blob: 09bc8145e614c9db0bc44333d00662f07294cb41 [file] [log] [blame]
/*
* mms_ts.c - Touchscreen driver for Melfas MMS-series touch controllers
*
* Copyright (C) 2011 Google Inc.
* Author: Dima Zavin <dima@android.com>
* Simon Wilson <simonwilson@google.com>
*
* ISP reflashing code based on original code from Melfas.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*/
#define DEBUG
/* #define VERBOSE_DEBUG */
#define SEC_TSP_DEBUG
#define SEC_TSP_VERBOSE_DEBUG
/// #define MMS_144_RESET_PIN //Define it only if the TSP uses RST Pin under the particular model flag
/* #define FORCE_FW_FLASH */
/* #define FORCE_FW_PASS */
/* #define ESD_DEBUG */
#define W1_DUMMY
#define SEC_TSP_FACTORY_TEST
#define SEC_TSP_FW_UPDATE
#define TSP_BUF_SIZE 1024
#define FAIL -1
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/gpio.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/input.h>
#include <linux/input/mt.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/cpufreq.h>
#include <linux/regulator/consumer.h>
#include <linux/of_gpio.h>
#include <linux/i2c/mms144.h>
#include <asm/unaligned.h>
#include "mms_ts_fw.h"
#define MAX_FINGERS 10
#define MAX_WIDTH 30
#define MAX_PRESSURE 255
#define MAX_ANGLE 90
#define MIN_ANGLE -90
/* Registers */
#define MMS_MODE_CONTROL 0x01
#define MMS_XYRES_HI 0x02
#define MMS_XRES_LO 0x03
#define MMS_YRES_LO 0x04
#define MMS_INPUT_EVENT_PKT_SZ 0x0F
#define MMS_INPUT_EVENT0 0x10
#define FINGER_EVENT_SZ 8
#define MMS_TSP_REVISION 0xF0
#define MMS_HW_REVISION 0xF1
#define MMS_COMPAT_GROUP 0xF2
#define MMS_FW_VERSION 0xF3
enum {
ISP_MODE_FLASH_ERASE = 0x59F3,
ISP_MODE_FLASH_WRITE = 0x62CD,
ISP_MODE_FLASH_READ = 0x6AC9,
};
/* each address addresses 4-byte words */
#define ISP_MAX_FW_SIZE (0x1F00 * 4)
#define ISP_IC_INFO_ADDR 0x1F00
#ifdef CONFIG_SEC_DVFS
#define TOUCH_BOOSTER 1
#define TOUCH_BOOSTER_OFF_TIME 100
#define TOUCH_BOOSTER_CHG_TIME 200
#endif
#define COVER_OPEN 0
#define COVER_CLOSED 3
#ifdef SEC_TSP_FW_UPDATE
#define WORD_SIZE 4
#define MMS_I2C_VTG_MIN_UV 1800000
#define MMS_I2C_VTG_MAX_UV 1800000
#define MMS_I2C_LOAD_UA 10000
#define ISC_PKT_SIZE 1029
#define ISC_PKT_DATA_SIZE 1024
#define ISC_PKT_HEADER_SIZE 3
#define ISC_PKT_NUM 31
#define ISC_ENTER_ISC_CMD 0x5F
#define ISC_ENTER_ISC_DATA 0x01
#define ISC_CMD 0xAE
#define ISC_ENTER_UPDATE_DATA 0x55
#define ISC_ENTER_UPDATE_DATA_LEN 9
#define ISC_DATA_WRITE_SUB_CMD 0xF1
#define ISC_EXIT_ISC_SUB_CMD 0x0F
#define ISC_EXIT_ISC_SUB_CMD2 0xF0
#define ISC_CHECK_STATUS_CMD 0xAF
#define ISC_CONFIRM_CRC 0x03
#define ISC_DEFAULT_CRC 0xFFFF
#endif
#ifdef SEC_TSP_FACTORY_TEST
#define TX_NUM 26
#define RX_NUM 14
#define NODE_NUM 364 /* 26x14 */
/* VSC(Vender Specific Command) */
#define MMS_VSC_CMD 0xB0 /* vendor specific command */
#define MMS_VSC_MODE 0x1A /* mode of vendor */
#define MMS_VSC_CMD_ENTER 0X01
#define MMS_VSC_CMD_CM_DELTA 0X02
#define MMS_VSC_CMD_CM_ABS 0X03
#define MMS_VSC_CMD_EXIT 0X05
#define MMS_VSC_CMD_INTENSITY 0X04
#define MMS_VSC_CMD_RAW 0X06
#define MMS_VSC_CMD_REFER 0X07
#define TSP_CMD_STR_LEN 32
#define TSP_CMD_RESULT_STR_LEN 512
#define TSP_CMD_PARAM_NUM 8
#endif /* SEC_TSP_FACTORY_TEST */
#if defined(CONFIG_MACH_STRETTO) || defined(CONFIG_MACH_SUPERIORLTE_SKT)
#define ISC_DL_MODE 0
#else
#define ISC_DL_MODE 1
#endif
#define MMS_COORDS_ARR_SIZE 4
#if ISC_DL_MODE
/* Default configuration of ISC mode */
#define DEFAULT_SLAVE_ADDR 0x48
#define SECTION_NUM 3
#define SECTION_NAME_LEN 5
#define PAGE_HEADER 3
#define PAGE_DATA 1024
#define PAGE_TAIL 2
#define PACKET_SIZE (PAGE_HEADER + PAGE_DATA + PAGE_TAIL)
#define TS_WRITE_REGS_LEN 1030
#define TIMEOUT_CNT 10
#define STRING_BUF_LEN 100
/* State Registers */
#define MIP_ADDR_INPUT_INFORMATION 0x01
#define ISC_ADDR_VERSION 0xE1
#define ISC_ADDR_SECTION_PAGE_INFO 0xE5
/* Config Update Commands */
#define ISC_CMD_ENTER_ISC 0x5F
#define ISC_CMD_ENTER_ISC_PARA1 0x01
#define ISC_CMD_UPDATE_MODE 0xAE
#define ISC_SUBCMD_ENTER_UPDATE 0x55
#define ISC_SUBCMD_DATA_WRITE 0XF1
#define ISC_SUBCMD_LEAVE_UPDATE_PARA1 0x0F
#define ISC_SUBCMD_LEAVE_UPDATE_PARA2 0xF0
#define ISC_CMD_CONFIRM_STATUS 0xAF
#define ISC_STATUS_UPDATE_MODE 0x01
#define ISC_STATUS_CRC_CHECK_SUCCESS 0x03
#define ISC_CHAR_2_BCD(num) (((num/10)<<4) + (num%10))
#define ISC_MAX(x, y) (((x) > (y)) ? (x) : (y))
static const char section_name[SECTION_NUM][SECTION_NAME_LEN] = {
"BOOT", "CORE", "CONF"
};
static const unsigned char crc0_buf[31] = {
0x1D, 0x2C, 0x05, 0x34, 0x95, 0xA4, 0x8D, 0xBC,
0x59, 0x68, 0x41, 0x70, 0xD1, 0xE0, 0xC9, 0xF8,
0x3F, 0x0E, 0x27, 0x16, 0xB7, 0x86, 0xAF, 0x9E,
0x7B, 0x4A, 0x63, 0x52, 0xF3, 0xC2, 0xEB
};
static const unsigned char crc1_buf[31] = {
0x1E, 0x9C, 0xDF, 0x5D, 0x76, 0xF4, 0xB7, 0x35,
0x2A, 0xA8, 0xEB, 0x69, 0x42, 0xC0, 0x83, 0x01,
0x04, 0x86, 0xC5, 0x47, 0x6C, 0xEE, 0xAD, 0x2F,
0x30, 0xB2, 0xF1, 0x73, 0x58, 0xDA, 0x99
};
struct mms_bin_hdr
{
char tag[8];
u16 core_version;
u16 section_num;
u16 contains_full_binary;
u16 reserved0;
u32 binary_offset;
u32 binary_length;
u32 extention_offset;
u32 reserved1;
}__attribute__ ((packed));
struct mms_fw_img
{
u16 type;
u16 version;
u16 start_page;
u16 end_page;
u32 offset;
u32 length;
}__attribute__ ((packed));
struct mms_firmware
{
u8 *data;
size_t size;
};
typedef enum {
ISC_NONE = -1,
ISC_SUCCESS = 0,
ISC_FILE_OPEN_ERROR,
ISC_FILE_CLOSE_ERROR,
ISC_FILE_FORMAT_ERROR,
ISC_WRITE_BUFFER_ERROR,
ISC_I2C_ERROR,
ISC_UPDATE_MODE_ENTER_ERROR,
ISC_CRC_ERROR,
ISC_VALIDATION_ERROR,
ISC_COMPATIVILITY_ERROR,
ISC_UPDATE_SECTION_ERROR,
ISC_SLAVE_ERASE_ERROR,
ISC_SLAVE_DOWNLOAD_ERROR,
ISC_DOWNLOAD_WHEN_SLAVE_IS_UPDATED_ERROR,
ISC_INITIAL_PACKET_ERROR,
ISC_NO_NEED_UPDATE_ERROR,
ISC_LIMIT
} eISCRet_t;
typedef enum {
EC_NONE = -1,
EC_DEPRECATED = 0,
EC_BOOTLOADER_RUNNING = 1,
EC_BOOT_ON_SUCCEEDED = 2,
EC_ERASE_END_MARKER_ON_SLAVE_FINISHED = 3,
EC_SLAVE_DOWNLOAD_STARTS = 4,
EC_SLAVE_DOWNLOAD_FINISHED = 5,
EC_2CHIP_HANDSHAKE_FAILED = 0x0E,
EC_ESD_PATTERN_CHECKED = 0x0F,
EC_LIMIT
} eErrCode_t;
typedef enum {
SEC_NONE = -1,
SEC_BOOTLOADER = 0,
SEC_CORE,
SEC_CONFIG,
SEC_LIMIT
} eSectionType_t;
typedef struct tISCFWInfo_t {
unsigned char version;
unsigned char compatible_version;
unsigned char start_addr;
unsigned char end_addr;
int bin_offset;
u32 crc;
} tISCFWInfo_t;
//static tISCFWInfo_t mbin_info[SECTION_NUM];
static tISCFWInfo_t mfsb_info[SECTION_NUM];
static tISCFWInfo_t ts_info[SECTION_NUM]; /* read F/W version from IC */
static bool section_update_flag[SECTION_NUM];
const struct firmware *fw_mbin;
static struct mms_firmware fw_mfsb;
static struct mms_bin_hdr *fw_hdr;
static struct mms_fw_img **img;
static unsigned char g_wr_buf[1024 + 3 + 2];
#endif
int touch_is_pressed;
EXPORT_SYMBOL(touch_is_pressed);
enum fw_flash_mode {
ISP_FLASH,
ISC_FLASH,
};
enum {
BUILT_IN = 0,
UMS,
};
struct tsp_callbacks {
void (*inform_charger)(struct tsp_callbacks *tsp_cb, bool mode);
};
struct mms_ts_info {
struct i2c_client *client;
struct input_dev *input_dev;
char phys[32];
int max_x;
int max_y;
bool invert_x;
bool invert_y;
const u8 *config_fw_version;
int irq;
struct regulator *vcc_i2c;
struct mms_ts_platform_data *pdata;
char *fw_name;
#ifdef CONFIG_HAS_EARLYSUSPEND
struct early_suspend early_suspend;
#endif
#ifdef TOUCH_BOOSTER
#if TOUCH_BOOSTER
struct delayed_work work_dvfs_off;
struct delayed_work work_dvfs_chg;
bool dvfs_lock_status;
struct mutex dvfs_lock;
#endif
#endif
/* protects the enabled flag */
struct mutex lock;
bool enabled;
enum fw_flash_mode fw_flash_mode;
void (*register_cb)(void *);
struct tsp_callbacks callbacks;
bool ta_status;
bool noise_mode;
#if defined(SEC_TSP_DEBUG) || defined(SEC_TSP_VERBOSE_DEBUG)
unsigned char finger_state[MAX_FINGERS];
#endif
#if defined(SEC_TSP_FW_UPDATE)
u8 fw_update_state;
#endif
u8 fw_ic_ver;
#if defined(SEC_TSP_FACTORY_TEST)
struct list_head cmd_list_head;
u8 cmd_state;
char cmd[TSP_CMD_STR_LEN];
int cmd_param[TSP_CMD_PARAM_NUM];
char cmd_result[TSP_CMD_RESULT_STR_LEN];
struct mutex cmd_lock;
bool cmd_is_running;
unsigned int reference[NODE_NUM];
unsigned int raw[NODE_NUM]; /* CM_ABS */
unsigned int inspection[NODE_NUM];/* CM_DELTA */
unsigned int intensity[NODE_NUM];
bool ft_flag;
int cover_state;
#endif /* SEC_TSP_FACTORY_TEST */
};
struct mms_fw_image {
__le32 hdr_len;
__le32 data_len;
__le32 fw_ver;
__le32 hdr_ver;
u8 data[0];
} __packed;
#ifdef CONFIG_HAS_EARLYSUSPEND
static void mms_ts_early_suspend(struct early_suspend *h);
static void mms_ts_late_resume(struct early_suspend *h);
#endif
#define USE_OPEN_CLOSE
#ifdef USE_OPEN_CLOSE
static void melfas_ts_close(struct input_dev *dev);
static int melfas_ts_open(struct input_dev *dev);
#endif
#if defined(SEC_TSP_FACTORY_TEST)
#define TSP_CMD(name, func) .cmd_name = name, .cmd_func = func
struct tsp_cmd {
struct list_head list;
const char *cmd_name;
void (*cmd_func)(void *device_data);
};
static void fw_update(void *device_data);
static void get_fw_ver_bin(void *device_data);
static void get_fw_ver_ic(void *device_data);
static void get_config_ver(void *device_data);
