg_is_fuelalerted(struct i2c_client *client)
{
return max17050_check_status(client);
}
bool sec_hal_fg_fuelalert_process(void *irq_data, bool is_fuel_alerted)
{
struct sec_fuelgauge_info *fuelgauge = irq_data;
u8 data[2];
/* update SOC */
/* max17050_get_soc(fuelgauge->client); */
if (is_fuel_alerted) {
if (max17050_read_reg(fuelgauge->client,
MAX17050_REG_CONFIG, data) < 0)
return false;
data[1] |= (0x1 << 3);
max17050_write_reg(fuelgauge->client,
MAX17050_REG_CONFIG, data);
dev_info(&fuelgauge->client->dev,
"%s: Fuel-alert Alerted!! (%02x%02x)\n",
__func__, data[1], data[0]);
} else {
if (max17050_read_reg(fuelgauge->client,
MAX17050_REG_CONFIG, data)
< 0)
return false;
data[1] &= (~(0x1 << 3));
max17050_write_reg(fuelgauge->client,
MAX17050_REG_CONFIG, data);
dev_info(&fuelgauge->client->dev,
"%s: Fuel-alert Released!! (%02x%02x)\n",
__func__, data[1], data[0]);
}
max17050_read_reg(fuelgauge->client, MAX17050_REG_VCELL, data);
dev_dbg(&fuelgauge->client->dev,
"%s: MAX17050_REG_VCELL(%02x%02x)\n",
__func__, data[1], data[0]);
max17050_read_reg(fuelgauge->client, MAX17050_REG_TEMPERATURE, data);
dev_dbg(&fuelgauge->client->dev,
"%s: MAX17050_REG_TEMPERATURE(%02x%02x)\n",
__func__, data[1], data[0]);
max17050_read_reg(fuelgauge->client, MAX17050_REG_CONFIG, data);
dev_dbg(&fuelgauge->client->dev,
"%s: MAX17050_REG_CONFIG(%02x%02x)\n",
__func__, data[1], data[0]);
max17050_read_reg(fuelgauge->client, MAX17050_REG_VFOCV, data);
dev_dbg(&fuelgauge->client->dev,
"%s: MAX17050_REG_VFOCV(%02x%02x)\n",
__func__, data[1], data[0]);
max17050_read_reg(fuelgauge->client, MAX17050_REG_SOC_VF, data);
dev_dbg(&fuelgauge->client->dev,
"%s: MAX17050_REG_SOC_VF(%02x%02x)\n",
__func__, data[1], data[0]);
dev_dbg(&fuelgauge->client->dev,
"%s: FUEL GAUGE IRQ (%d)\n",
__func__,
gpio_get_value(fuelgauge->pdata->fg_irq));
#if 0
max17050_read_reg(fuelgauge->client, MAX17050_REG_STATUS, data);
dev_dbg(&fuelgauge->client->dev,
"%s: MAX17050_REG_STATUS(%02x%02x)\n",
__func__, data[1], data[0]);
max17050_read_reg(fuelgauge->client, MAX17050_REG_VALRT_TH, data);
dev_dbg(&fuelgauge->client->dev,
"%s: MAX17050_REG_VALRT_TH(%02x%02x)\n",
__func__, data[1], data[0]);
max17050_read_reg(fuelgauge->client, MAX17050_REG_TALRT_TH, data);
dev_dbg(&fuelgauge->client->dev,
"%s: MAX17050_REG_TALRT_TH(%02x%02x)\n",
__func__, data[1], data[0]);
max17050_read_reg(fuelgauge->client, MAX17050_REG_SALRT_TH, data);
dev_dbg(&fuelgauge->client->dev,
"%s: MAX17050_REG_SALRT_TH(%02x%02x)\n",
__func__, data[1], data[0]);
max17050_read_reg(fuelgauge->client, MAX17050_REG_AVGVCELL, data);
dev_dbg(&fuelgauge->client->dev,
"%s: MAX17050_REG_AVGVCELL(%02x%02x)\n",
__func__, data[1], data[0]);
max17050_read_reg(fuelgauge->client, MAX17050_REG_VERSION, data);
dev_dbg(&fuelgauge->client->dev,
"%s: MAX17050_REG_VERSION(%02x%02x)\n",
__func__, data[1], data[0]);
max17050_read_reg(fuelgauge->client, MAX17050_REG_LEARNCFG, data);
dev_dbg(&fuelgauge->client->dev,
"%s: MAX17050_REG_LEARNCFG(%02x%02x)\n",
__func__, data[1], data[0]);
max17050_read_reg(fuelgauge->client, MAX17050_REG_MISCCFG, data);
dev_dbg(&fuelgauge->client->dev,
"%s: MAX17050_REG_MISCCFG(%02x%02x)\n",
__func__, data[1], data[0]);
max17050_read_reg(fuelgauge->client, MAX17050_REG_CGAIN, data);
dev_dbg(&fuelgauge->client->dev,
"%s: MAX17050_REG_CGAIN(%02x%02x)\n",
__func__, data[1], data[0]);
max17050_read_reg(fuelgauge->client, MAX17050_REG_RCOMP, data);
dev_dbg(&fuelgauge->client->dev,
"%s: MAX17050_REG_RCOMP(%02x%02x)\n",
__func__, data[1], data[0]);
#endif
return true;
}
bool sec_hal_fg_full_charged(struct i2c_client *client)
{
return true;
}
bool sec_hal_fg_get_property(struct i2c_client *client,
enum power_supply_property psp,
union power_supply_propval *val)
{
switch (psp) {
/* Cell voltage (VCELL, mV) */
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
val->intval = max17050_get_vcell(client);
break;
/* Additional Voltage Information (mV) */
case POWER_SUPPLY_PROP_VOLTAGE_AVG:
switch (val->intval) {
case SEC_BATTEY_VOLTAGE_AVERAGE:
val->intval = max17050_get_avgvcell(client);
break;
case SEC_BATTEY_VOLTAGE_OCV:
val->intval = max17050_get_vfocv(client);
break;
}
break;
/* Current (mA) */
case POWER_SUPPLY_PROP_CURRENT_NOW:
val->intval = 0;
break;
/* Average Current (mA) */
case POWER_SUPPLY_PROP_CURRENT_AVG:
val->intval = 0;
break;
/* SOC (%) */
case POWER_SUPPLY_PROP_CAPACITY:
if (val->intval == SEC_FUELGAUGE_CAPACITY_TYPE_RAW)
val->intval = max17050_get_soc(client);
else
val->intval = max17050_get_soc(client) / 10;
break;
/* Battery Temperature */
case POWER_SUPPLY_PROP_TEMP:
/* Target Temperature */
case POWER_SUPPLY_PROP_TEMP_AMBIENT:
val->intval = max17050_get_temperature(client);
break;
default:
return false;
}
return true;
}
bool sec_hal_fg_set_property(struct i2c_client *client,
enum power_supply_property psp,
const union power_supply_propval *val)
{
switch (psp) {
/* Battery Temperature */
case POWER_SUPPLY_PROP_TEMP:
/* Target Temperature */
case POWER_SUPPLY_PROP_TEMP_AMBIENT:
max17050_set_temperature(client, val->intval);
break;
default:
return false;
}
return true;
}
ssize_t sec_hal_fg_show_attrs(struct device *dev,
const ptrdiff_t offset, char *buf)
{
struct power_supply *psy = dev_get_drvdata(dev);
struct sec_fuelgauge_info *fg =
container_of(psy, struct sec_fuelgauge_info, psy_fg);
int i = 0;
switch (offset) {
/* case FG_REG: */
/* break; */
case FG_DATA:
i += scnprintf(buf + i, PAGE_SIZE - i, "%02x%02x\n",
fg->reg_data[1], fg->reg_data[0]);
break;
default:
i = -EINVAL;
break;
}
return i;
}
ssize_t sec_hal_fg_store_attrs(struct device *dev,
const ptrdiff_t offset,
const char *buf, size_t count)
{
struct power_supply *psy = dev_get_drvdata(dev);
struct sec_fuelgauge_info *fg =
container_of(psy, struct sec_fuelgauge_info, psy_fg);
int ret = 0;
int x = 0;
u8 data[2];
switch (offset) {
case FG_REG:
if (sscanf(buf, "%x\n", &x) == 1) {
fg->reg_addr = x;
max17050_read_reg(fg->client,
fg->reg_addr, fg->reg_data);
dev_dbg(&fg->client->dev,
"%s: (read) addr = 0x%x, data = 0x%02x%02x\n",
__func__, fg->reg_addr,
fg->reg_data[1], fg->reg_data[0]);
ret = count;
}
break;
case FG_DATA:
if (sscanf(buf, "%x\n", &x) == 1) {
data[0] = (x & 0xFF00) >> 8;
data[1] = (x & 0x00FF);
dev_dbg(&fg->client->dev,
"%s: (write) addr = 0x%x, data = 0x%02x%02x\n",
__func__, fg->reg_addr, data[1], data[0]);
max17050_write_reg(fg->client,
fg->reg_addr, data);
ret = count;
}
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
#endif
#ifdef CONFIG_FUELGAUGE_MAX17050_COULOMB_COUNTING
static int fg_i2c_read(struct i2c_client *client,
u8 reg, u8 *data, u8 length)
{
s32 value;
value = i2c_smbus_read_i2c_block_data(client, reg, length, data);
if (value < 0 || value != length) {
dev_err(&client->dev, "%s: Error(%d)\n",
__func__, value);
return -1;
}
return 0;
}
static int fg_i2c_write(struct i2c_client *client,