static void get_threshold(void *device_data);
static void module_off_master(void *device_data);
static void module_on_master(void *device_data);
static void get_chip_vendor(void *device_data);
static void get_chip_name(void *device_data);
static void get_reference(void *device_data);
static void get_cm_abs(void *device_data);
static void get_cm_delta(void *device_data);
static void get_intensity(void *device_data);
static void get_x_num(void *device_data);
static void get_y_num(void *device_data);
static void run_reference_read(void *device_data);
static void run_cm_abs_read(void *device_data);
static void run_cm_delta_read(void *device_data);
static void run_intensity_read(void *device_data);
static void not_support_cmd(void *device_data);
static void clear_cover_mode(void *device_data);
struct tsp_cmd tsp_cmds[] = {
{TSP_CMD("fw_update", fw_update),},
{TSP_CMD("get_fw_ver_bin", get_fw_ver_bin),},
{TSP_CMD("get_fw_ver_ic", get_fw_ver_ic),},
{TSP_CMD("get_config_ver", get_config_ver),},
{TSP_CMD("get_threshold", get_threshold),},
{TSP_CMD("module_off_master", module_off_master),},
{TSP_CMD("module_on_master", module_on_master),},
{TSP_CMD("module_off_slave", not_support_cmd),},
{TSP_CMD("module_on_slave", not_support_cmd),},
{TSP_CMD("get_chip_vendor", get_chip_vendor),},
{TSP_CMD("get_chip_name", get_chip_name),},
{TSP_CMD("get_x_num", get_x_num),},
{TSP_CMD("get_y_num", get_y_num),},
{TSP_CMD("get_reference", get_reference),},
{TSP_CMD("get_cm_abs", get_cm_abs),},
{TSP_CMD("get_cm_delta", get_cm_delta),},
{TSP_CMD("get_intensity", get_intensity),},
{TSP_CMD("run_reference_read", run_reference_read),},
{TSP_CMD("run_cm_abs_read", run_cm_abs_read),},
{TSP_CMD("run_cm_delta_read", run_cm_delta_read),},
{TSP_CMD("run_intensity_read", run_intensity_read),},
{TSP_CMD("not_support_cmd", not_support_cmd),},
{TSP_CMD("clear_cover_mode", clear_cover_mode),},
};
#endif
#if 0 /* firmware call removal */
static int melfas_mux_fw_flash(struct mms_ts_platform_data *pdata,
bool to_gpios)
{
if (to_gpios) {
gpio_direction_output(pdata->gpio_int, 0);
gpio_tlmm_config(GPIO_CFG(pdata->gpio_int, 0,
GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), 1);
gpio_direction_output(pdata->gpio_scl, 0);
gpio_tlmm_config(GPIO_CFG(pdata->gpio_scl, 0,
GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), 1);
gpio_direction_output(pdata->gpio_sda, 0);
gpio_tlmm_config(GPIO_CFG(pdata->gpio_sda, 0,
GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), 1);
} else {
gpio_direction_output(pdata->gpio_int, 1);
gpio_tlmm_config(GPIO_CFG(pdata->gpio_int, 0,
GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), 1);
gpio_direction_output(pdata->gpio_scl, 1);
gpio_tlmm_config(GPIO_CFG(pdata->gpio_scl, 3,
GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), 1);
gpio_direction_output(pdata->gpio_sda, 1);
gpio_tlmm_config(GPIO_CFG(pdata->gpio_sda, 3,
GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), 1);
}
return 0;
}
#endif /* firmware call removal */
#if 0
static int reg_set_optimum_mode_check(struct regulator *reg, int load_uA)
{
return (regulator_count_voltages(reg) > 0) ?
regulator_set_optimum_mode(reg, load_uA) : 0;
}
#endif
void melfas_vdd_on(struct mms_ts_info *info, bool onoff)
{
int ret = 0, rc = 0;
pr_info("[TSP] power %s\n", onoff ? "on" : "off");
if (!info->vcc_i2c) {
if (info->pdata->i2c_pull_up) {
info->vcc_i2c = regulator_get(&info->client->dev,
"vdd_ldo2");
if (IS_ERR(info->vcc_i2c)) {
rc = PTR_ERR(info->vcc_i2c);
dev_err(&info->client->dev,
"Regulator get failed rc=%d\n", rc);
goto error_get_vtg_i2c;
}
/*
if (regulator_count_voltages(info->vcc_i2c) > 0) {
rc = regulator_set_voltage(info->vcc_i2c,
MMS_I2C_VTG_MIN_UV, MMS_I2C_VTG_MAX_UV);
if (rc) {
dev_err(&info->client->dev,
"regulator set_vtg failed rc=%d\n",
rc);
goto error_set_vtg_i2c;
}
}
*/
}
}
if (onoff) {
if (info->pdata->i2c_pull_up) {
/*
rc = reg_set_optimum_mode_check(info->vcc_i2c,
MMS_I2C_LOAD_UA);
if (rc < 0) {
dev_err(&info->client->dev,
"Regulator vcc_i2c set_opt failed rc=%d\n",
rc);
goto error_reg_opt_i2c;
}
*/
rc = regulator_enable(info->vcc_i2c);
if (rc) {
dev_err(&info->client->dev,
"Regulator vcc_i2c enable failed rc=%d\n",
rc);
// goto error_reg_en_vcc_i2c;
}
}
} else {
if (info->pdata->i2c_pull_up) {
//reg_set_optimum_mode_check(info->vcc_i2c, 0);
regulator_disable(info->vcc_i2c);
}
}
//msleep(50);
/*
ret = gpio_direction_output(info->pdata->vdd_en, onoff);
if (ret) {
pr_err("[TSP]%s: unable to set_direction for mms_vdd_en [%d]\n",
__func__, info->pdata->vdd_en);
}
*/
if (onoff) {
ret = regulator_enable(info->pdata->vdd_en_reg);
if (ret) {
pr_err("[TSP]%s: unable to enable for mms_vdd_en_reg [%p]\n",
__func__, info->pdata->vdd_en_reg);
}
}
else {
regulator_disable(info->pdata->vdd_en_reg);
if (ret) {
pr_err("[TSP]%s: unable to disable for mms_vdd_en_reg [%p]\n",
__func__, info->pdata->vdd_en_reg);
}
}
//msleep(30);
return;
#if 0
error_reg_en_vcc_i2c:
if (info->pdata->i2c_pull_up)
reg_set_optimum_mode_check(info->vcc_i2c, 0);
//error_reg_opt_i2c:
//error_set_vtg_i2c:
regulator_put(info->vcc_i2c);
#endif
error_get_vtg_i2c:
return;
}
int is_melfas_vdd_on(struct mms_ts_info *info)
{
int ret;
//ret = gpio_get_value(info->pdata->vdd_en);
ret = regulator_is_enabled(info->pdata->vdd_en_reg);
pr_info("[TSP] %s = %d\n", __func__, ret);
if (ret)
return 1;
return 0;
}
#ifdef TOUCH_BOOSTER
#if TOUCH_BOOSTER
static void change_dvfs_lock(struct work_struct *work)
{
struct mms_ts_info *info = container_of(work,
struct mms_ts_info, work_dvfs_chg.work);
int ret;
mutex_lock(&info->dvfs_lock);
ret = set_freq_limit(DVFS_TOUCH_ID, 998400);
mutex_unlock(&info->dvfs_lock);
if (ret < 0)
pr_err("%s: 1booster stop failed(%d)\n",\
__func__, __LINE__);
else
pr_info("[TSP] %s", __func__);
}
static void set_dvfs_off(struct work_struct *work)
{
struct mms_ts_info *info = container_of(work,
struct mms_ts_info, work_dvfs_off.work);
mutex_lock(&info->dvfs_lock);
set_freq_limit(DVFS_TOUCH_ID, -1);
info->dvfs_lock_status = false;
mutex_unlock(&info->dvfs_lock);
//pr_info("[TSP] DVFS Off!");
}
static void set_dvfs_lock(struct mms_ts_info *info, uint32_t on)
{
int ret = 0;
mutex_lock(&info->dvfs_lock);
if (on == 0) {
if (info->dvfs_lock_status) {
schedule_delayed_work(&info->work_dvfs_off,
msecs_to_jiffies(TOUCH_BOOSTER_OFF_TIME));
}
} else if (on == 1) {
cancel_delayed_work(&info->work_dvfs_off);
if (!info->dvfs_lock_status) {
ret = set_freq_limit(DVFS_TOUCH_ID, 998400);
if (ret < 0)
printk(KERN_ERR "%s: cpu lock failed(%d)\n",\
__func__, ret);
info->dvfs_lock_status = true;
//pr_info("[TSP] DVFS On!");
}
} else if (on == 2) {
cancel_delayed_work(&info->work_dvfs_off);
schedule_work(&info->work_dvfs_off.work);
}
mutex_unlock(&info->dvfs_lock);
}
#endif
#endif
static void release_all_fingers(struct mms_ts_info *info)
{
#ifdef SEC_TSP_DEBUG
struct i2c_client *client = info->client;
#endif
int i;
printk(KERN_DEBUG "[TSP] %s\n", __func__);
for (i = 0; i < MAX_FINGERS; i++) {
#ifdef SEC_TSP_DEBUG
if (info->finger_state[i] == 1) {
dev_notice(&client->dev, "finger %d up(force)\n", i);
}
#endif
info->finger_state[i] = 0;
input_mt_slot(info->input_dev, i);
input_mt_report_slot_state(info->input_dev, MT_TOOL_FINGER,
false);
}
input_sync(info->input_dev);
#ifdef TOUCH_BOOSTER
#if TOUCH_BOOSTER
set_dvfs_lock(info, 2);
pr_info("[TSP] dvfs_lock free.\n ");
#endif
#endif
}
static void mms_set_noise_mode(struct mms_ts_info *info)
{
struct i2c_client *client = info->client;
if (!(info->noise_mode && info->enabled))
return;
dev_notice(&client->dev, "%s\n", __func__);
if (info->ta_status) {
dev_notice(&client->dev, "noise_mode & TA connect!!!\n");
i2c_smbus_write_byte_data(info->client, 0x30, 0x1);
} else {
dev_notice(&client->dev, "noise_mode & TA disconnect!!!\n");
i2c_smbus_write_byte_data(info->client, 0x30, 0x2);
}
}
static inline void mms_pwr_on_reset(struct mms_ts_info *info);
static void reset_mms_ts(struct mms_ts_info *info)
{
struct i2c_client *client = info->client;
if (info->enabled == false)
return;
dev_notice(&client->dev, "%s++\n", __func__);
disable_irq_nosync(info->irq);
info->enabled = false;
touch_is_pressed = 0;
release_all_fingers(info);
mms_pwr_on_reset(info);
enable_irq(info->irq);
info->enabled = true;
if (info->ta_status) {
dev_notice(&client->dev, "TA connect!!!\n");
i2c_smbus_write_byte_data(info->client, 0x33, 0x1);
} else {
dev_notice(&client->dev, "TA disconnect!!!\n");
i2c_smbus_write_byte_data(info->client, 0x33, 0x2);
mms_set_noise_mode(info);
}
dev_notice(&client->dev, "%s--\n", __func__);
}
static void melfas_ta_cb(struct tsp_callbacks *cb, bool ta_status)
{
struct mms_ts_info *info =
container_of(cb, struct mms_ts_info, callbacks);
struct i2c_client *client = info->client;
dev_notice(&client->dev, "%s\n", __func__);
info->ta_status = ta_status;
if (info->enabled) {
if (info->ta_status) {
dev_notice(&client->dev, "TA connect!!!\n");
i2c_smbus_write_byte_data(info->client, 0x33, 0x1);
} else {
dev_notice(&client->dev, "TA disconnect!!!\n");