u8 reg, u8 *data, u8 length)
{
s32 value;
value = i2c_smbus_write_i2c_block_data(client, reg, length, data);
if (value < 0) {
dev_err(&client->dev, "%s: Error(%d)\n",
__func__, value);
return -1;
}
return 0;
}
static int fg_read_register(struct i2c_client *client,
u8 addr)
{
u8 data[2];
if (fg_i2c_read(client, addr, data, 2) < 0) {
dev_err(&client->dev, "%s: Failed to read addr(0x%x)\n",
__func__, addr);
return -1;
}
return (data[1] << 8) | data[0];
}
static int fg_write_register(struct i2c_client *client,
u8 addr, u16 w_data)
{
u8 data[2];
data[0] = w_data & 0xFF;
data[1] = w_data >> 8;
if (fg_i2c_write(client, addr, data, 2) < 0) {
dev_err(&client->dev, "%s: Failed to write addr(0x%x)\n",
__func__, addr);
return -1;
}
return 0;
}
#if 0
static int fg_read_16register(struct i2c_client *client,
u8 addr, u16 *r_data)
{
u8 data[32];
int i = 0;
if (fg_i2c_read(client, addr, data, 32) < 0) {
dev_err(&client->dev, "%s: Failed to read addr(0x%x)\n",
__func__, addr);
return -1;
}
for (i = 0; i < 16; i++)
r_data[i] = (data[2 * i + 1] << 8) | data[2 * i];
return 0;
}
#endif
static void fg_write_and_verify_register(struct i2c_client *client,
u8 addr, u16 w_data)
{
u16 r_data;
u8 retry_cnt = 2;
while (retry_cnt) {
fg_write_register(client, addr, w_data);
r_data = fg_read_register(client, addr);
if (r_data != w_data) {
dev_err(&client->dev,
"%s: verification failed (addr: 0x%x, w_data: 0x%x, r_data: 0x%x)\n",
__func__, addr, w_data, r_data);
retry_cnt--;
} else
break;
}
}
static void fg_test_print(struct i2c_client *client)
{
u8 data[2];
u32 average_vcell;
u16 w_data;
u32 temp;
u32 temp2;
u16 reg_data;
if (fg_i2c_read(client, AVR_VCELL_REG, data, 2) < 0) {
dev_err(&client->dev, "%s: Failed to read VCELL\n", __func__);
return;
}
w_data = (data[1]<<8) | data[0];
temp = (w_data & 0xFFF) * 78125;
average_vcell = temp / 1000000;
temp = ((w_data & 0xF000) >> 4) * 78125;
temp2 = temp / 1000000;
average_vcell += (temp2 << 4);
dev_info(&client->dev, "%s: AVG_VCELL(%d), data(0x%04x)\n", __func__,
average_vcell, (data[1]<<8) | data[0]);
reg_data = fg_read_register(client, FULLCAP_REG);
dev_info(&client->dev, "%s: FULLCAP(%d), data(0x%04x)\n", __func__,
reg_data/2, reg_data);
reg_data = fg_read_register(client, REMCAP_REP_REG);
dev_info(&client->dev, "%s: REMCAP_REP(%d), data(0x%04x)\n", __func__,
reg_data/2, reg_data);
reg_data = fg_read_register(client, REMCAP_MIX_REG);
dev_info(&client->dev, "%s: REMCAP_MIX(%d), data(0x%04x)\n", __func__,
reg_data/2, reg_data);
reg_data = fg_read_register(client, REMCAP_AV_REG);
dev_info(&client->dev, "%s: REMCAP_AV(%d), data(0x%04x)\n", __func__,
reg_data/2, reg_data);
}
static void fg_periodic_read(struct i2c_client *client)
{
u8 reg;
int i;
int data[0x10];
char *str = NULL;
str = kzalloc(sizeof(char)*1024, GFP_KERNEL);
if (!str)
return;
for (i = 0; i < 16; i++) {
for (reg = 0; reg < 0x10; reg++)
data[reg] = fg_read_register(client, reg + i * 0x10);
sprintf(str+strlen(str),
"%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,",
data[0x00], data[0x01], data[0x02], data[0x03],
data[0x04], data[0x05], data[0x06], data[0x07]);
sprintf(str+strlen(str),
"%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,",
data[0x08], data[0x09], data[0x0a], data[0x0b],
data[0x0c], data[0x0d], data[0x0e], data[0x0f]);
if (i == 4)
i = 13;
}
dev_info(&client->dev, "%s", str);
kfree(str);
}
static void fg_read_regs(struct i2c_client *client, char *str)
{
int data = 0;
u32 addr = 0;
for (addr = 0; addr <= 0x4f; addr++) {
data = fg_read_register(client, addr);
sprintf(str+strlen(str), "0x%04x, ", data);
}
/* "#" considered as new line in application */
sprintf(str+strlen(str), "#");
for (addr = 0xe0; addr <= 0xff; addr++) {
data = fg_read_register(client, addr);
sprintf(str+strlen(str), "0x%04x, ", data);
}
}
static int fg_read_vcell(struct i2c_client *client)
{
struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client);
u8 data[2];
u32 vcell;
u16 w_data;
u32 temp;
u32 temp2;
if (fg_i2c_read(client, VCELL_REG, data, 2) < 0) {
dev_err(&client->dev, "%s: Failed to read VCELL\n", __func__);
return -1;
}
w_data = (data[1]<<8) | data[0];
temp = (w_data & 0xFFF) * 78125;
vcell = temp / 1000000;
temp = ((w_data & 0xF000) >> 4) * 78125;
temp2 = temp / 1000000;
vcell += (temp2 << 4);
if (!(fuelgauge->info.pr_cnt % PRINT_COUNT))
dev_info(&client->dev, "%s: VCELL(%d), data(0x%04x)\n",
__func__, vcell, (data[1]<<8) | data[0]);
return vcell;
}
static int fg_read_vfocv(struct i2c_client *client)
{
u8 data[2];
u32 vfocv = 0;
u16 w_data;
u32 temp;
u32 temp2;
if (fg_i2c_read(client, VFOCV_REG, data, 2) < 0) {
dev_err(&client->dev, "%s: Failed to read VFOCV\n", __func__);
return -1;
}
w_data = (data[1]<<8) | data[0];
temp = (w_data & 0xFFF) * 78125;
vfocv = temp / 1000000;
temp = ((w_data & 0xF000) >> 4) * 78125;
temp2 = temp / 1000000;
vfocv += (temp2 << 4);
return vfocv;
}
static int fg_read_avg_vcell(struct i2c_client *client)
{
u8 data[2];
u32 avg_vcell = 0;
u16 w_data;
u32 temp;
u32 temp2;
if (fg_i2c_read(client, AVR_VCELL_REG, data, 2) < 0) {
dev_err(&client->dev,
"%s: Failed to read AVG_VCELL\n", __func__);
return -1;
}
w_data = (data[1]<<8) | data[0];
temp = (w_data & 0xFFF) * 78125;
avg_vcell = temp / 1000000;
temp = ((w_data & 0xF000) >> 4) * 78125;
temp2 = temp / 1000000;
avg_vcell += (temp2 << 4);
return avg_vcell;
}
static int fg_check_battery_present(struct i2c_client *client)
{
u8 status_data[2];
int ret = 1;
/* 1. Check Bst bit */
if (fg_i2c_read(client, STATUS_REG, status_data, 2) < 0) {
dev_err(&client->dev,
"%s: Failed to read STATUS_REG\n", __func__);
return 0;
}
if (status_data[0] & (0x1 << 3)) {
dev_info(&client->dev,
"%s: addr(0x01), data(0x%04x)\n", __func__,
(status_data[1]<<8) | status_data[0]);
dev_info(&client->dev, "%s: battery is absent!!\n", __func__);
ret = 0;
}
return ret;
}
static int fg_write_temp(struct i2c_client *client, int temperature)
{
u8 data[2];
data[0] = (temperature%10) * 1000 / 39;
data[1] = temperature / 10;
fg_i2c_write(client, TEMPERATURE_REG, data, 2);
dev_dbg(&client->dev, "%s: temperature to (%d, 0x%02x%02x)\n",
__func__, temperature, data[1], data[0]);
return temperature;
}
static int fg_read_temp(struct i2c_client *client)
{
struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client);
u8 data[2] = {0, 0};
int temper = 0;
int i;
if (fg_check_battery_present(client)) {
if (fg_i2c_read(client, TEMPERATURE_REG, data, 2) < 0) {
dev_err(&client->dev,
"%s: Failed to read TEMPERATURE_REG\n",
__func__);
return -1;
}
if (data[1]&(0x1 << 7)) {
temper = ((~(data[1]))&0xFF)+1;
temper *= (-1000);
temper -= ((~((int)data[0]))+1) * 39 / 10;
} else {
temper = data[1] & 0x7f;
temper *= 1000;
temper += data[0] * 39 / 10;
#if 0
/* Adjust temperature */
for (i = 0; i < TEMP_RANGE_MAX_NUM-1; i++) {
if ((temper >= get_battery_data(fuelgauge).