i2c_smbus_write_byte_data(info->client, 0x33, 0x2);
}
mms_set_noise_mode(info);
}
}
struct tsp_callbacks *charger_callbacks;
void tsp_charger_infom(bool en)
{
if (charger_callbacks && charger_callbacks->inform_charger)
charger_callbacks->inform_charger(charger_callbacks, en);
}
static void melfas_register_callback(void *cb)
{
charger_callbacks = cb;
pr_info("melfas-ts : melfas_register_callback");
}
static irqreturn_t mms_ts_interrupt(int irq, void *dev_id)
{
struct mms_ts_info *info = dev_id;
struct i2c_client *client = info->client;
u8 buf[MAX_FINGERS*FINGER_EVENT_SZ] = { 0 };
int ret;
int i;
int sz;
u8 reg = MMS_INPUT_EVENT0;
struct i2c_msg msg[] = {
{
.addr = client->addr,
.flags = 0,
.buf = &reg,
.len = 1,
}, {
.addr = client->addr,
.flags = I2C_M_RD,
.buf = buf,
},
};
sz = i2c_smbus_read_byte_data(client, MMS_INPUT_EVENT_PKT_SZ);
if (sz < 0) {
dev_err(&client->dev, "%s bytes=%d\n", __func__, sz);
for (i = 0; i < 50; i++) {
sz = i2c_smbus_read_byte_data(client,
MMS_INPUT_EVENT_PKT_SZ);
if (sz > 0)
break;
}
if (i == 50) {
dev_dbg(&client->dev, "i2c failed... reset!!\n");
reset_mms_ts(info);
goto out;
}
}
/* BUG_ON(sz > MAX_FINGERS*FINGER_EVENT_SZ); */
if (sz == 0)
goto out;
if (sz > MAX_FINGERS*FINGER_EVENT_SZ) {
dev_err(&client->dev, "[TSP] abnormal data inputed.\n");
goto out;
}
msg[1].len = sz;
ret = i2c_transfer(client->adapter, msg, ARRAY_SIZE(msg));
if (ret != ARRAY_SIZE(msg)) {
dev_err(&client->dev,
"failed to read %d bytes of touch data (%d)\n",
sz, ret);
goto out;
}
#if defined(VERBOSE_DEBUG)
print_hex_dump(KERN_DEBUG, "mms_ts raw: ",
DUMP_PREFIX_OFFSET, 32, 1, buf, sz, false);
#endif
if (buf[0] == 0x0F) { /* ESD */
dev_dbg(&client->dev, "ESD DETECT.... reset!!\n");
reset_mms_ts(info);
goto out;
}
if (buf[0] == 0x0E) { /* NOISE MODE */
dev_dbg(&client->dev, "[TSP] noise mode enter!!\n");
info->noise_mode = 1 ;
mms_set_noise_mode(info);
goto out;
}
for (i = 0; i < sz; i += FINGER_EVENT_SZ) {
u8 *tmp = &buf[i];
int id = (tmp[0] & 0xf) - 1;
int x = tmp[2] | ((tmp[1] & 0xf) << 8);
int y = tmp[3] | (((tmp[1] >> 4) & 0xf) << 8);
int angle = (tmp[5] >= 127) ? (-(256 - tmp[5])) : tmp[5];
int palm = (buf[0] & 0x10) >> 4;
if (info->invert_x) {
x = info->max_x - x;
if (x < 0)
x = 0;
}
if (info->invert_y) {
y = info->max_y - y;
if (y < 0)
y = 0;
}
if (id >= MAX_FINGERS) {
dev_notice(&client->dev, \
"finger id error [%d]\n", id);
reset_mms_ts(info);
goto out;
}
if ((tmp[0] & 0x80) == 0) {
#if defined(SEC_TSP_DEBUG)
dev_dbg(&client->dev,
"finger id[%d]: x=%d y=%d p=%d w=%d major=%d minor=%d angle=%d palm=%d\n"
, id, x, y, tmp[5], tmp[4], tmp[6], tmp[7]
, angle, palm);
#else
dev_notice(&client->dev, "finger [%d] up\n", id);
#endif
input_mt_slot(info->input_dev, id);
input_mt_report_slot_state(info->input_dev,
MT_TOOL_FINGER, false);
#if defined(SEC_TSP_DEBUG) || defined(SEC_TSP_VERBOSE_DEBUG)
info->finger_state[id] = 0;
#endif
continue;
}
input_mt_slot(info->input_dev, id);
input_mt_report_slot_state(info->input_dev,
MT_TOOL_FINGER, true);
input_report_abs(info->input_dev, ABS_MT_WIDTH_MAJOR, tmp[4]);
#if defined(CONFIG_MACH_M2_KDI)
input_report_abs(info->input_dev, ABS_MT_POSITION_X,
(info->max_x - x));
input_report_abs(info->input_dev, ABS_MT_POSITION_Y,
(info->max_y - y));
#else
input_report_abs(info->input_dev, ABS_MT_POSITION_X, x);
input_report_abs(info->input_dev, ABS_MT_POSITION_Y, y);
#endif
input_report_abs(info->input_dev, ABS_MT_TOUCH_MAJOR, tmp[6]);
input_report_abs(info->input_dev, ABS_MT_TOUCH_MINOR, tmp[7]);
// input_report_abs(info->input_dev, ABS_MT_ANGLE, angle);
input_report_abs(info->input_dev, ABS_MT_PALM, palm);
#if defined(SEC_TSP_DEBUG)
if (info->finger_state[id] == 0) {
info->finger_state[id] = 1;
dev_dbg(&client->dev,
"finger id[%d]: x=%d y=%d p=%d w=%d major=%d minor=%d angle=%d palm=%d\n"
, id, x, y, tmp[5], tmp[4], tmp[6], tmp[7]
, angle, palm);
}
#else
if (info->finger_state[id] == 0) {
info->finger_state[id] = 1;
dev_notice(&client->dev, "finger [%d] down\n", id);
}
#endif
}
input_sync(info->input_dev);
touch_is_pressed = 0;
for (i = 0; i < MAX_FINGERS; i++) {
if (info->finger_state[i] == 1)
touch_is_pressed++;
}
#ifdef TOUCH_BOOSTER
#if TOUCH_BOOSTER
set_dvfs_lock(info, !!touch_is_pressed);
#endif
#endif
out:
return IRQ_HANDLED;
}
#if ISC_DL_MODE
static int mms100_i2c_read(struct i2c_client *client,
u16 addr, u16 length, u8 *value)
{
struct i2c_adapter *adapter = client->adapter;
struct i2c_msg msg;
int ret = -1;
msg.addr = client->addr;
msg.flags = 0x00;
msg.len = 1;
msg.buf = (u8 *) &addr;
ret = i2c_transfer(adapter, &msg, 1);
if (ret >= 0) {
msg.addr = client->addr;
msg.flags = I2C_M_RD;
msg.len = length;
msg.buf = (u8 *) value;
ret = i2c_transfer(adapter, &msg, 1);
}
if (ret < 0)
pr_err("[TSP] : read error : [%d]", ret);
return ret;
}
static int mms100_i2c_write(struct i2c_client *client, char *buf, int length)
{
int i;
char *data;
data = kzalloc(sizeof(char)*TS_WRITE_REGS_LEN, GFP_KERNEL);
if (length > TS_WRITE_REGS_LEN)
{
pr_err("[TSP] %s :size error \n", __FUNCTION__);
return -EINVAL;
}
for (i = 0; i < length; i++)
data[i] = *buf++;
i = i2c_master_send(client, (char *) data, length);
if (i == length){
kfree(data);
return length;
}
else
{
kfree(data);
pr_err("[TSP] :write error : [%d]", i);
return -EIO;
}
}
static int mms100_reset(struct mms_ts_info *info)
{
melfas_vdd_on(info, 0);
msleep(30);
melfas_vdd_on(info, 1);
msleep(300);
return ISC_SUCCESS;
}
/*
static eISCRet_t mms100_check_operating_mode(struct i2c_client *_client, const eErrCode_t _error_code)
{
int ret;
unsigned char rd_buf = 0x00;
pr_info("[TSP ISC] %s\n", __func__);
// Config versionÀ» Àо booting È®ÀÎ...
ret = mms100_i2c_read(_client, ISC_ADDR_VERSION, 1, &rd_buf);
if (ret < 0)
{
pr_info("[TSP ISC] %s,%d: i2c read fail[%d] \n", __FUNCTION__, __LINE__, ret);
return _error_code;
}
pr_info("End mms100_check_operating_mode()\n");
return ISC_SUCCESS;
}
*/
static eISCRet_t mms100_get_version_info(struct i2c_client *_client)
{
int i, ret;
unsigned char rd_buf[8];
pr_info("[TSP ISC] %s\n", __func__);
// config version brust read (core, private, public)
ret = mms100_i2c_read(_client, ISC_ADDR_VERSION, SECTION_NUM, rd_buf);
if (ret < 0)
{
pr_info("[TSP ISC] %s,%d: i2c read fail[%d] \n", __FUNCTION__, __LINE__, ret);
return ISC_I2C_ERROR;
}
for (i = 0; i < SECTION_NUM; i++)
ts_info[i].version = rd_buf[i];
ts_info[SEC_CORE].compatible_version = ts_info[SEC_BOOTLOADER].version;
ts_info[SEC_CONFIG].compatible_version = ts_info[SEC_CORE].version;
ret = mms100_i2c_read(_client, ISC_ADDR_SECTION_PAGE_INFO, 8, rd_buf);
if (ret < 0)
{
pr_info("[TSP ISC] %s,%d: i2c read fail[%d] \n", __FUNCTION__, __LINE__, ret);
return ISC_I2C_ERROR;
}
for (i = 0; i < SECTION_NUM; i++)
{
ts_info[i].start_addr = rd_buf[i];
/*
* previous core binary had 4 sections while current version contains 3 of them
* for compatibleness, register address was not modified so we get 1,2,3,5,6,7th
* data of read buffer
*/
ts_info[i].end_addr = rd_buf[i + SECTION_NUM + 1];
}
for (i = 0; i < SECTION_NUM; i++)
{
pr_info("\tTS : Section(%d) version: 0x%02X\n", i, ts_info[i].version);
pr_info("\tTS : Section(%d) Start Address: 0x%02X\n", i, ts_info[i].start_addr);
pr_info("\tTS : Section(%d) End Address: 0x%02X\n", i, ts_info[i].end_addr);
pr_info("\tTS : Section(%d) Compatibility: 0x%02X\n", i, ts_info[i].compatible_version);
}
pr_info("End mms100_get_version_info()\n");
return ISC_SUCCESS;
}
static eISCRet_t mms100_seek_section_info(void)
{
#define STRING_BUF_LEN 100
int i;
int offset = sizeof(struct mms_bin_hdr);
pr_info("[TSP ISC] %s\n", __func__);
fw_hdr = (struct mms_bin_hdr *) fw_mfsb.data;
img = kzalloc(sizeof(*img) * fw_hdr->section_num, GFP_KERNEL);
for (i = 0; i < fw_hdr->section_num; i++, offset += sizeof(struct mms_fw_img))
{
img[i] = (struct mms_fw_img *) (fw_mfsb.data + offset);
mfsb_info[i].version = img[i]->version;
mfsb_info[i].start_addr = img[i]->start_page;
mfsb_info[i].end_addr = img[i]->end_page;
if (i == 0)
{
mfsb_info[i].compatible_version = img[i]->version;
}
else
{
mfsb_info[i].compatible_version = img[i - 1]->version;
}
}
for (i = 0; i < SECTION_NUM; i++)
{
pr_info("\tMFSB : Section(%d) Version: 0x%02X\n", i, mfsb_info[i].version);
pr_info("\tMFSB : Section(%d) Start Address: 0x%02X\n", i, mfsb_info[i].start_addr);
pr_info("\tMFSB : Section(%d) End Address: 0x%02X\n", i, mfsb_info[i].end_addr);
pr_info("\tMFSB : Section(%d) Compatibility: 0x%02X\n", i, mfsb_info[i].compatible_version);
}
pr_info("End mms100_seek_section_info()\n");
return ISC_SUCCESS;
}
static eISCRet_t mms100_compare_version_info(struct i2c_client *_client)
{
int i;
//unsigned char expected_compatibility[SECTION_NUM];
int target_ver[SECTION_NUM];
int fw_up_to_date = true;
pr_info("[TSP ISC] %s\n", __func__);
if (mms100_get_version_info(_client) != ISC_SUCCESS)
return ISC_I2C_ERROR;
mms100_seek_section_info();
for (i = 0; i < SECTION_NUM; i++)
{
if (mfsb_info[i].version != ts_info[i].version)
{
fw_up_to_date = false;
section_update_flag[i] = true;
target_ver[i] = mfsb_info[i].version;