temp_adjust_table[i][RANGE]) &&
(temper < get_battery_data(fuelgauge).
temp_adjust_table[i+1][RANGE])) {
temper = (temper *
get_battery_data(fuelgauge).
temp_adjust_table[i][SLOPE] /
100) -
get_battery_data(fuelgauge).
temp_adjust_table[i][OFFSET];
}
}
if (i == TEMP_RANGE_MAX_NUM-1)
dev_dbg(&client->dev,
"%s : No adjustment for temperature\n",
__func__);
#endif
}
} else
temper = 20000;
if (!(fuelgauge->info.pr_cnt % PRINT_COUNT))
dev_info(&client->dev, "%s: TEMPERATURE(%d), data(0x%04x)\n",
__func__, temper, (data[1]<<8) | data[0]);
return temper/100;
}
/* soc should be 0.1% unit */
static int fg_read_vfsoc(struct i2c_client *client)
{
u8 data[2];
int soc;
if (fg_i2c_read(client, VFSOC_REG, data, 2) < 0) {
dev_err(&client->dev, "%s: Failed to read VFSOC\n", __func__);
return -1;
}
soc = ((data[1] * 100) + (data[0] * 100 / 256)) / 10;
return min(soc, 1000);
}
/* soc should be 0.1% unit */
static int fg_read_avsoc(struct i2c_client *client)
{
u8 data[2];
int soc;
if (fg_i2c_read(client, SOCAV_REG, data, 2) < 0) {
dev_err(&client->dev, "%s: Failed to read AVSOC\n", __func__);
return -1;
}
soc = ((data[1] * 100) + (data[0] * 100 / 256)) / 10;
return min(soc, 1000);
}
/* soc should be 0.1% unit */
static int fg_read_soc(struct i2c_client *client)
{
struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client);
u8 data[2];
int soc;
if (fg_i2c_read(client, SOCREP_REG, data, 2) < 0) {
dev_err(&client->dev, "%s: Failed to read SOCREP\n", __func__);
return -1;
}
soc = ((data[1] * 100) + (data[0] * 100 / 256)) / 10;
dev_dbg(&client->dev, "%s: raw capacity (%d)\n", __func__, soc);
if (!(fuelgauge->info.pr_cnt % PRINT_COUNT))
dev_dbg(&client->dev, "%s: raw capacity (%d), data(0x%04x)\n",
__func__, soc, (data[1]<<8) | data[0]);
return min(soc, 1000);
}
/* soc should be 0.01% unit */
static int fg_read_rawsoc(struct i2c_client *client)
{
struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client);
u8 data[2];
int soc;
if (fg_i2c_read(client, SOCREP_REG, data, 2) < 0) {
dev_err(&client->dev, "%s: Failed to read SOCREP\n", __func__);
return -1;
}
soc = (data[1] * 100) + (data[0] * 100 / 256);
dev_dbg(&client->dev, "%s: raw capacity (0.01%%) (%d)\n",
__func__, soc);
if (!(fuelgauge->info.pr_cnt % PRINT_COUNT))
dev_dbg(&client->dev, "%s: raw capacity (%d), data(0x%04x)\n",
__func__, soc, (data[1]<<8) | data[0]);
return min(soc, 10000);
}
static int fg_read_fullcap(struct i2c_client *client)
{
u8 data[2];
int ret;
if (fg_i2c_read(client, FULLCAP_REG, data, 2) < 0) {
dev_err(&client->dev, "%s: Failed to read FULLCAP\n", __func__);
return -1;
}
ret = (data[1] << 8) + data[0];
return ret;
}
static int fg_read_mixcap(struct i2c_client *client)
{
u8 data[2];
int ret;
if (fg_i2c_read(client, REMCAP_MIX_REG, data, 2) < 0) {
dev_err(&client->dev, "%s: Failed to read REMCAP_MIX_REG\n",
__func__);
return -1;
}
ret = (data[1] << 8) + data[0];
return ret;
}
static int fg_read_avcap(struct i2c_client *client)
{
u8 data[2];
int ret;
if (fg_i2c_read(client, REMCAP_AV_REG, data, 2) < 0) {
dev_err(&client->dev, "%s: Failed to read REMCAP_AV_REG\n",
__func__);
return -1;
}
ret = (data[1] << 8) + data[0];
return ret;
}
static int fg_read_repcap(struct i2c_client *client)
{
u8 data[2];
int ret;
if (fg_i2c_read(client, REMCAP_REP_REG, data, 2) < 0) {
dev_err(&client->dev, "%s: Failed to read REMCAP_REP_REG\n",
__func__);
return -1;
}
ret = (data[1] << 8) + data[0];
return ret;
}
static int fg_read_current(struct i2c_client *client, int unit)
{
struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client);
u8 data1[2], data2[2];
u32 temp, sign;
s32 i_current;
s32 avg_current;
if (fg_i2c_read(client, CURRENT_REG, data1, 2) < 0) {
dev_err(&client->dev, "%s: Failed to read CURRENT\n",
__func__);
return -1;
}
if (fg_i2c_read(client, AVG_CURRENT_REG, data2, 2) < 0) {
dev_err(&client->dev, "%s: Failed to read AVERAGE CURRENT\n",
__func__);
return -1;
}
temp = ((data1[1]<<8) | data1[0]) & 0xFFFF;
if (temp & (0x1 << 15)) {
sign = NEGATIVE;
temp = (~temp & 0xFFFF) + 1;
} else
sign = POSITIVE;
/* 1.5625uV/0.01Ohm(Rsense) = 156.25uA */
switch (unit) {
case SEC_BATTEY_CURRENT_UA:
i_current = temp * 15625 / 100;
break;
case SEC_BATTEY_CURRENT_MA:
default:
i_current = temp * 15625 / 100000;
}
if (sign)
i_current *= -1;
temp = ((data2[1]<<8) | data2[0]) & 0xFFFF;
if (temp & (0x1 << 15)) {
sign = NEGATIVE;
temp = (~temp & 0xFFFF) + 1;
} else
sign = POSITIVE;
/* 1.5625uV/0.01Ohm(Rsense) = 156.25uA */
avg_current = temp * 15625 / 100000;
if (sign)
avg_current *= -1;
if (!(fuelgauge->info.pr_cnt++ % PRINT_COUNT)) {
fg_test_print(client);
dev_info(&client->dev, "%s: CURRENT(%dmA), AVG_CURRENT(%dmA)\n",
__func__, i_current, avg_current);
fuelgauge->info.pr_cnt = 1;
/* Read max17050's all registers every 5 minute. */
fg_periodic_read(client);
}
return i_current;
}
static int fg_read_avg_current(struct i2c_client *client, int unit)
{
u8 data2[2];
u32 temp, sign;
s32 avg_current;
if (fg_i2c_read(client, AVG_CURRENT_REG, data2, 2) < 0) {
dev_err(&client->dev, "%s: Failed to read AVERAGE CURRENT\n",
__func__);
return -1;
}
temp = ((data2[1]<<8) | data2[0]) & 0xFFFF;
if (temp & (0x1 << 15)) {
sign = NEGATIVE;
temp = (~temp & 0xFFFF) + 1;
} else
sign = POSITIVE;
/* 1.5625uV/0.01Ohm(Rsense) = 156.25uA */
switch (unit) {
case SEC_BATTEY_CURRENT_UA:
avg_current = temp * 15625 / 100;
break;
case SEC_BATTEY_CURRENT_MA:
default:
avg_current = temp * 15625 / 100000;
}
if (sign)
avg_current *= -1;
return avg_current;
}
int fg_reset_soc(struct i2c_client *client)
{
struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client);
u8 data[2];
int vfocv, fullcap;
/* delay for current stablization */
msleep(500);
dev_info(&client->dev,
"%s: Before quick-start - VCELL(%d), VFOCV(%d), VfSOC(%d), RepSOC(%d)\n",
__func__, fg_read_vcell(client), fg_read_vfocv(client),
fg_read_vfsoc(client), fg_read_soc(client));
dev_info(&client->dev,
"%s: Before quick-start - current(%d), avg current(%d)\n",
__func__, fg_read_current(client, SEC_BATTEY_CURRENT_MA),
fg_read_avg_current(client, SEC_BATTEY_CURRENT_MA));
if (!fuelgauge->pdata->check_jig_status()) {
dev_info(&client->dev,
"%s : Return by No JIG_ON signal\n", __func__);
return 0;
}
fg_write_register(client, CYCLES_REG, 0);
if (fg_i2c_read(client, MISCCFG_REG, data, 2) < 0) {
dev_err(&client->dev, "%s: Failed to read MiscCFG\n", __func__);
return -1;
}
data[1] |= (0x1 << 2);
if (fg_i2c_write(client, MISCCFG_REG, data, 2) < 0) {
dev_err(&client->dev,
"%s: Failed to write MiscCFG\n", __func__);
return -1;
}
msleep(250);
fg_write_register(client, FULLCAP_REG,
get_battery_data(fuelgauge).Capacity);
msleep(500);
dev_info(&client->dev,
"%s: After quick-start - VCELL(%d), VFOCV(%d), VfSOC(%d), RepSOC(%d)\n",
__func__, fg_read_vcell(client), fg_read_vfocv(client),
fg_read_vfsoc(client), fg_read_soc(client));
dev_info(&client->dev,
"%s: After quick-start - current(%d), avg current(%d)\n",
__func__, fg_read_current(client, SEC_BATTEY_CURRENT_MA),
fg_read_avg_current(client, SEC_BATTEY_CURRENT_MA));
fg_write_register(client, CYCLES_REG, 0x00a0);
/* P8 is not turned off by Quickstart @3.4V
* (It's not a problem, depend on mode data)
* Power off for factory test(File system, etc..) */
vfocv = fg_read_vfocv(client);
if (vfocv < POWER_OFF_VOLTAGE_LOW_MARGIN) {
dev_info(&client->dev, "%s: Power off condition(%d)\n",
__func__, vfocv);
fullcap = fg_read_register(client, FULLCAP_REG);
/* FullCAP * 0.009 */
fg_write_register(client, REMCAP_REP_REG,
(u16)(fullcap * 9 / 1000));
msleep(200);
dev_info(&client->dev, "%s: new soc=%d, vfocv=%d\n", __func__,
fg_read_soc(client), vfocv);
}
dev_info(&client->dev,
"%s: Additional step - VfOCV(%d), VfSOC(%d), RepSOC(%d)\n",
__func__, fg_read_vfocv(client),
fg_read_vfsoc(client), fg_read_soc(client));
return 0;
}
int fg_reset_capacity_by_jig_connection(struct i2c_client *client)
{
struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client);
dev_info(&client->dev,
"%s: DesignCap = Capacity - 1 (Jig Connection)\n", __func__);
return fg_write_register(client, DESIGNCAP_REG,
get_battery_data(fuelgauge).Capacity-1);
}
int fg_adjust_capacity(struct i2c_client *client)
{
u8 data[2];
data[0] = 0;
data[1] = 0;
/* 1. Write RemCapREP(05h)=0; */
if (fg_i2c_write(client, REMCAP_REP_REG, data, 2) < 0) {
dev_err(&client->dev, "%s: Failed to write RemCap_REP\n",
__func__);
return -1;
}
msleep(200);
dev_info(&client->dev, "%s: After adjust - RepSOC(%d)\n", __func__,
fg_read_soc(client));
return 0;
}
void fg_low_batt_compensation(struct i2c_client *client, u32 level)
{
int read_val;
u32 temp;
dev_info(&client->dev, "%s: Adjust SOCrep to %d!!\n",
__func__, level);
read_val = fg_read_register(client, FULLCAP_REG);
/* RemCapREP (05h) = FullCap(10h) x 0.0090 */
temp = read_val * (level*90) / 10000;
fg_write_register(client, REMCAP_REP_REG, (u16)temp);
}
#if 0
static void fg_read_model_data(struct i2c_client *client)
{
u16 data0[16], data1[16], data2[16];
int i;
int relock_check;
dev_info(&client->dev, "[FG_Model] ");
/* Unlock model access */
fg_write_register(client, 0x62, 0x0059);
fg_write_register(client, 0x63, 0x00C4);
/* Read model data */
fg_read_16register(client, 0x80, data0);
fg_read_16register(client, 0x90, data1);
fg_read_16register(client, 0xa0, data2);
/* Print model data */
for (i = 0; i < 16; i++)
dev_info(&client->dev, "0x%04x, ", data0[i]);
for (i = 0; i < 16; i++)
dev_info(&client->dev, "0x%04x, ", data1[i]);
for (i = 0; i < 16; i++) {
if (i == 15)
dev_info(&client->dev, "0x%04x", data2[i]);
else
dev_info(&client->dev, "0x%04x, ", data2[i]);
}
do {
relock_check = 0;
/* Lock model access */
fg_write_register(client, 0x62, 0x0000);
fg_write_register(client, 0x63, 0x0000);
/* Read model data again */
fg_read_16register(client, 0x80, data0);
fg_read_16register(client, 0x90, data1);
fg_read_16register(client, 0xa0, data2);
for (i = 0; i < 16; i++) {
if (data0[i] || data1[i] || data2[i]) {
dev_dbg(&client->dev,
"%s: data is non-zero, lock again!!\n",
__func__);
relock_check = 1;
}
}
} while (relock_check);
}
#endif
static int fg_check_status_reg(struct i2c_client *client)
{
u8 status_data[2];
int ret = 0;
/* 1. Check Smn was generatedread */
if (fg_i2c_read(client, STATUS_REG, status_data, 2) < 0) {
dev_err(&client->dev, "%s: Failed to read STATUS_REG\n",
__func__);
return -1;
}
dev_info(&client->dev, "%s: addr(0x00), data(0x%04x)\n", __func__,
(status_data[1]<<8) | status_data[0]);
if (status_data[1] & (0x1 << 2))
ret = 1;
/* 2. clear Status reg */
status_data[1] = 0;
if (fg_i2c_write(client, STATUS_REG, status_data, 2) < 0) {
dev_info(&client->dev, "%s: Failed to write STATUS_REG\n",
__func__);
return -1;
}
return ret;
}
int get_fuelgauge_value(struct i2c_client *client, int data)
{
int ret;
switch (data) {
case FG_LEVEL:
ret = fg_read_soc(client);
break;
case FG_TEMPERATURE:
ret = fg_read_temp(client);
break;
case FG_VOLTAGE:
ret = fg_read_vcell(client);
break;
case FG_CURRENT:
ret = fg_read_current(client, SEC_BATTEY_CURRENT_MA);
break;
case FG_CURRENT_AVG:
ret = fg_read_avg_current(client, SEC_BATTEY_CURRENT_MA);
break;
case FG_CHECK_STATUS:
ret = fg_check_status_reg(client);
break;
case FG_RAW_SOC:
ret = fg_read_rawsoc(client);
break;
case FG_VF_SOC:
ret = fg_read_vfsoc(client);
break;
case FG_AV_SOC:
ret = fg_read_avsoc(client);
break;
case FG_FULLCAP:
ret = fg_read_fullcap(client);
break;
case FG_MIXCAP:
ret = fg_read_mixcap(client);
break;
case FG_AVCAP:
ret = fg_read_avcap(client);
break;
case FG_REPCAP:
ret = fg_read_repcap(client);
break;
default:
ret = -1;
break;
}
return ret;
}
int fg_alert_init(struct i2c_client *client, int soc)
{
u8 misccgf_data[2];
u8 salrt_data[2];
u8 config_data[2];
u8 valrt_data[2];
u8 talrt_data[2];
u16 read_data = 0;
/* Using RepSOC */