if (mfsb_info[0].version != ts_info[0].version)
{
section_update_flag[0] = true;
section_update_flag[1] = true;
section_update_flag[2] = true;
}
if (mfsb_info[1].version != ts_info[1].version)
{
section_update_flag[0] = false;
section_update_flag[1] = true;
section_update_flag[2] = true;
}
}
else
{
target_ver[i] = ts_info[i].version;
}
}
if (fw_up_to_date)
{
pr_info("mms_ts firmware version is up to date\n");
return ISC_NO_NEED_UPDATE_ERROR;
}
for (i = 1; i < SECTION_NUM; i++)
{
if (target_ver[i - 1] != mfsb_info[i].compatible_version)
{
pr_info("compatibility version mismatch(%d), 0x%02x, 0x%02x\n", i, target_ver[i - 1], mfsb_info[i].compatible_version);
return ISC_COMPATIVILITY_ERROR;
}
}
pr_info("End mms100_compare_version_info()\n");
return ISC_SUCCESS;
}
static eISCRet_t mms100_enter_ISC_mode(struct i2c_client *_client)
{
int ret;
unsigned char wr_buf[2];
pr_info("[TSP ISC] %s\n", __func__);
wr_buf[0] = ISC_CMD_ENTER_ISC; // command
wr_buf[1] = ISC_CMD_ENTER_ISC_PARA1; // sub_command
ret = mms100_i2c_write(_client, wr_buf, 2);
if (ret < 0)
{
pr_info("[TSP ISC] %s,%d: i2c write fail[%d] \n", __FUNCTION__, __LINE__, ret);
return ISC_I2C_ERROR;
}
//mms100_msdelay(50);
mdelay(50);
pr_info("End mms100_enter_ISC_mode()\n");
return ISC_SUCCESS;
}
static eISCRet_t mms100_enter_config_update(struct i2c_client *_client)
{
int ret;
unsigned char wr_buf[10] =
{ 0, };
unsigned char rd_buf;
pr_info("[TSP ISC] %s\n", __func__);
wr_buf[0] = ISC_CMD_UPDATE_MODE;
wr_buf[1] = ISC_SUBCMD_ENTER_UPDATE;
ret = mms100_i2c_write(_client, wr_buf, 10);
if (ret < 0)
{
pr_info("[TSP ISC] %s,%d: i2c write fail[%d] \n", __FUNCTION__, __LINE__, ret);
return ISC_I2C_ERROR;
}
ret = mms100_i2c_read(_client, ISC_CMD_CONFIRM_STATUS, 1, &rd_buf);
if (ret < 0)
{
pr_info("[TSP ISC] %s,%d: i2c read fail[%d] \n", __FUNCTION__, __LINE__, ret);
return ISC_I2C_ERROR;
}
if (rd_buf != ISC_STATUS_UPDATE_MODE)
return ISC_UPDATE_MODE_ENTER_ERROR;
pr_info("End mms100_enter_config_update()\n");
return ISC_SUCCESS;
}
static eISCRet_t mms100_ISC_clear_page(struct i2c_client *_client, unsigned char _page_addr)
{
int ret;
unsigned char rd_buf;
pr_info("[TSP ISC] %s\n", __func__);
memset(&g_wr_buf[3], 0xFF, PAGE_DATA);
g_wr_buf[0] = ISC_CMD_UPDATE_MODE; // command
g_wr_buf[1] = ISC_SUBCMD_DATA_WRITE; // sub_command
g_wr_buf[2] = _page_addr;
g_wr_buf[PAGE_HEADER + PAGE_DATA] = crc0_buf[_page_addr];
g_wr_buf[PAGE_HEADER + PAGE_DATA + 1] = crc1_buf[_page_addr];
ret = mms100_i2c_write(_client, g_wr_buf, PACKET_SIZE);
if (ret < 0)
{
pr_info("[TSP ISC] %s,%d: i2c write fail[%d] \n", __FUNCTION__, __LINE__, ret);
return ISC_I2C_ERROR;
}
ret = mms100_i2c_read(_client, ISC_CMD_CONFIRM_STATUS, 1, &rd_buf);
if (ret < 0)
{
pr_info("[TSP ISC] %s,%d: i2c read fail[%d] \n", __FUNCTION__, __LINE__, ret);
return ISC_I2C_ERROR;
}
if (rd_buf != ISC_STATUS_CRC_CHECK_SUCCESS)
return ISC_UPDATE_MODE_ENTER_ERROR;
pr_info("End mms100_ISC_clear_page()\n");
return ISC_SUCCESS;
}
static eISCRet_t mms100_ISC_clear_validate_markers(struct i2c_client *_client)
{
eISCRet_t ret_msg;
int i, j;
bool is_matched_address;
pr_info("[TSP ISC] %s\n", __func__);
for (i = SEC_CORE; i <= SEC_CONFIG; i++)
{
if (section_update_flag[i])
{
if (ts_info[i].end_addr <= 30 && ts_info[i].end_addr > 0)
{
ret_msg = mms100_ISC_clear_page(_client, ts_info[i].end_addr);
if (ret_msg != ISC_SUCCESS)
return ret_msg;
}
}
}
for (i = SEC_CORE; i <= SEC_CONFIG; i++)
{
if (section_update_flag[i])
{
is_matched_address = false;
for (j = SEC_CORE; j <= SEC_CONFIG; j++)
{
if (mfsb_info[i].end_addr == ts_info[i].end_addr)
{
is_matched_address = true;
break;
}
}
if (!is_matched_address)
{
if (mfsb_info[i].end_addr <= 30 && mfsb_info[i].end_addr > 0)
{
ret_msg = mms100_ISC_clear_page(_client, mfsb_info[i].end_addr);
if (ret_msg != ISC_SUCCESS)
return ret_msg;
}
}
}
}
pr_info("End mms100_ISC_clear_validate_markers()\n");
return ISC_SUCCESS;
}
static void mms100_calc_crc(unsigned char *crc, int page_addr, unsigned char* ptr_fw)
{
int i, j;
unsigned char ucData;
unsigned short SeedValue;
unsigned short CRC_check_buf;
unsigned short CRC_send_buf;
unsigned short IN_data;
unsigned short XOR_bit_1;
unsigned short XOR_bit_2;
unsigned short XOR_bit_3;
// Seed
CRC_check_buf = 0xFFFF;
SeedValue = (unsigned short) page_addr;
for (i = 7; i >= 0; i--)
{
IN_data = (SeedValue >> i) & 0x01;
XOR_bit_1 = (CRC_check_buf & 0x0001) ^ IN_data;
XOR_bit_2 = XOR_bit_1 ^ (CRC_check_buf >> 11 & 0x01);
XOR_bit_3 = XOR_bit_1 ^ (CRC_check_buf >> 4 & 0x01);
CRC_send_buf = (XOR_bit_1 << 4) | (CRC_check_buf >> 12 & 0x0F);
CRC_send_buf = (CRC_send_buf << 7) | (XOR_bit_2 << 6) | (CRC_check_buf >> 5 & 0x3F);
CRC_send_buf = (CRC_send_buf << 4) | (XOR_bit_3 << 3) | (CRC_check_buf >> 1 & 0x0007);
CRC_check_buf = CRC_send_buf;
}
for (i = 0; i < 1024; i++)
{
ucData = ptr_fw[i];
for (j = 7; j >= 0; j--)
{
IN_data = (ucData >> j) & 0x0001;
XOR_bit_1 = (CRC_check_buf & 0x0001) ^ IN_data;
XOR_bit_2 = XOR_bit_1 ^ (CRC_check_buf >> 11 & 0x01);
XOR_bit_3 = XOR_bit_1 ^ (CRC_check_buf >> 4 & 0x01);
CRC_send_buf = (XOR_bit_1 << 4) | (CRC_check_buf >> 12 & 0x0F);
CRC_send_buf = (CRC_send_buf << 7) | (XOR_bit_2 << 6) | (CRC_check_buf >> 5 & 0x3F);
CRC_send_buf = (CRC_send_buf << 4) | (XOR_bit_3 << 3) | (CRC_check_buf >> 1 & 0x0007);
CRC_check_buf = CRC_send_buf;
}
}
crc[0] = (unsigned char) ((CRC_check_buf >> 8) & 0xFF);
crc[1] = (unsigned char) ((CRC_check_buf >> 0) & 0xFF);
}
static eISCRet_t mms100_update_section_data(struct i2c_client *_client)
{
#define STRING_BUF_LEN 100
int i, j, ret; // 2012.08.30
unsigned char rd_buf;
unsigned char crc[2]; // 2012.08.30
int ptr;
const u8 *ptr_fw;
int page_addr;
const u8 *fw_data;
pr_info("[TSP ISC] %s\n", __func__);
fw_data = (u8 *)fw_mfsb.data + fw_hdr->binary_offset;
for (i = 0; i < fw_hdr->section_num; i++)
{
pr_info("update flag (%d)\n", section_update_flag[i]);
ptr = img[i]->offset;
if (section_update_flag[i])
{
ptr_fw = fw_data + ptr;
pr_info("binary found\n");
for (page_addr = mfsb_info[i].start_addr; page_addr <= mfsb_info[i].end_addr; page_addr++)
{
if (page_addr - mfsb_info[i].start_addr > 0)
ptr_fw += 1024;
g_wr_buf[0] = ISC_CMD_UPDATE_MODE;
g_wr_buf[1] = ISC_SUBCMD_DATA_WRITE;
g_wr_buf[2] = (unsigned char) page_addr;
for (j = 0; j < 1024; j += 4)
{
g_wr_buf[3 + j] = ptr_fw[j + 3];
g_wr_buf[3 + j + 1] = ptr_fw[j + 2];
g_wr_buf[3 + j + 2] = ptr_fw[j + 1];
g_wr_buf[3 + j + 3] = ptr_fw[j + 0];
}
mms100_calc_crc(crc, page_addr, &g_wr_buf[3]);
g_wr_buf[1027] = crc[0];
g_wr_buf[1028] = crc[1];
pr_info("crc val : %X%X\n", crc[0], crc[1]);
ret = mms100_i2c_write(_client, g_wr_buf, PACKET_SIZE);
if (ret < 0)
{
pr_info("[TSP ISC] %s,%d: i2c write fail[%d] \n", __FUNCTION__, __LINE__, ret);
return ISC_I2C_ERROR;
}
ret = mms100_i2c_read(_client, ISC_CMD_CONFIRM_STATUS, 1, &rd_buf);
if (ret < 0)
{
pr_info("[TSP ISC] %s,%d: i2c read fail[%d] \n", __FUNCTION__, __LINE__, ret);
return ISC_I2C_ERROR;
}
if (rd_buf != ISC_STATUS_CRC_CHECK_SUCCESS)
return ISC_CRC_ERROR;
section_update_flag[i] = false;
pr_info("section(%d) updated.\n", i);
}
}
}
pr_info("End mms100_update_section_data()\n");
return ISC_SUCCESS;
}
static int mms100_open_mbinary(struct i2c_client *_client)
{
int ret = 0;
/*
ret += request_firmware(&(fw_mbin[1]),
"tsp_melfas/s3/CORE.fw", &_client->dev);
ret += request_firmware(&(fw_mbin[2]),
"tsp_melfas/s3/PRIV.fw", &_client->dev);
ret += request_firmware(&(fw_mbin[3]),
"tsp_melfas/s3/PUBL.fw", &_client->dev);
*/
ret = request_firmware(&fw_mbin,
"tsp_melfas/DIABLO_CoreV54_V35_master.fw", &_client->dev);
if (!ret) {
fw_mfsb.data = kzalloc(fw_mbin->size, GFP_KERNEL);
memcpy(fw_mfsb.data, fw_mbin->data, fw_mbin->size);
fw_mfsb.size = fw_mbin->size;
return ISC_SUCCESS;
}
else {
pr_info("[TSP ISC] request_firmware fail");
return ISC_FILE_OPEN_ERROR;
}
}
static int mms100_close_mbinary(void)
{
/*
int i;
for (i = 0; i < SECTION_NUM; i++) {
if (fw_mbin[i] != NULL)
release_firmware(fw_mbin[i]);
}
*/
release_firmware(fw_mbin);
kfree(img);
kfree(fw_mfsb.data);
return ISC_SUCCESS;
}
eISCRet_t mms100_ISC_download_mbinary(struct mms_ts_info *info)
{
struct i2c_client *_client = info->client;
int ret_msg = ISC_NONE;
bool force_update = 0;
pr_info("[TSP ISC] %s\n", __func__);
mms100_reset(info);
/*
ret_msg = mms100_check_operating_mode(_client, EC_BOOT_ON_SUCCEEDED);
if (ret_msg != ISC_SUCCESS)
goto ISC_ERROR_HANDLE;
*/
ret_msg = mms100_open_mbinary(_client);
if (ret_msg != ISC_SUCCESS)
goto ISC_ERROR_HANDLE;
/* Config version Check */
if (force_update)
{
int i;
ret_msg = mms100_compare_version_info(_client);
for (i = 0; i < SECTION_NUM; i++)
section_update_flag[i] = true;
}
else
{
ret_msg = mms100_compare_version_info(_client);
if (ret_msg != ISC_SUCCESS)
goto ISC_ERROR_HANDLE;
}
ret_msg = mms100_enter_ISC_mode(_client);
if (ret_msg != ISC_SUCCESS)
goto ISC_ERROR_HANDLE;
ret_msg = mms100_enter_config_update(_client);
if (ret_msg != ISC_SUCCESS)
goto ISC_ERROR_HANDLE;
ret_msg = mms100_ISC_clear_validate_markers(_client);
if (ret_msg != ISC_SUCCESS)