if (fg_i2c_read(client, MISCCFG_REG, misccgf_data, 2) < 0) {
dev_err(&client->dev,
"%s: Failed to read MISCCFG_REG\n", __func__);
return -1;
}
misccgf_data[0] = misccgf_data[0] & ~(0x03);
if (fg_i2c_write(client, MISCCFG_REG, misccgf_data, 2) < 0) {
dev_info(&client->dev,
"%s: Failed to write MISCCFG_REG\n", __func__);
return -1;
}
/* SALRT Threshold setting */
salrt_data[1] = 0xff;
salrt_data[0] = soc;
if (fg_i2c_write(client, SALRT_THRESHOLD_REG, salrt_data, 2) < 0) {
dev_info(&client->dev,
"%s: Failed to write SALRT_THRESHOLD_REG\n", __func__);
return -1;
}
/* Reset VALRT Threshold setting (disable) */
valrt_data[1] = 0xFF;
valrt_data[0] = 0x00;
if (fg_i2c_write(client, VALRT_THRESHOLD_REG, valrt_data, 2) < 0) {
dev_info(&client->dev,
"%s: Failed to write VALRT_THRESHOLD_REG\n", __func__);
return -1;
}
read_data = fg_read_register(client, (u8)VALRT_THRESHOLD_REG);
if (read_data != 0xff00)
dev_err(&client->dev,
"%s: VALRT_THRESHOLD_REG is not valid (0x%x)\n",
__func__, read_data);
/* Reset TALRT Threshold setting (disable) */
talrt_data[1] = 0x7F;
talrt_data[0] = 0x80;
if (fg_i2c_write(client, TALRT_THRESHOLD_REG, talrt_data, 2) < 0) {
dev_info(&client->dev,
"%s: Failed to write TALRT_THRESHOLD_REG\n", __func__);
return -1;
}
read_data = fg_read_register(client, (u8)TALRT_THRESHOLD_REG);
if (read_data != 0x7f80)
dev_err(&client->dev,
"%s: TALRT_THRESHOLD_REG is not valid (0x%x)\n",
__func__, read_data);
/*mdelay(100);*/
/* Enable SOC alerts */
if (fg_i2c_read(client, CONFIG_REG, config_data, 2) < 0) {
dev_err(&client->dev,
"%s: Failed to read CONFIG_REG\n", __func__);
return -1;
}
config_data[0] = config_data[0] | (0x1 << 2);
if (fg_i2c_write(client, CONFIG_REG, config_data, 2) < 0) {
dev_info(&client->dev,
"%s: Failed to write CONFIG_REG\n", __func__);
return -1;
}
return 1;
}
void fg_fullcharged_compensation(struct i2c_client *client,
u32 is_recharging, bool pre_update)
{
struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client);
static int new_fullcap_data;
dev_info(&client->dev, "%s: is_recharging(%d), pre_update(%d)\n",
__func__, is_recharging, pre_update);
new_fullcap_data =
fg_read_register(client, FULLCAP_REG);
if (new_fullcap_data < 0)
new_fullcap_data = get_battery_data(fuelgauge).Capacity;
/* compare with initial capacity */
if (new_fullcap_data >
(get_battery_data(fuelgauge).Capacity * 110 / 100)) {
dev_info(&client->dev,
"%s: [Case 1] capacity = 0x%04x, NewFullCap = 0x%04x\n",
__func__, get_battery_data(fuelgauge).Capacity,
new_fullcap_data);
new_fullcap_data =
(get_battery_data(fuelgauge).Capacity * 110) / 100;
fg_write_register(client, REMCAP_REP_REG,
(u16)(new_fullcap_data));
fg_write_register(client, FULLCAP_REG,
(u16)(new_fullcap_data));
} else if (new_fullcap_data <
(get_battery_data(fuelgauge).Capacity * 50 / 100)) {
dev_info(&client->dev,
"%s: [Case 5] capacity = 0x%04x, NewFullCap = 0x%04x\n",
__func__, get_battery_data(fuelgauge).Capacity,
new_fullcap_data);
new_fullcap_data =
(get_battery_data(fuelgauge).Capacity * 50) / 100;
fg_write_register(client, REMCAP_REP_REG,
(u16)(new_fullcap_data));
fg_write_register(client, FULLCAP_REG,
(u16)(new_fullcap_data));
} else {
/* compare with previous capacity */
if (new_fullcap_data >
(fuelgauge->info.previous_fullcap * 110 / 100)) {
dev_info(&client->dev,
"%s: [Case 2] previous_fullcap = 0x%04x, NewFullCap = 0x%04x\n",
__func__, fuelgauge->info.previous_fullcap,
new_fullcap_data);
new_fullcap_data =
(fuelgauge->info.previous_fullcap * 110) / 100;
fg_write_register(client, REMCAP_REP_REG,
(u16)(new_fullcap_data));
fg_write_register(client, FULLCAP_REG,
(u16)(new_fullcap_data));
} else if (new_fullcap_data <
(fuelgauge->info.previous_fullcap * 90 / 100)) {
dev_info(&client->dev,
"%s: [Case 3] previous_fullcap = 0x%04x, NewFullCap = 0x%04x\n",
__func__, fuelgauge->info.previous_fullcap,
new_fullcap_data);
new_fullcap_data =
(fuelgauge->info.previous_fullcap * 90) / 100;
fg_write_register(client, REMCAP_REP_REG,
(u16)(new_fullcap_data));
fg_write_register(client, FULLCAP_REG,
(u16)(new_fullcap_data));
} else {
dev_info(&client->dev,
"%s: [Case 4] previous_fullcap = 0x%04x, NewFullCap = 0x%04x\n",
__func__, fuelgauge->info.previous_fullcap,
new_fullcap_data);
}
}
/* 4. Write RepSOC(06h)=100%; */
fg_write_register(client, SOCREP_REG, (u16)(0x64 << 8));
/* 5. Write MixSOC(0Dh)=100%; */
fg_write_register(client, SOCMIX_REG, (u16)(0x64 << 8));
/* 6. Write AVSOC(0Eh)=100%; */
fg_write_register(client, SOCAV_REG, (u16)(0x64 << 8));
/* if pre_update case, skip updating PrevFullCAP value. */
if (!pre_update)
fuelgauge->info.previous_fullcap =
fg_read_register(client, FULLCAP_REG);
dev_info(&client->dev,
"%s: (A) FullCap = 0x%04x, RemCap = 0x%04x\n", __func__,
fg_read_register(client, FULLCAP_REG),
fg_read_register(client, REMCAP_REP_REG));
fg_periodic_read(client);
}
void fg_check_vf_fullcap_range(struct i2c_client *client)
{
struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client);
static int new_vffullcap;
bool is_vffullcap_changed = true;
if (fuelgauge->pdata->check_jig_status())
fg_reset_capacity_by_jig_connection(client);
new_vffullcap = fg_read_register(client, FULLCAP_NOM_REG);
if (new_vffullcap < 0)
new_vffullcap = get_battery_data(fuelgauge).Capacity;
/* compare with initial capacity */
if (new_vffullcap >
(get_battery_data(fuelgauge).Capacity * 110 / 100)) {
dev_info(&client->dev,
"%s: [Case 1] capacity = 0x%04x, NewVfFullCap = 0x%04x\n",
__func__, get_battery_data(fuelgauge).Capacity,
new_vffullcap);
new_vffullcap =
(get_battery_data(fuelgauge).Capacity * 110) / 100;
fg_write_register(client, DQACC_REG,
(u16)(new_vffullcap / 4));
fg_write_register(client, DPACC_REG, (u16)0x3200);
} else if (new_vffullcap <
(get_battery_data(fuelgauge).Capacity * 50 / 100)) {
dev_info(&client->dev,
"%s: [Case 5] capacity = 0x%04x, NewVfFullCap = 0x%04x\n",
__func__, get_battery_data(fuelgauge).Capacity,
new_vffullcap);
new_vffullcap =
(get_battery_data(fuelgauge).Capacity * 50) / 100;
fg_write_register(client, DQACC_REG,
(u16)(new_vffullcap / 4));
fg_write_register(client, DPACC_REG, (u16)0x3200);
} else {
/* compare with previous capacity */
if (new_vffullcap >
(fuelgauge->info.previous_vffullcap * 110 / 100)) {
dev_info(&client->dev,
"%s: [Case 2] previous_vffullcap = 0x%04x, NewVfFullCap = 0x%04x\n",
__func__, fuelgauge->info.previous_vffullcap,
new_vffullcap);
new_vffullcap =
(fuelgauge->info.previous_vffullcap * 110) /
100;
fg_write_register(client, DQACC_REG,
(u16)(new_vffullcap / 4));
fg_write_register(client, DPACC_REG, (u16)0x3200);
} else if (new_vffullcap <
(fuelgauge->info.previous_vffullcap * 90 / 100)) {
dev_info(&client->dev,
"%s: [Case 3] previous_vffullcap = 0x%04x, NewVfFullCap = 0x%04x\n",
__func__, fuelgauge->info.previous_vffullcap,
new_vffullcap);
new_vffullcap =
(fuelgauge->info.previous_vffullcap * 90) / 100;
fg_write_register(client, DQACC_REG,
(u16)(new_vffullcap / 4));
fg_write_register(client, DPACC_REG, (u16)0x3200);
} else {
dev_info(&client->dev,
"%s: [Case 4] previous_vffullcap = 0x%04x, NewVfFullCap = 0x%04x\n",
__func__, fuelgauge->info.previous_vffullcap,
new_vffullcap);
is_vffullcap_changed = false;
}
}
/* delay for register setting (dQacc, dPacc) */
if (is_vffullcap_changed)
msleep(300);
fuelgauge->info.previous_vffullcap =
fg_read_register(client, FULLCAP_NOM_REG);
if (is_vffullcap_changed)
dev_info(&client->dev,
"%s : VfFullCap(0x%04x), dQacc(0x%04x), dPacc(0x%04x)\n",
__func__,
fg_read_register(client, FULLCAP_NOM_REG),
fg_read_register(client, DQACC_REG),
fg_read_register(client, DPACC_REG));
}
void fg_set_full_charged(struct i2c_client *client)
{
dev_info(&client->dev, "[FG_Set_Full] (B) FullCAP(%d), RemCAP(%d)\n",
(fg_read_register(client, FULLCAP_REG)/2),
(fg_read_register(client, REMCAP_REP_REG)/2));
fg_write_register(client, FULLCAP_REG,
(u16)fg_read_register(client, REMCAP_REP_REG));
dev_info(&client->dev, "[FG_Set_Full] (A) FullCAP(%d), RemCAP(%d)\n",
(fg_read_register(client, FULLCAP_REG)/2),
(fg_read_register(client, REMCAP_REP_REG)/2));
}
static void display_low_batt_comp_cnt(struct i2c_client *client)
{
struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client);
pr_info("Check Array(%s): [%d, %d], [%d, %d], ",
get_battery_data(fuelgauge).type_str,
fuelgauge->info.low_batt_comp_cnt[0][0],
fuelgauge->info.low_batt_comp_cnt[0][1],
fuelgauge->info.low_batt_comp_cnt[1][0],
fuelgauge->info.low_batt_comp_cnt[1][1]);
pr_info("[%d, %d], [%d, %d], [%d, %d]\n",
fuelgauge->info.low_batt_comp_cnt[2][0],
fuelgauge->info.low_batt_comp_cnt[2][1],
fuelgauge->info.low_batt_comp_cnt[3][0],
fuelgauge->info.low_batt_comp_cnt[3][1],
fuelgauge->info.low_batt_comp_cnt[4][0],
fuelgauge->info.low_batt_comp_cnt[4][1]);
}
static void add_low_batt_comp_cnt(struct i2c_client *client,
int range, int level)
{
struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client);
int i;
int j;
/* Increase the requested count value, and reset others. */
fuelgauge->info.low_batt_comp_cnt[range-1][level/2]++;
for (i = 0; i < LOW_BATT_COMP_RANGE_NUM; i++) {
for (j = 0; j < LOW_BATT_COMP_LEVEL_NUM; j++) {
if (i == range-1 && j == level/2)
continue;
else
fuelgauge->info.low_batt_comp_cnt[i][j] = 0;
}
}
}
void prevent_early_poweroff(struct i2c_client *client,
int vcell, int *fg_soc)
{
struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client);
int soc = 0;
int read_val;
soc = fg_read_soc(client);
/* No need to write REMCAP_REP in below normal cases */
if (soc > POWER_OFF_SOC_HIGH_MARGIN || vcell > get_battery_data(fuelgauge).low_battery_comp_voltage)
return;
dev_info(&client->dev, "%s: soc=%d, vcell=%d\n", __func__,
soc, vcell);
if (vcell > POWER_OFF_VOLTAGE_HIGH_MARGIN) {
read_val = fg_read_register(client, FULLCAP_REG);
/* FullCAP * 0.013 */
fg_write_register(client, REMCAP_REP_REG,
(u16)(read_val * 13 / 1000));
msleep(200);
*fg_soc = fg_read_soc(client);
dev_info(&client->dev, "%s: new soc=%d, vcell=%d\n",
__func__, *fg_soc, vcell);
}
}
void reset_low_batt_comp_cnt(struct i2c_client *client)
{
struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client);
memset(fuelgauge->info.low_batt_comp_cnt, 0,
sizeof(fuelgauge->info.low_batt_comp_cnt));
}
static int check_low_batt_comp_condition(
struct i2c_client *client, int *nLevel)
{
struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client);
int i;
int j;
int ret = 0;
for (i = 0; i < LOW_BATT_COMP_RANGE_NUM; i++) {
for (j = 0; j < LOW_BATT_COMP_LEVEL_NUM; j++) {
if (fuelgauge->info.low_batt_comp_cnt[i][j] >=
MAX_LOW_BATT_CHECK_CNT) {
display_low_batt_comp_cnt(client);
ret = 1;
*nLevel = j*2 + 1;
break;
}
}
}
return ret;
}
static int get_low_batt_threshold(struct i2c_client *client,
int range, int nCurrent, int level)
{
struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client);
int ret = 0;
ret = get_battery_data(fuelgauge).low_battery_table[range][OFFSET] +
((nCurrent *
get_battery_data(fuelgauge).low_battery_table[range][SLOPE]) /
1000);
return ret;
}
int low_batt_compensation(struct i2c_client *client,
int fg_soc, int fg_vcell, int fg_current)
{
struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client);
int fg_avg_current = 0;
int fg_min_current = 0;
int new_level = 0;
int i, table_size;
/* Not charging, Under low battery comp voltage */
if (fg_vcell <= get_battery_data(fuelgauge).low_battery_comp_voltage) {
fg_avg_current = fg_read_avg_current(client,
SEC_BATTEY_CURRENT_MA);
fg_min_current = min(fg_avg_current, fg_current);
table_size =
sizeof(get_battery_data(fuelgauge).low_battery_table) /
(sizeof(s16)*TABLE_MAX);
for (i = 1; i < CURRENT_RANGE_MAX_NUM; i++) {
if ((fg_min_current >= get_battery_data(fuelgauge).
low_battery_table[i-1][RANGE]) &&
(fg_min_current < get_battery_data(fuelgauge).