goto ISC_ERROR_HANDLE;
pr_info("[TSP ISC]mms100_update_section_data start");
ret_msg = mms100_update_section_data(_client);
if (ret_msg != ISC_SUCCESS)
goto ISC_ERROR_HANDLE;
pr_info("[TSP ISC]mms100_update_section_data end");
pr_info("[TSP ISC]FIRMWARE_UPDATE_FINISHED!!!\n");
ret_msg = ISC_SUCCESS;
ISC_ERROR_HANDLE:
if(ret_msg == ISC_NO_NEED_UPDATE_ERROR){
ret_msg = ISC_SUCCESS;
}else if (ret_msg != ISC_SUCCESS){
pr_info("ISC_ERROR_CODE: %d\n", ret_msg);
}
mms100_reset(info);
mms100_close_mbinary();
return ret_msg;
}
#endif /* ISC_DL_MODE start */
static void hw_reboot(struct mms_ts_info *info, bool bootloader)
{
melfas_vdd_on(info, 0);
gpio_direction_output(info->pdata->gpio_sda, bootloader ? 0 : 1);
gpio_direction_output(info->pdata->gpio_scl, bootloader ? 0 : 1);
#ifdef MMS_144_RESET_PIN
printk("[TSP] %s : Reset pin Output value 0 \n",__func__);
gpio_direction_output(info->pdata->gpio_resetb, 0);
#endif
msleep(30);
melfas_vdd_on(info, 1);
msleep(30);
if (bootloader) {
gpio_set_value(info->pdata->gpio_scl, 0);
gpio_set_value(info->pdata->gpio_sda, 1);
} else {
#ifdef MMS_144_RESET_PIN
printk("[TSP] %s : Reset pin Set Value 1 \n",__func__);
gpio_set_value(info->pdata->gpio_resetb, 1);
printk("[TSP] %s : reset pin direction input \n",__func__);
gpio_direction_input(info->pdata->gpio_resetb);
#endif
gpio_direction_input(info->pdata->gpio_scl);
gpio_direction_input(info->pdata->gpio_sda);
}
msleep(40);
}
static inline void hw_reboot_bootloader(struct mms_ts_info *info)
{
hw_reboot(info, true);
}
static inline void hw_reboot_normal(struct mms_ts_info *info)
{
hw_reboot(info, false);
}
static inline void mms_pwr_on_reset(struct mms_ts_info *info)
{
#if 0 /* firmware call removal */
struct i2c_adapter *adapter = to_i2c_adapter(info->client->dev.parent);
/*
if (!info->pdata->mux_fw_flash) {
dev_info(&info->client->dev,
"missing platform data, can't do power-on-reset\n");
return;
}
*/
i2c_lock_adapter(adapter);
melfas_mux_fw_flash(info->pdata, true);
melfas_vdd_on(info, 0);
gpio_direction_output(info->pdata->gpio_sda, 1);
gpio_direction_output(info->pdata->gpio_scl, 1);
#ifdef MMS_144_RESET_PIN
printk("[TSP] %s : Reset pin Output value 1 \n",__func__);
gpio_direction_output(info->pdata->gpio_resetb, 1);
#endif
msleep(50);
melfas_vdd_on(info, 1);
msleep(50);
melfas_mux_fw_flash(info->pdata, false);
i2c_unlock_adapter(adapter);
/* TODO: Seems long enough for the firmware to boot.
* Find the right value */
#endif /* fw call removal */
msleep(250);
}
#if 0 /* firmware call removal */
static void isp_toggle_clk(struct mms_ts_info *info, int start_lvl, int end_lvl,
int hold_us)
{
gpio_set_value(info->pdata->gpio_scl, start_lvl);
udelay(hold_us);
gpio_set_value(info->pdata->gpio_scl, end_lvl);
udelay(hold_us);
}
/* 1 <= cnt <= 32 bits to write */
static void isp_send_bits(struct mms_ts_info *info, u32 data, int cnt)
{
#ifdef MMS_144_RESET_PIN
printk("[TSP] %s : Reset pin Output value 0 \n",__func__);
gpio_direction_output(info->pdata->gpio_resetb, 0);
#endif
gpio_direction_output(info->pdata->gpio_scl, 0);
gpio_direction_output(info->pdata->gpio_sda, 0);
/* clock out the bits, msb first */
while (cnt--) {
gpio_set_value(info->pdata->gpio_sda, (data >> cnt) & 1);
udelay(3);
isp_toggle_clk(info, 1, 0, 3);
}
}
/* 1 <= cnt <= 32 bits to read */
static u32 isp_recv_bits(struct mms_ts_info *info, int cnt)
{
u32 data = 0;
#ifdef MMS_144_RESET_PIN
printk("[TSP] %s : Reset pin Output value 0 \n",__func__);
gpio_direction_output(info->pdata->gpio_resetb, 0);
#endif
gpio_direction_output(info->pdata->gpio_scl, 0);
gpio_set_value(info->pdata->gpio_sda, 0);
gpio_direction_input(info->pdata->gpio_sda);
/* clock in the bits, msb first */
while (cnt--) {
isp_toggle_clk(info, 0, 1, 1);
data = (data << 1) | (!!gpio_get_value(info->pdata->gpio_sda));
}
gpio_direction_output(info->pdata->gpio_sda, 0);
return data;
}
static void isp_enter_mode(struct mms_ts_info *info, u32 mode)
{
int cnt;
unsigned long flags;
local_irq_save(flags);
#ifdef MMS_144_RESET_PIN
printk("[TSP] %s : Reset pin Output value 0\n",__func__);
gpio_direction_output(info->pdata->gpio_resetb, 0);
#endif
gpio_direction_output(info->pdata->gpio_scl, 0);
gpio_direction_output(info->pdata->gpio_sda, 1);
mode &= 0xffff;
for (cnt = 15; cnt >= 0; cnt--) {
#ifdef MMS_144_RESET_PIN
printk("[TSP] %s : Reset pin Set Value \n",__func__);
gpio_set_value(info->pdata->gpio_resetb, (mode >> cnt) & 1);
#endif
udelay(3);
isp_toggle_clk(info, 1, 0, 3);
}
#ifdef MMS_144_RESET_PIN
printk("[TSP] %s : Reset pin Set Value 0 \n",__func__);
gpio_set_value(info->pdata->gpio_resetb, 0);
#endif
local_irq_restore(flags);
}
static void isp_exit_mode(struct mms_ts_info *info)
{
int i;
unsigned long flags;
local_irq_save(flags);
#ifdef MMS_144_RESET_PIN
printk("[TSP] %s : Reset pin Output value 0 \n",__func__);
gpio_direction_output(info->pdata->gpio_resetb, 0);
#endif
udelay(3);
for (i = 0; i < 10; i++)
isp_toggle_clk(info, 1, 0, 3);
local_irq_restore(flags);
}
static void flash_set_address(struct mms_ts_info *info, u16 addr)
{
/* Only 13 bits of addr are valid.
* The addr is in bits 13:1 of cmd */
isp_send_bits(info, (u32)(addr & 0x1fff) << 1, 18);
}
static void flash_erase(struct mms_ts_info *info)
{
isp_enter_mode(info, ISP_MODE_FLASH_ERASE);
#ifdef MMS_144_RESET_PIN
printk("[TSP] %s : Reset pin Output value 0 \n",__func__);
gpio_direction_output(info->pdata->gpio_resetb, 0);
#endif
gpio_direction_output(info->pdata->gpio_scl, 0);
gpio_direction_output(info->pdata->gpio_sda, 1);
/* 4 clock cycles with different timings for the erase to
* get processed, clk is already 0 from above */
udelay(7);
isp_toggle_clk(info, 1, 0, 3);
udelay(7);
isp_toggle_clk(info, 1, 0, 3);
usleep_range(25000, 35000);
isp_toggle_clk(info, 1, 0, 3);
usleep_range(150, 200);
isp_toggle_clk(info, 1, 0, 3);
gpio_set_value(info->pdata->gpio_sda, 0);
isp_exit_mode(info);
}
static u32 flash_readl(struct mms_ts_info *info, u16 addr)
{
int i;
u32 val;
unsigned long flags;
local_irq_save(flags);
isp_enter_mode(info, ISP_MODE_FLASH_READ);
flash_set_address(info, addr);
gpio_direction_output(info->pdata->gpio_scl, 0);
gpio_direction_output(info->pdata->gpio_sda, 0);
udelay(40);
/* data load cycle */
for (i = 0; i < 6; i++)
isp_toggle_clk(info, 1, 0, 10);
val = isp_recv_bits(info, 32);
isp_exit_mode(info);
local_irq_restore(flags);
return val;
}
static void flash_writel(struct mms_ts_info *info, u16 addr, u32 val)
{
unsigned long flags;
local_irq_save(flags);
isp_enter_mode(info, ISP_MODE_FLASH_WRITE);
flash_set_address(info, addr);
isp_send_bits(info, val, 32);
gpio_direction_output(info->pdata->gpio_sda, 1);
/* 6 clock cycles with different timings for the data to get written
* into flash */
isp_toggle_clk(info, 0, 1, 3);
isp_toggle_clk(info, 0, 1, 3);
isp_toggle_clk(info, 0, 1, 6);
isp_toggle_clk(info, 0, 1, 12);
isp_toggle_clk(info, 0, 1, 3);
isp_toggle_clk(info, 0, 1, 3);
isp_toggle_clk(info, 1, 0, 1);
gpio_direction_output(info->pdata->gpio_sda, 0);
isp_exit_mode(info);
local_irq_restore(flags);
usleep_range(300, 400);
}
static bool flash_is_erased(struct mms_ts_info *info)
{
struct i2c_client *client = info->client;
u32 val;
u16 addr;
for (addr = 0; addr < (ISP_MAX_FW_SIZE / 4); addr++) {
udelay(40);
val = flash_readl(info, addr);
if (val != 0xffffffff) {
dev_dbg(&client->dev,
"addr 0x%x not erased: 0x%08x != 0xffffffff\n",
addr, val);
return false;
}
}
return true;
}
static int fw_write_image(struct mms_ts_info *info, const u8 *data, size_t len)
{
struct i2c_client *client = info->client;
u16 addr = 0;
for (addr = 0; addr < (len / 4); addr++, data += 4) {
u32 val = get_unaligned_le32(data);
u32 verify_val;
int retries = 3;
while (retries--) {
flash_writel(info, addr, val);
verify_val = flash_readl(info, addr);
if (val == verify_val)
break;
dev_err(&client->dev,
"mismatch @ addr 0x%x: 0x%x != 0x%x\n",
addr, verify_val, val);
continue;
}
if (retries < 0)
return -ENXIO;
}
return 0;
}
static int fw_download(struct mms_ts_info *info, const u8 *data, size_t len)
{
struct i2c_client *client = info->client;
u32 val;
int ret = 0;
if (len % 4) {
dev_err(&client->dev,
"fw image size (%d) must be a multiple of 4 bytes\n",
len);
return -EINVAL;
} else if (len > ISP_MAX_FW_SIZE) {
dev_err(&client->dev,
"fw image is too big, %d > %d\n", len, ISP_MAX_FW_SIZE);
return -EINVAL;
}
dev_info(&client->dev, "fw download start\n");
melfas_vdd_on(info, 0);
gpio_direction_output(info->pdata->gpio_sda, 0);
gpio_direction_output(info->pdata->gpio_scl, 0);
#ifdef MMS_144_RESET_PIN
printk("[TSP] %s : Reset pin Output value 0 \n",__func__);
gpio_direction_output(info->pdata->gpio_resetb, 0);
#endif
hw_reboot_bootloader(info);
val = flash_readl(info, ISP_IC_INFO_ADDR);
dev_info(&client->dev, "IC info: 0x%02x (%x)\n", val & 0xff, val);
dev_info(&client->dev, "fw erase...\n");
flash_erase(info);
if (!flash_is_erased(info)) {
ret = -ENXIO;
goto err;
}
dev_info(&client->dev, "fw write...\n");
/* XXX: what does this do?! */
flash_writel(info, ISP_IC_INFO_ADDR, 0xffffff00 | (val & 0xff));