low_battery_table[i][RANGE])) {
if (fg_soc >= 10 && fg_vcell <
get_low_batt_threshold(client,
i, fg_min_current, 1)) {
add_low_batt_comp_cnt(
client, i, 1);
} else {
reset_low_batt_comp_cnt(client);
}
}
}
if (check_low_batt_comp_condition(client, &new_level)) {
fg_low_batt_compensation(client, new_level);
reset_low_batt_comp_cnt(client);
/* Do not update soc right after
* low battery compensation
* to prevent from powering-off suddenly
*/
dev_info(&client->dev,
"%s: SOC is set to %d by low compensation!!\n",
__func__, fg_read_soc(client));
}
}
/* Prevent power off over 3500mV */
prevent_early_poweroff(client, fg_vcell, &fg_soc);
return fg_soc;
}
static bool is_booted_in_low_battery(struct i2c_client *client)
{
int fg_vcell = get_fuelgauge_value(client, FG_VOLTAGE);
int fg_current = get_fuelgauge_value(client, FG_CURRENT);
int threshold = 0;
threshold = 3300 + ((fg_current * 17) / 100);
if (fg_vcell <= threshold)
return true;
else
return false;
}
static bool fuelgauge_recovery_handler(struct i2c_client *client)
{
struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client);
int current_soc;
int avsoc;
int temperature;
if (fuelgauge->info.soc >= LOW_BATTERY_SOC_REDUCE_UNIT) {
dev_err(&client->dev,
"%s: Reduce the Reported SOC by 1%%\n",
__func__);
current_soc =
get_fuelgauge_value(client, FG_LEVEL) / 10;
if (current_soc) {
dev_info(&client->dev,
"%s: Returning to Normal discharge path\n",
__func__);
dev_info(&client->dev,
"%s: Actual SOC(%d) non-zero\n",
__func__, current_soc);
fuelgauge->info.is_low_batt_alarm = false;
} else {
temperature =
get_fuelgauge_value(client, FG_TEMPERATURE);
avsoc =
get_fuelgauge_value(client, FG_AV_SOC);
if ((fuelgauge->info.soc > avsoc) ||
(temperature < 0)) {
fuelgauge->info.soc -=
LOW_BATTERY_SOC_REDUCE_UNIT;
dev_err(&client->dev,
"%s: New Reduced RepSOC (%d)\n",
__func__, fuelgauge->info.soc);
} else
dev_info(&client->dev,
"%s: Waiting for recovery (AvSOC:%d)\n",
__func__, avsoc);
}
}
return fuelgauge->info.is_low_batt_alarm;
}
static int get_fuelgauge_soc(struct i2c_client *client)
{
struct sec_fuelgauge_info *fuelgauge = i2c_get_clientdata(client);
union power_supply_propval value;
int fg_soc = 0;
int fg_vfsoc;
int fg_vcell;
int fg_current;
int avg_current;
ktime_t current_time;
struct timespec ts;
int fullcap_check_interval;
if (fuelgauge->info.is_low_batt_alarm)
if (fuelgauge_recovery_handler(client)) {
fg_soc = fuelgauge->info.soc;
goto return_soc;
}
#if defined(ANDROID_ALARM_ACTIVATED)
current_time = alarm_get_elapsed_realtime();
ts = ktime_to_timespec(current_time);
#else
current_time = ktime_get_boottime();
ts = ktime_to_timespec(current_time);
#endif
/* check fullcap range */
fullcap_check_interval =
(ts.tv_sec - fuelgauge->info.fullcap_check_interval);
if (fullcap_check_interval >
VFFULLCAP_CHECK_INTERVAL) {
dev_info(&client->dev,
"%s: check fullcap range (interval:%d)\n",
__func__, fullcap_check_interval);
fg_check_vf_fullcap_range(client);
fuelgauge->info.fullcap_check_interval = ts.tv_sec;
}
fg_soc = get_fuelgauge_value(client, FG_LEVEL);
if (fg_soc < 0) {
dev_info(&client->dev, "Can't read soc!!!");
fg_soc = fuelgauge->info.soc;
}
if (fuelgauge->info.low_batt_boot_flag) {
fg_soc = 0;
if (fuelgauge->pdata->check_cable_callback() !=
POWER_SUPPLY_TYPE_BATTERY &&
!is_booted_in_low_battery(client)) {
fg_adjust_capacity(client);
fuelgauge->info.low_batt_boot_flag = 0;
}
if (fuelgauge->pdata->check_cable_callback() ==
POWER_SUPPLY_TYPE_BATTERY)
fuelgauge->info.low_batt_boot_flag = 0;
}
fg_vcell = get_fuelgauge_value(client, FG_VOLTAGE);
fg_current = get_fuelgauge_value(client, FG_CURRENT);
avg_current = get_fuelgauge_value(client, FG_CURRENT_AVG);
fg_vfsoc = get_fuelgauge_value(client, FG_VF_SOC);
psy_do_property("battery", get,
POWER_SUPPLY_PROP_STATUS, value);
/* Algorithm for reducing time to fully charged (from MAXIM) */
if (value.intval != POWER_SUPPLY_STATUS_DISCHARGING &&
value.intval != POWER_SUPPLY_STATUS_FULL &&
fuelgauge->cable_type != POWER_SUPPLY_TYPE_USB &&
/* Skip when first check after boot up */
!fuelgauge->info.is_first_check &&
(fg_vfsoc > VFSOC_FOR_FULLCAP_LEARNING &&
(fg_current > LOW_CURRENT_FOR_FULLCAP_LEARNING &&
fg_current < HIGH_CURRENT_FOR_FULLCAP_LEARNING) &&
(avg_current > LOW_AVGCURRENT_FOR_FULLCAP_LEARNING &&
avg_current < HIGH_AVGCURRENT_FOR_FULLCAP_LEARNING))) {
if (fuelgauge->info.full_check_flag == 2) {
dev_info(&client->dev,
"%s: force fully charged SOC !! (%d)",
__func__, fuelgauge->info.full_check_flag);
fg_set_full_charged(client);
fg_soc = get_fuelgauge_value(client, FG_LEVEL);
} else if (fuelgauge->info.full_check_flag < 2)
dev_info(&client->dev,
"%s: full_check_flag (%d)",
__func__, fuelgauge->info.full_check_flag);
/* prevent overflow */
if (fuelgauge->info.full_check_flag++ > 10000)
fuelgauge->info.full_check_flag = 3;
} else
fuelgauge->info.full_check_flag = 0;
/* Checks vcell level and tries to compensate SOC if needed.*/
/* If jig cable is connected, then skip low batt compensation check. */
if (!fuelgauge->pdata->check_jig_status() &&
value.intval == POWER_SUPPLY_STATUS_DISCHARGING)
fg_soc = low_batt_compensation(
client, fg_soc, fg_vcell, fg_current);
if (fuelgauge->info.is_first_check)
fuelgauge->info.is_first_check = false;
fuelgauge->info.soc = fg_soc;
return_soc:
dev_dbg(&client->dev, "%s: soc(%d), low_batt_alarm(%d)\n",
__func__, fuelgauge->info.soc,
fuelgauge->info.is_low_batt_alarm);
return fg_soc;
}
static void full_comp_work_handler(struct work_struct *work)
{
struct sec_fg_info *fg_info =
container_of(work, struct sec_fg_info, full_comp_work.work);
struct sec_fuelgauge_info *fuelgauge =
container_of(fg_info, struct sec_fuelgauge_info, info);
int avg_current;
union power_supply_propval value;
avg_current = get_fuelgauge_value(fuelgauge->client, FG_CURRENT_AVG);
psy_do_property("battery", get,
POWER_SUPPLY_PROP_STATUS, value);
if (avg_current >= 25) {
cancel_delayed_work(&fuelgauge->info.full_comp_work);
schedule_delayed_work(&fuelgauge->info.full_comp_work, 100);
} else {
dev_info(&fuelgauge->client->dev,
"%s: full charge compensation start (avg_current %d)\n",
__func__, avg_current);
fg_fullcharged_compensation(fuelgauge->client,
(int)(value.intval ==
POWER_SUPPLY_STATUS_FULL), false);
}
}
static irqreturn_t sec_jig_irq_thread(int irq, void *irq_data)
{
struct sec_fuelgauge_info *fuelgauge = irq_data;
if (fuelgauge->pdata->check_jig_status())
fg_reset_capacity_by_jig_connection(fuelgauge->client);
else
dev_info(&fuelgauge->client->dev,
"%s: jig removed\n", __func__);
return IRQ_HANDLED;
}
bool sec_hal_fg_init(struct i2c_client *client)
{
struct sec_fuelgauge_info *fuelgauge =
i2c_get_clientdata(client);
ktime_t current_time;
struct timespec ts;
u8 data[2] = {0, 0};
#if defined(ANDROID_ALARM_ACTIVATED)
current_time = alarm_get_elapsed_realtime();
ts = ktime_to_timespec(current_time);
#else
current_time = ktime_get_boottime();
ts = ktime_to_timespec(current_time);
#endif
fuelgauge->info.fullcap_check_interval = ts.tv_sec;
fuelgauge->info.is_low_batt_alarm = false;
fuelgauge->info.is_first_check = true;
/* Init parameters to prevent wrong compensation. */
fuelgauge->info.previous_fullcap =
fg_read_register(client, FULLCAP_REG);
fuelgauge->info.previous_vffullcap =
fg_read_register(client, FULLCAP_NOM_REG);
/* To reduce booting time, skip reading regs
* fg_read_model_data(client);
* fg_periodic_read(client);
*/
if (fuelgauge->pdata->check_cable_callback() !=