usleep_range(1000, 1500);
ret = fw_write_image(info, data, len);
if (ret)
goto err;
usleep_range(1000, 1500);
hw_reboot_normal(info);
usleep_range(1000, 1500);
dev_info(&client->dev, "fw download done...\n");
return 0;
err:
dev_err(&client->dev, "fw download failed...\n");
hw_reboot_normal(info);
return ret;
}
#endif /* fw call removal */
#if defined(SEC_TSP_ISC_FW_UPDATE)
static u16 gen_crc(u8 data, u16 pre_crc)
{
u16 crc;
u16 cur;
u16 temp;
u16 bit_1;
u16 bit_2;
int i;
crc = pre_crc;
for (i = 7; i >= 0; i--) {
cur = ((data >> i) & 0x01) ^ (crc & 0x0001);
bit_1 = cur ^ (crc >> 11 & 0x01);
bit_2 = cur ^ (crc >> 4 & 0x01);
temp = (cur << 4) | (crc >> 12 & 0x0F);
temp = (temp << 7) | (bit_1 << 6) | (crc >> 5 & 0x3F);
temp = (temp << 4) | (bit_2 << 3) | (crc >> 1 & 0x0007);
crc = temp;
}
return crc;
}
static int isc_fw_download(struct mms_ts_info *info, const u8 *data,
size_t len)
{
u8 *buff;
u16 crc_buf;
int src_idx;
int dest_idx;
int ret;
int i, j;
buff = kzalloc(ISC_PKT_SIZE, GFP_KERNEL);
if (!buff) {
dev_err(&info->client->dev, "%s: failed to allocate memory\n",
__func__);
ret = -1;
goto err_mem_alloc;
}
/* enterring ISC mode */
*buff = ISC_ENTER_ISC_DATA;
ret = i2c_smbus_write_byte_data(info->client,
ISC_ENTER_ISC_CMD, *buff);
if (ret < 0) {
dev_err(&info->client->dev,
"fail to enter ISC mode(err=%d)\n", ret);
goto fail_to_isc_enter;
}
usleep_range(10000, 20000);
dev_info(&info->client->dev, "Enter ISC mode\n");
/*enter ISC update mode */
*buff = ISC_ENTER_UPDATE_DATA;
ret = i2c_smbus_write_i2c_block_data(info->client,
ISC_CMD,
ISC_ENTER_UPDATE_DATA_LEN, buff);
if (ret < 0) {
dev_err(&info->client->dev,
"fail to enter ISC update mode(err=%d)\n", ret);
goto fail_to_isc_update;
}
dev_info(&info->client->dev, "Enter ISC update mode\n");
/* firmware write */
*buff = ISC_CMD;
*(buff + 1) = ISC_DATA_WRITE_SUB_CMD;
for (i = 0; i < ISC_PKT_NUM; i++) {
*(buff + 2) = i;
crc_buf = gen_crc(*(buff + 2), ISC_DEFAULT_CRC);
for (j = 0; j < ISC_PKT_DATA_SIZE; j++) {
dest_idx = ISC_PKT_HEADER_SIZE + j;
src_idx = i * ISC_PKT_DATA_SIZE +
((int)(j / WORD_SIZE)) * WORD_SIZE -
(j % WORD_SIZE) + 3;
*(buff + dest_idx) = *(data + src_idx);
crc_buf = gen_crc(*(buff + dest_idx), crc_buf);
}
*(buff + ISC_PKT_DATA_SIZE + ISC_PKT_HEADER_SIZE + 1) =
crc_buf & 0xFF;
*(buff + ISC_PKT_DATA_SIZE + ISC_PKT_HEADER_SIZE) =
crc_buf >> 8 & 0xFF;
ret = i2c_master_send(info->client, buff, ISC_PKT_SIZE);
if (ret < 0) {
dev_err(&info->client->dev,
"fail to firmware writing on packet %d.(%d)\n",
i, ret);
goto fail_to_fw_write;
}
usleep_range(1, 5);
/* confirm CRC */
ret = i2c_smbus_read_byte_data(info->client,
ISC_CHECK_STATUS_CMD);
if (ret == ISC_CONFIRM_CRC) {
dev_info(&info->client->dev,
"updating %dth firmware data packet.\n", i);
} else {
dev_err(&info->client->dev,
"fail to firmware update on %dth (%X).\n",
i, ret);
ret = -1;
goto fail_to_confirm_crc;
}
}
ret = 0;
fail_to_confirm_crc:
fail_to_fw_write:
/* exit ISC mode */
*buff = ISC_EXIT_ISC_SUB_CMD;
*(buff + 1) = ISC_EXIT_ISC_SUB_CMD2;
i2c_smbus_write_i2c_block_data(info->client, ISC_CMD, 2, buff);
usleep_range(10000, 20000);
fail_to_isc_update:
hw_reboot_normal(info);
fail_to_isc_enter:
kfree(buff);
err_mem_alloc:
return ret;
}
#endif /* SEC_TSP_ISC_FW_UPDATE */
static int get_fw_version(struct mms_ts_info *info)
{
int ret;
int retries = 3;
/* this seems to fail sometimes after a reset.. retry a few times */
do {
ret = i2c_smbus_read_byte_data(info->client, MMS_FW_VERSION);
if(retries==1)
{
mms_pwr_on_reset(info);
msleep(30);
}
} while (ret < 0 && retries-- > 0);
return ret;
}
static int get_hw_version(struct mms_ts_info *info)
{
int ret;
int retries = 3;
/* this seems to fail sometimes after a reset.. retry a few times */
do {
ret = i2c_smbus_read_byte_data(info->client, MMS_HW_REVISION);
} while (ret < 0 && retries-- > 0);
return ret;
}
static int mms_ts_enable(struct mms_ts_info *info, int wakeupcmd)
{
//mutex_lock(&info->lock);
if (info->enabled)
goto out;
/* wake up the touch controller. */
if (wakeupcmd == 1) {
i2c_smbus_write_byte_data(info->client, 0, 0);
usleep_range(3000, 5000);
}
info->enabled = true;
enable_irq(info->irq);
out:
//mutex_unlock(&info->lock);
return 0;
}
static int mms_ts_disable(struct mms_ts_info *info, int sleepcmd)
{
//mutex_lock(&info->lock);
if (!info->enabled)
goto out;
disable_irq(info->irq);
if (sleepcmd == 1) {
i2c_smbus_write_byte_data(info->client, MMS_MODE_CONTROL, 0);
usleep_range(10000, 12000);
}
info->enabled = false;
touch_is_pressed = 0;
out:
//mutex_unlock(&info->lock);
return 0;
}
#if 0
static int mms_ts_finish_config(struct mms_ts_info *info)
{
struct i2c_client *client = info->client;
int ret;
ret = request_threaded_irq(client->irq, NULL, mms_ts_interrupt,
IRQF_TRIGGER_LOW | IRQF_ONESHOT,
"mms_ts", info);
if (ret < 0) {
ret = 1;
dev_err(&client->dev, "Failed to register interrupt\n");
goto err_req_irq;
}
info->irq = client->irq;
barrier();
dev_info(&client->dev,
"Melfas MMS-series touch controller initialized\n");
return 0;
err_req_irq:
return ret;
}
#endif
#if !ISC_DL_MODE
static int mms_ts_fw_info(struct mms_ts_info *info)
{
struct i2c_client *client = info->client;
int ret = 0;
int ver, hw_rev;
ver = get_fw_version(info);
info->fw_ic_ver = ver;
dev_info(&client->dev,
"[TSP]fw version 0x%02x !!!!\n", ver);
hw_rev = get_hw_version(info);
dev_info(&client->dev,
"[TSP] hw rev = %x\n", hw_rev);
if (ver < 0 || hw_rev < 0) {
ret = 1;
dev_err(&client->dev,
"i2c fail...tsp driver unload.\n");
return ret;
}
/*
if (!info->pdata || !info->pdata->mux_fw_flash) {
ret = 1;
dev_err(&client->dev,
"fw cannot be updated, missing platform data\n");
return ret;
}
*/
// ret = mms_ts_finish_config(info);
return ret;
}
#endif
#if ISC_DL_MODE
static int mms_ts_fw_load(struct mms_ts_info *info)
{
struct i2c_client *client = info->client;
/*struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent);*/
int ret = 0;
int ver, hw_rev;
/*int retries = 3;*/
ver = get_fw_version(info);
info->fw_ic_ver = ver;
dev_info(&client->dev,
"[TSP]fw version 0x%02x !!!!\n", ver);
hw_rev = get_hw_version(info);
dev_info(&client->dev,
"[TSP]hw rev = 0x%02x\n", hw_rev);
if (ver < 0 || hw_rev < 0) {
ret = 1;
dev_err(&client->dev,
"i2c fail...tsp driver unload.\n");
}
/*
if (!info->pdata || !info->pdata->mux_fw_flash) {
ret = 1;
dev_err(&client->dev,
"fw cannot be updated, missing platform data\n");
goto out;
}
*/
if (hw_rev == 0xC) {
dev_err(&client->dev,
"[TSP] support only 4.8 inch panel. Do not update");
goto done;
}
dev_err(&client->dev,
"[TSP] ISC Ver [0x%02x] [0x%02x] [0x%02x]",
i2c_smbus_read_byte_data(info->client, 0xF3),
i2c_smbus_read_byte_data(info->client, 0xF4),
i2c_smbus_read_byte_data(info->client, 0xF5));
#if 0
if (ver >= FW_VERSION && ver != 0xFF
&& ver != 0x00 && ver != 0x45) {
dev_err(&client->dev,
"[TSP] fw is latest. Do not update.");
goto done;
} else {
dev_err(&client->dev,
"[TSP] fw update [0x%02x -> 0x%02x]",
ver, FW_VERSION);
}
#endif
dev_err(&client->dev,
"[TSP] fw update [0x%02x -> 0x%02x]",
ver, FW_VERSION);
ret = mms100_ISC_download_mbinary(info);
if (ret == 0) {
dev_err(&client->dev,
"[TSP] mms100_ISC_download_mbinary success");
goto done;
} else {
dev_err(&client->dev,
"[TSP] mms100_ISC_download_mbinary fail [%d]", ret);
ret = 1;
}
//out:
return ret;
done:
// ret = mms_ts_finish_config(info);
return ret;
}
#endif
#ifdef SEC_TSP_FACTORY_TEST
static void set_default_result(struct mms_ts_info *info)
{
char delim = ':';
memset(info->cmd_result, 0x00, ARRAY_SIZE(info->cmd_result));
memcpy(info->cmd_result, info->cmd, strlen(info->cmd));
strncat(info->cmd_result, &delim, 1);
}
static void set_cmd_result(struct mms_ts_info *info, char *buff, int len)
{
strncat(info->cmd_result, buff, len);
}
/*
static inline int msm_irq_to_gpio(unsigned irq)
{
// TODO : Need to verify chip->base=0
return irq - MSM_GPIO_TO_INT(0);
}
*/
static void get_raw_data_all(struct mms_ts_info *info, u8 cmd)
{
u8 w_buf[6];
u8 read_buffer[2]; /* 52 */
char buff[TSP_CMD_STR_LEN] = {0};
int gpio;
int ret;
int i, j;
u32 max_value, min_value;
u32 raw_data;
gpio = info->pdata->gpio_int;
// gpio = msm_irq_to_gpio(info->irq);
disable_irq(info->irq);
w_buf[0] = MMS_VSC_CMD; /* vendor specific command id */
w_buf[1] = MMS_VSC_MODE; /* mode of vendor */
w_buf[2] = 0; /* tx line */
w_buf[3] = 0; /* rx line */
w_buf[4] = 0; /* reserved */
w_buf[5] = 0; /* sub command */
if (cmd == MMS_VSC_CMD_EXIT) {
w_buf[5] = MMS_VSC_CMD_EXIT; /* exit test mode */
ret = i2c_smbus_write_i2c_block_data(info->client,
w_buf[0], 5, &w_buf[1]);
if (ret < 0)
goto err_i2c;
touch_is_pressed = 0;
release_all_fingers(info);
#if defined(CONFIG_MIPI_SAMSUNG_ESD_REFRESH)
set_esd_disable();
#endif
melfas_vdd_on(info, 0);
msleep(30);
melfas_vdd_on(info, 1);
msleep(120);
enable_irq(info->irq);
#if defined(CONFIG_MIPI_SAMSUNG_ESD_REFRESH)
set_esd_enable();
#endif
return ;
}
/* MMS_VSC_CMD_CM_DELTA or MMS_VSC_CMD_CM_ABS
* this two mode need to enter the test mode
* exit command must be followed by testing.
*/
if (cmd == MMS_VSC_CMD_CM_DELTA || cmd == MMS_VSC_CMD_CM_ABS) {
/* enter the debug mode */
w_buf[2] = 0x0; /* tx */
w_buf[3] = 0x0; /* rx */
w_buf[5] = MMS_VSC_CMD_ENTER;
ret = i2c_smbus_write_i2c_block_data(info->client,
w_buf[0], 5, &w_buf[1]);
if (ret < 0)
goto err_i2c;
/* wating for the interrupt */
while (gpio_get_value(gpio))
udelay(100);
}
max_value = 0;
min_value = 0;
for (i = 0; i < RX_NUM; i++) {
for (j = 0; j < TX_NUM; j++) {
w_buf[2] = j; /* tx */
w_buf[3] = i; /* rx */
w_buf[5] = cmd;
ret = i2c_smbus_write_i2c_block_data(info->client,
w_buf[0], 5, &w_buf[1]);
if (ret < 0)
goto err_i2c;
usleep_range(1, 5);
ret = i2c_smbus_read_i2c_block_data(info->client, 0xBF,
2, read_buffer);
if (ret < 0)
goto err_i2c;
raw_data = ((u16)read_buffer[1] << 8) | read_buffer[0];
if (i == 0 && j == 0) {
max_value = min_value = raw_data;
} else {
max_value = max(max_value, raw_data);
min_value = min(min_value, raw_data);
}
if (cmd == MMS_VSC_CMD_INTENSITY) {
info->intensity[j * RX_NUM + i] = raw_data;
dev_dbg(&info->client->dev, "[TSP] intensity[%d][%d] = %d\n",
i, j, info->intensity[j * RX_NUM + i]);
} else if (cmd == MMS_VSC_CMD_CM_DELTA) {
info->inspection[j * RX_NUM + i] = raw_data;
dev_dbg(&info->client->dev, "[TSP] delta[%d][%d] = %d\n",
i, j, info->inspection[j * RX_NUM + i]);
} else if (cmd == MMS_VSC_CMD_CM_ABS) {
info->raw[j * RX_NUM + i] = raw_data;
dev_dbg(&info->client->dev, "[TSP] raw[%d][%d] = %d\n",
i, j, info->raw[j * RX_NUM + i]);
} else if (cmd == MMS_VSC_CMD_REFER) {
info->reference[j * RX_NUM + i] =
raw_data >> 3;
dev_dbg(&info->client->dev, "[TSP] reference[%d][%d] = %d\n",
i, j, info->reference[j * RX_NUM + i]);
}
}
}
snprintf(buff, sizeof(buff), "%d,%d", min_value, max_value);
set_cmd_result(info, buff, strnlen(buff, sizeof(buff)));
enable_irq(info->irq);
err_i2c:
dev_err(&info->client->dev, "%s: fail to i2c (cmd=%d)\n",
__func__, cmd);
}
#ifdef ESD_DEBUG
static u32 get_raw_data_one(struct mms_ts_info *info, u16 rx_idx, u16 tx_idx,
u8 cmd)
{
u8 w_buf[6];
u8 read_buffer[2];
int ret;
u32 raw_data;
w_buf[0] = MMS_VSC_CMD; /* vendor specific command id */
w_buf[1] = MMS_VSC_MODE; /* mode of vendor */
w_buf[2] = 0; /* tx line */
w_buf[3] = 0; /* rx line */
w_buf[4] = 0; /* reserved */
w_buf[5] = 0; /* sub command */
if (cmd != MMS_VSC_CMD_INTENSITY && cmd != MMS_VSC_CMD_RAW &&
cmd != MMS_VSC_CMD_REFER) {
dev_err(&info->client->dev, "%s: not profer command(cmd=%d)\n",
__func__, cmd);
return FAIL;
}
w_buf[2] = tx_idx; /* tx */
w_buf[3] = rx_idx; /* rx */
w_buf[5] = cmd; /* sub command */
ret = i2c_smbus_write_i2c_block_data(info->client, w_buf[0], 5,
&w_buf[1]);
if (ret < 0)
goto err_i2c;
ret = i2c_smbus_read_i2c_block_data(info->client, 0xBF, 2,
read_buffer);
if (ret < 0)
goto err_i2c;
raw_data = ((u16)read_buffer[1] << 8) | read_buffer[0];
if (cmd == MMS_VSC_CMD_REFER)
raw_data = raw_data >> 4;
return raw_data;
err_i2c:
dev_err(&info->client->dev, "%s: fail to i2c (cmd=%d)\n",
__func__, cmd);
return FAIL;
}
#endif
#if 0 /* sysfs function call */
static ssize_t show_close_tsp_test(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mms_ts_info *info = dev_get_drvdata(dev);
get_raw_data_all(info, MMS_VSC_CMD_EXIT);
info->ft_flag = 0;
return snprintf(buf, TSP_BUF_SIZE, "%u\n", 0);
}
#endif /* sysfs function call */
static int check_rx_tx_num(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
char buff[TSP_CMD_STR_LEN] = {0};
int node;
if (info->cmd_param[0] < 0 ||
info->cmd_param[0] >= TX_NUM ||
info->cmd_param[1] < 0 ||
info->cmd_param[1] >= RX_NUM) {
snprintf(buff, sizeof(buff) , "%s", "NG");
set_cmd_result(info, buff, strnlen(buff, sizeof(buff)));
info->cmd_state = 3;
dev_info(&info->client->dev, "%s: parameter error: %u,%u\n",
__func__, info->cmd_param[0],
info->cmd_param[1]);
node = -1;
return node;
}
node = info->cmd_param[0] * RX_NUM + info->cmd_param[1];
dev_info(&info->client->dev, "%s: node = %d\n", __func__,
node);
return node;
}
static void cover_set(struct mms_ts_info *info, int state){
if(state == COVER_OPEN){
dev_info(&info->client->dev, "[TSP] %s: opened\n", __func__);
i2c_smbus_write_byte_data(info->client, 0x34, 0x0);
} else if(state == COVER_CLOSED) {
dev_info(&info->client->dev, "[TSP] %s: closed\n", __func__);
i2c_smbus_write_byte_data(info->client, 0x34, 0x1);
}
}
static void clear_cover_mode(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
char buff[TSP_CMD_STR_LEN] = {0};
int arg = info->cmd_param[0];
set_default_result(info);
snprintf(buff, sizeof(buff), "%u", arg);
dev_info(&info->client->dev, "[TSP] %s: arg=%d\n", __func__,arg);
info->cover_state = arg;
if(info->enabled)
cover_set(info, arg);
set_cmd_result(info, buff, strnlen(buff, sizeof(buff)));
info->cmd_is_running = false;
info->cmd_state = 2;
return;
}
static void not_support_cmd(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
char buff[16] = {0};
set_default_result(info);
sprintf(buff, "%s", "NA");
set_cmd_result(info, buff, strnlen(buff, sizeof(buff)));
info->cmd_state = 4;
dev_info(&info->client->dev, "%s: \"%s(%d)\"\n", __func__,
buff, (int)strnlen(buff, sizeof(buff)));
return;
}
static void fw_update(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
struct i2c_client *client = info->client;
struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent);
int ret = 0;
int fw_ver = 0, ver = 0, hw_rev = 0, fw_bin_ver = 0;
int retries = 5;
const u8 *buff = 0;
mm_segment_t old_fs = {0};
struct file *fp = NULL;
long fsize = 0, nread = 0;
char result_buff[16] = {0};
#define MMS_TS "/sdcard/melfas_fw.bin"
set_default_result(info);
hw_rev = get_hw_version(info);
if (hw_rev == 0x1 || hw_rev == 0x32)
fw_bin_ver = FW_VERSION;
else if (hw_rev == 0x0C)
fw_bin_ver = FW_465_VERSION;
fw_ver = get_fw_version(info);
dev_info(&client->dev,
"fw_ic_ver = 0x%02x, fw_bin_ver = 0x%02x\n",
fw_ver, fw_bin_ver);
if (info->cmd_param[0] == 0
&& fw_ver >= fw_bin_ver) {
dev_info(&client->dev,
"fw version update does not need\n");
goto do_not_need_update;
}
ret=mms_ts_fw_load(info);
if (ret){
snprintf(result_buff, sizeof(result_buff), "FAIL");
set_cmd_result(info, result_buff, strnlen(result_buff, sizeof(result_buff)));
info->cmd_state = 3;
return;
}
else {
snprintf(result_buff, sizeof(result_buff), "OK");
set_cmd_result(info, result_buff, strnlen(result_buff, sizeof(result_buff)));
info->cmd_state = 2;
return;
}
switch (info->cmd_param[0]) {
case BUILT_IN:
if (hw_rev == 0x1 || hw_rev == 0x32) {
buff = MELFAS_binary;
fsize = MELFAS_binary_nLength;
dev_info(&client->dev, "built in 4.8 fw is loaded!!\n");
} else if (hw_rev == 0x0C) {
buff = MELFAS_465_binary;
fsize = MELFAS_465_binary_nLength;
dev_info(&client->dev, "built in 4.65 fw is loaded!!\n");
}
break;
case UMS:
old_fs = get_fs();
set_fs(get_ds());
fp = filp_open(MMS_TS, O_RDONLY, 0);
if (IS_ERR(fp)) {
dev_err(&client->dev,
"file %s open error\n", MMS_TS);
info->cmd_state = 3;
goto err_open;
}
fsize = fp->f_path.dentry->d_inode->i_size;
buff = kzalloc((size_t)fsize, GFP_KERNEL);
if (!buff) {
dev_err(&client->dev, "fail to alloc buffer for fw\n");
info->cmd_state = 3;
goto err_alloc;
}
nread = vfs_read(fp, (char __user *)buff, fsize, &fp->f_pos);
if (nread != fsize) {
dev_err(&client->dev, "fail to read file %s (nread = %ld)\n",
MMS_TS, nread);
info->cmd_state = 3;
goto err_fw_size;
}
filp_close(fp, current->files);
set_fs(old_fs);
dev_info(&client->dev, "ums fw is loaded!!\n");
break;
default:
dev_err(&client->dev, "invalid fw file type!!\n");
goto not_support;
}
disable_irq(info->irq);
while (retries--) {
i2c_lock_adapter(adapter);
#if 0 /* firmware call removal */
melfas_mux_fw_flash(info->pdata, true);
ret = fw_download(info, (const u8 *)buff,
(const size_t)fsize);
melfas_mux_fw_flash(info->pdata, false);
#endif /* firmware call removal */
i2c_unlock_adapter(adapter);
if (ret < 0) {
dev_err(&client->dev, "retrying flashing\n");
continue;
}
ver = get_fw_version(info);
info->fw_ic_ver = ver;
if (info->cmd_param[0] == 1) {
dev_info(&client->dev,
"fw update done. ver = 0x%02x\n", ver);
info->cmd_state = 2;
enable_irq(info->irq);
return;
} else if (ver == fw_bin_ver) {
dev_info(&client->dev,
"fw update done. ver = 0x%02x\n", ver);
info->cmd_state = 2;
enable_irq(info->irq);
return;
} else {
dev_err(&client->dev,
"ERROR : fw version is still wrong (0x%x != 0x%x)\n",
ver, FW_VERSION);
}
dev_err(&client->dev, "retrying flashing\n");
}
err_fw_size:
kfree(buff);
err_alloc:
filp_close(fp, NULL);
err_open:
set_fs(old_fs);
not_support:
do_not_need_update:
info->cmd_state = 2;
return;
}
static void get_fw_ver_bin(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
char buff[16] = {0};
int hw_rev;
set_default_result(info);
hw_rev = get_hw_version(info);
if (hw_rev == 0x01)
snprintf(buff, sizeof(buff), "ME0000%x", FW_VERSION);
else
snprintf(buff, sizeof(buff), "ME0000%x", FW_465_VERSION);
set_cmd_result(info, buff, strnlen(buff, sizeof(buff)));
info->cmd_state = 2;
dev_info(&info->client->dev, "%s: %s(%d)\n", __func__,
buff, (int)strnlen(buff, sizeof(buff)));
}
static void get_fw_ver_ic(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
char buff[16] = {0};
int ver;
set_default_result(info);
ver = get_fw_version(info);
snprintf(buff, sizeof(buff), "ME0000%x", ver);
set_cmd_result(info, buff, strnlen(buff, sizeof(buff)));
info->cmd_state = 2;
dev_info(&info->client->dev, "%s: %s(%d)\n", __func__,
buff, (int)strnlen(buff, sizeof(buff)));
}
static void get_config_ver(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