POWER_SUPPLY_TYPE_BATTERY &&
is_booted_in_low_battery(client))
fuelgauge->info.low_batt_boot_flag = 1;
if (fuelgauge->pdata->check_jig_status())
fg_reset_capacity_by_jig_connection(client);
else {
if (fuelgauge->pdata->jig_irq) {
int ret;
ret = request_threaded_irq(fuelgauge->pdata->jig_irq,
NULL, sec_jig_irq_thread,
fuelgauge->pdata->jig_irq_attr,
"jig-irq", fuelgauge);
if (ret) {
dev_info(&fuelgauge->client->dev,
"%s: Failed to Reqeust IRQ\n",
__func__);
}
}
}
INIT_DELAYED_WORK(&fuelgauge->info.full_comp_work,
full_comp_work_handler);
/* NOT using FG for temperature */
if (fuelgauge->pdata->thermal_source != SEC_BATTERY_THERMAL_SOURCE_FG) {
data[0] = 0x00;
data[1] = 0x21;
fg_i2c_write(client, CONFIG_REG, data, 2);
}
return true;
}
bool sec_hal_fg_suspend(struct i2c_client *client)
{
return true;
}
bool sec_hal_fg_resume(struct i2c_client *client)
{
return true;
}
bool sec_hal_fg_fuelalert_init(struct i2c_client *client, int soc)
{
if (fg_alert_init(client, soc) > 0)
return true;
else
return false;
}
bool sec_hal_fg_is_fuelalerted(struct i2c_client *client)
{
if (get_fuelgauge_value(client, FG_CHECK_STATUS) > 0)
return true;
else
return false;
}
bool sec_hal_fg_fuelalert_process(void *irq_data, bool is_fuel_alerted)
{
struct sec_fuelgauge_info *fuelgauge =
(struct sec_fuelgauge_info *)irq_data;
union power_supply_propval value;
int overcurrent_limit_in_soc;
int current_soc =
get_fuelgauge_value(fuelgauge->client, FG_LEVEL);
psy_do_property("battery", get,
POWER_SUPPLY_PROP_STATUS, value);
if (value.intval == POWER_SUPPLY_STATUS_CHARGING)
return true;
if (fuelgauge->info.soc <= STABLE_LOW_BATTERY_DIFF)
overcurrent_limit_in_soc = STABLE_LOW_BATTERY_DIFF_LOWBATT;
else
overcurrent_limit_in_soc = STABLE_LOW_BATTERY_DIFF;
if (((int)fuelgauge->info.soc - current_soc) >
overcurrent_limit_in_soc) {
dev_info(&fuelgauge->client->dev,
"%s: Abnormal Current Consumption jump by %d units\n",
__func__, (((int)fuelgauge->info.soc - current_soc)));
dev_info(&fuelgauge->client->dev,
"%s: Last Reported SOC (%d).\n",
__func__, fuelgauge->info.soc);
fuelgauge->info.is_low_batt_alarm = true;
if (fuelgauge->info.soc >=
LOW_BATTERY_SOC_REDUCE_UNIT)
return true;
}
if (value.intval ==
POWER_SUPPLY_STATUS_DISCHARGING) {
dev_err(&fuelgauge->client->dev,
"Set battery level as 0, power off.\n");
fuelgauge->info.soc = 0;
value.intval = 0;
psy_do_property("battery", set,
POWER_SUPPLY_PROP_CAPACITY, value);
}
return true;
}
bool sec_hal_fg_full_charged(struct i2c_client *client)
{
struct sec_fuelgauge_info *fuelgauge =
i2c_get_clientdata(client);
union power_supply_propval value;
psy_do_property("battery", get,
POWER_SUPPLY_PROP_STATUS, value);
/* full charge compensation algorithm by MAXIM */
fg_fullcharged_compensation(client,
(int)(value.intval == POWER_SUPPLY_STATUS_FULL), true);
cancel_delayed_work(&fuelgauge->info.full_comp_work);
schedule_delayed_work(&fuelgauge->info.full_comp_work, 100);
return false;
}
bool sec_hal_fg_reset(struct i2c_client *client)
{
if (!fg_reset_soc(client))
return true;
else
return false;
}
bool sec_hal_fg_get_property(struct i2c_client *client,
enum power_supply_property psp,
union power_supply_propval *val)
{
switch (psp) {
/* Cell voltage (VCELL, mV) */
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
val->intval = get_fuelgauge_value(client, FG_VOLTAGE);
break;
/* Additional Voltage Information (mV) */
case POWER_SUPPLY_PROP_VOLTAGE_AVG:
switch (val->intval) {
case SEC_BATTEY_VOLTAGE_OCV:
val->intval = fg_read_vfocv(client);
break;
case SEC_BATTEY_VOLTAGE_AVERAGE:
default:
val->intval = fg_read_avg_vcell(client);
break;
}
break;
/* Current */
case POWER_SUPPLY_PROP_CURRENT_NOW:
switch (val->intval) {
case SEC_BATTEY_CURRENT_UA:
val->intval =
fg_read_current(client, SEC_BATTEY_CURRENT_UA);
break;
case SEC_BATTEY_CURRENT_MA:
default:
val->intval = get_fuelgauge_value(client, FG_CURRENT);
break;
}
break;
/* Average Current */
case POWER_SUPPLY_PROP_CURRENT_AVG:
switch (val->intval) {
case SEC_BATTEY_CURRENT_UA:
val->intval =
fg_read_avg_current(client,
SEC_BATTEY_CURRENT_UA);
break;
case SEC_BATTEY_CURRENT_MA:
default:
val->intval =
get_fuelgauge_value(client, FG_CURRENT_AVG);
break;
}
break;
/* Full Capacity */
case POWER_SUPPLY_PROP_ENERGY_NOW:
switch (val->intval) {
case SEC_BATTEY_CAPACITY_DESIGNED:
val->intval = get_fuelgauge_value(client, FG_FULLCAP);
break;
case SEC_BATTEY_CAPACITY_ABSOLUTE:
val->intval = get_fuelgauge_value(client, FG_MIXCAP);
break;
case SEC_BATTEY_CAPACITY_TEMPERARY:
val->intval = get_fuelgauge_value(client, FG_AVCAP);
break;
case SEC_BATTEY_CAPACITY_CURRENT:
val->intval = get_fuelgauge_value(client, FG_REPCAP);
break;
}
break;
/* SOC (%) */
case POWER_SUPPLY_PROP_CAPACITY:
if (val->intval == SEC_FUELGAUGE_CAPACITY_TYPE_RAW)
val->intval = get_fuelgauge_value(client, FG_RAW_SOC);
else
val->intval = get_fuelgauge_soc(client);
break;
/* Battery Temperature */
case POWER_SUPPLY_PROP_TEMP:
/* Target Temperature */
case POWER_SUPPLY_PROP_TEMP_AMBIENT:
val->intval = get_fuelgauge_value(client, FG_TEMPERATURE);
break;
default:
return false;
}
return true;
}
bool sec_hal_fg_set_property(struct i2c_client *client,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct sec_fuelgauge_info *fuelgauge =
i2c_get_clientdata(client);
switch (psp) {
case POWER_SUPPLY_PROP_ONLINE:
if (val->intval != POWER_SUPPLY_TYPE_BATTERY) {
if (fuelgauge->info.is_low_batt_alarm) {
dev_info(&client->dev,
"%s: Reset low_batt_alarm\n",
__func__);
fuelgauge->info.is_low_batt_alarm = false;
}
reset_low_batt_comp_cnt(client);
}
break;
/* Battery Temperature */
case POWER_SUPPLY_PROP_TEMP:
/* Target Temperature */
case POWER_SUPPLY_PROP_TEMP_AMBIENT:
fg_write_temp(client, val->intval);
break;
case POWER_SUPPLY_PROP_ENERGY_NOW:
fg_reset_capacity_by_jig_connection(client);
break;
default:
return false;
}
return true;
}
ssize_t sec_hal_fg_show_attrs(struct device *dev,
const ptrdiff_t offset, char *buf)
{
struct power_supply *psy = dev_get_drvdata(dev);
struct sec_fuelgauge_info *fg =
container_of(psy, struct sec_fuelgauge_info, psy_fg);
int i = 0;
char *str = NULL;
switch (offset) {
/* case FG_REG: */
/* break; */
case FG_DATA:
i += scnprintf(buf + i, PAGE_SIZE - i, "%02x%02x\n",
fg->reg_data[1], fg->reg_data[0]);
break;
case FG_REGS:
str = kzalloc(sizeof(char)*1024, GFP_KERNEL);
if (!str)
return -ENOMEM;
fg_read_regs(fg->client, str);
i += scnprintf(buf + i, PAGE_SIZE - i, "%s\n",
str);
kfree(str);
break;
default:
i = -EINVAL;
break;
}
return i;
}
ssize_t sec_hal_fg_store_attrs(struct device *dev,
const ptrdiff_t offset,
const char *buf, size_t count)
{
struct power_supply *psy = dev_get_drvdata(dev);
struct sec_fuelgauge_info *fg =
container_of(psy, struct sec_fuelgauge_info, psy_fg);
int ret = 0;
int x = 0;
switch (offset) {
case FG_REG:
if (sscanf(buf, "%x\n", &x) == 1) {
fg->reg_addr = x;
if (fg_i2c_read(fg->client,
fg->reg_addr, fg->reg_data, 2) < 0) {
dev_err(dev, "%s: Error in read\n", __func__);
break;
}
dev_dbg(dev,
"%s: (read) addr = 0x%x, data = 0x%02x%02x\n",
__func__, fg->reg_addr,
fg->reg_data[1], fg->reg_data[0]);
ret = count;
}
break;
case FG_DATA:
if (sscanf(buf, "%x\n", &x) == 1) {
dev_dbg(dev, "%s: (write) addr = 0x%x, data = 0x%04x\n",
__func__, fg->reg_addr, x);
fg_write_and_verify_register(fg->client,
fg->reg_addr, (u16)x);
ret = count;
}
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
#endif