char buff[20] = {0};
set_default_result(info);
// snprintf(buff, sizeof(buff), "%s", info->config_fw_version);
snprintf(buff, sizeof(buff), "N/A");
set_cmd_result(info, buff, strnlen(buff, sizeof(buff)));
info->cmd_state = 2;
dev_info(&info->client->dev, "%s: %s(%d)\n", __func__,
buff, (int)strnlen(buff, sizeof(buff)));
}
static void get_threshold(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
char buff[16] = {0};
int threshold;
set_default_result(info);
threshold = i2c_smbus_read_byte_data(info->client, 0x05);
if (threshold < 0) {
snprintf(buff, sizeof(buff), "%s", "NG");
set_cmd_result(info, buff, (int)strnlen(buff, sizeof(buff)));
info->cmd_state = 3;
return;
}
snprintf(buff, sizeof(buff), "%d", threshold);
set_cmd_result(info, buff, strnlen(buff, sizeof(buff)));
info->cmd_state = 2;
dev_info(&info->client->dev, "%s: %s(%d)\n", __func__,
buff, (int)strnlen(buff, sizeof(buff)));
}
static void module_off_master(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
char buff[3] = {0};
//mutex_lock(&info->lock);
if (info->enabled) {
disable_irq(info->irq);
info->enabled = false;
touch_is_pressed = 0;
}
//mutex_unlock(&info->lock);
melfas_vdd_on(info, 0);
if (is_melfas_vdd_on(info) == 0)
snprintf(buff, sizeof(buff), "%s", "OK");
else
snprintf(buff, sizeof(buff), "%s", "NG");
set_default_result(info);
set_cmd_result(info, buff, strnlen(buff, sizeof(buff)));
if (strncmp(buff, "OK", 2) == 0)
info->cmd_state = 2;
else
info->cmd_state = 3;
dev_info(&info->client->dev, "%s: %s\n", __func__, buff);
}
static void module_on_master(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
char buff[3] = {0};
mms_pwr_on_reset(info);
//mutex_lock(&info->lock);
if (!info->enabled) {
enable_irq(info->irq);
info->enabled = true;
}
//mutex_unlock(&info->lock);
if (is_melfas_vdd_on(info) == 1)
snprintf(buff, sizeof(buff), "%s", "OK");
else
snprintf(buff, sizeof(buff), "%s", "NG");
set_default_result(info);
set_cmd_result(info, buff, strnlen(buff, sizeof(buff)));
if (strncmp(buff, "OK", 2) == 0)
info->cmd_state = 2;
else
info->cmd_state = 3;
dev_info(&info->client->dev, "%s: %s\n", __func__, buff);
}
static void get_chip_vendor(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
char buff[16] = {0};
set_default_result(info);
snprintf(buff, sizeof(buff), "%s", "MELFAS");
set_cmd_result(info, buff, strnlen(buff, sizeof(buff)));
info->cmd_state = 2;
dev_info(&info->client->dev, "%s: %s(%d)\n", __func__,
buff, (int)strnlen(buff, sizeof(buff)));
}
static void get_chip_name(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
char buff[16] = {0};
set_default_result(info);
snprintf(buff, sizeof(buff), "%s", "MMS144");
set_cmd_result(info, buff, strnlen(buff, sizeof(buff)));
info->cmd_state = 2;
dev_info(&info->client->dev, "%s: %s(%d)\n", __func__,
buff, (int)strnlen(buff, sizeof(buff)));
}
static void get_reference(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
char buff[16] = {0};
unsigned int val;
int node;
set_default_result(info);
node = check_rx_tx_num(info);
if (node < 0)
return;
val = info->reference[node];
snprintf(buff, sizeof(buff), "%u", val);
set_cmd_result(info, buff, strnlen(buff, sizeof(buff)));
info->cmd_state = 2;
dev_info(&info->client->dev, "%s: %s(%d)\n", __func__,
buff, (int)strnlen(buff, sizeof(buff)));
}
static void get_cm_abs(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
char buff[16] = {0};
unsigned int val;
int node;
set_default_result(info);
node = check_rx_tx_num(info);
if (node < 0)
return;
val = info->raw[node];
snprintf(buff, sizeof(buff), "%u", val);
set_cmd_result(info, buff, strnlen(buff, sizeof(buff)));
info->cmd_state = 2;
dev_info(&info->client->dev, "%s: %s(%d)\n", __func__, buff,
(int)strnlen(buff, sizeof(buff)));
}
static void get_cm_delta(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
char buff[16] = {0};
unsigned int val;
int node;
set_default_result(info);
node = check_rx_tx_num(info);
if (node < 0)
return;
val = info->inspection[node];
snprintf(buff, sizeof(buff), "%u", val);
set_cmd_result(info, buff, strnlen(buff, sizeof(buff)));
info->cmd_state = 2;
dev_info(&info->client->dev, "%s: %s(%d)\n", __func__, buff,
(int)strnlen(buff, sizeof(buff)));
}
static void get_intensity(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
char buff[16] = {0};
unsigned int val;
int node;
set_default_result(info);
node = check_rx_tx_num(info);
if (node < 0)
return;
val = info->intensity[node];
snprintf(buff, sizeof(buff), "%u", val);
set_cmd_result(info, buff, strnlen(buff, sizeof(buff)));
info->cmd_state = 2;
dev_info(&info->client->dev, "%s: %s(%d)\n", __func__, buff,
(int)strnlen(buff, sizeof(buff)));
}
static void get_x_num(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
char buff[16] = {0};
int val;
set_default_result(info);
val = i2c_smbus_read_byte_data(info->client, 0xEF);
if (val < 0) {
snprintf(buff, sizeof(buff), "%s", "NG");
set_cmd_result(info, buff, strnlen(buff, sizeof(buff)));
info->cmd_state = 3;
dev_info(&info->client->dev,
"%s: fail to read num of x (%d).\n", __func__, val);
return ;
}
snprintf(buff, sizeof(buff), "%u", val);
set_cmd_result(info, buff, strnlen(buff, sizeof(buff)));
info->cmd_state = 2;
dev_info(&info->client->dev, "%s: %s(%d)\n", __func__, buff,
(int)strnlen(buff, sizeof(buff)));
}
static void get_y_num(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
char buff[16] = {0};
int val;
set_default_result(info);
val = i2c_smbus_read_byte_data(info->client, 0xEE);
if (val < 0) {
snprintf(buff, sizeof(buff), "%s", "NG");
set_cmd_result(info, buff, strnlen(buff, sizeof(buff)));
info->cmd_state = 3;
dev_info(&info->client->dev,
"%s: fail to read num of y (%d).\n", __func__, val);
return ;
}
snprintf(buff, sizeof(buff), "%u", val);
set_cmd_result(info, buff, strnlen(buff, sizeof(buff)));
info->cmd_state = 2;
dev_info(&info->client->dev, "%s: %s(%d)\n", __func__, buff,
(int)strnlen(buff, sizeof(buff)));
}
static void run_reference_read(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
set_default_result(info);
get_raw_data_all(info, MMS_VSC_CMD_REFER);
info->cmd_state = 2;
dev_info(&info->client->dev, "%s\n", __func__);
}
static void run_cm_abs_read(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
set_default_result(info);
get_raw_data_all(info, MMS_VSC_CMD_CM_ABS);
get_raw_data_all(info, MMS_VSC_CMD_EXIT);
info->cmd_state = 2;
dev_info(&info->client->dev, "%s\n", __func__);
}
static void run_cm_delta_read(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
set_default_result(info);
get_raw_data_all(info, MMS_VSC_CMD_CM_DELTA);
get_raw_data_all(info, MMS_VSC_CMD_EXIT);
info->cmd_state = 2;
dev_info(&info->client->dev, "%s\n", __func__);
}
static void run_intensity_read(void *device_data)
{
struct mms_ts_info *info = (struct mms_ts_info *)device_data;
set_default_result(info);
get_raw_data_all(info, MMS_VSC_CMD_INTENSITY);
info->cmd_state = 2;
dev_info(&info->client->dev, "%s\n", __func__);
}
#if 0 /* sysfs device function */
static ssize_t store_cmd(struct device *dev, struct device_attribute
*devattr, const char *buf, size_t count)
{
struct mms_ts_info *info = dev_get_drvdata(dev);
struct i2c_client *client = info->client;
char *cur, *start, *end;
char buff[TSP_CMD_STR_LEN] = {0};
int len, i;
struct tsp_cmd *tsp_cmd_ptr = NULL;
char delim = ',';
bool cmd_found = false;
int param_cnt = 0;
if (info->cmd_is_running == true) {
dev_err(&info->client->dev, "tsp_cmd: other cmd is running.\n");
goto err_out;
}
/* check lock */
mutex_lock(&info->cmd_lock);
info->cmd_is_running = true;
mutex_unlock(&info->cmd_lock);
info->cmd_state = 1;
for (i = 0; i < ARRAY_SIZE(info->cmd_param); i++)
info->cmd_param[i] = 0;
len = (int)count;
if (*(buf + len - 1) == '\n')
len--;
memset(info->cmd, 0x00, ARRAY_SIZE(info->cmd));
memcpy(info->cmd, buf, len);
cur = strchr(buf, (int)delim);
if (cur)
memcpy(buff, buf, cur - buf);
else
memcpy(buff, buf, len);
/* find command */
list_for_each_entry(tsp_cmd_ptr, &info->cmd_list_head, list) {
if (!strcmp(buff, tsp_cmd_ptr->cmd_name)) {
cmd_found = true;
break;
}
}
/* set not_support_cmd */
if (!cmd_found) {
list_for_each_entry(tsp_cmd_ptr, &info->cmd_list_head, list) {
if (!strcmp("not_support_cmd", tsp_cmd_ptr->cmd_name))
break;
}
}
/* parsing parameters */
if (cur && cmd_found) {
cur++;
start = cur;
memset(buff, 0x00, ARRAY_SIZE(buff));
do {
if (*cur == delim || cur - buf == len) {
end = cur;
memcpy(buff, start, end - start);
*(buff + strlen(buff)) = '\0';
if (kstrtoint(buff, 10,
info->cmd_param + param_cnt) < 0)
goto err_out;
start = cur + 1;
memset(buff, 0x00, ARRAY_SIZE(buff));
param_cnt++;
}
cur++;
} while (cur - buf <= len);
}
dev_info(&client->dev, "cmd = %s\n", tsp_cmd_ptr->cmd_name);
for (i = 0; i < param_cnt; i++)
dev_info(&client->dev, "cmd param %d= %d\n", i,
info->cmd_param[i]);
tsp_cmd_ptr->cmd_func(info);
err_out:
return count;
}
static ssize_t show_cmd_status(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct mms_ts_info *info = dev_get_drvdata(dev);
char buff[16] = {0};
dev_info(&info->client->dev, "tsp cmd: status:%d\n",
info->cmd_state);
if (info->cmd_state == 0)
snprintf(buff, sizeof(buff), "WAITING");
else if (info->cmd_state == 1)
snprintf(buff, sizeof(buff), "RUNNING");
else if (info->cmd_state == 2)
snprintf(buff, sizeof(buff), "OK");
else if (info->cmd_state == 3)
snprintf(buff, sizeof(buff), "FAIL");
else if (info->cmd_state == 4)
snprintf(buff, sizeof(buff), "NOT_APPLICABLE");
return snprintf(buf, TSP_BUF_SIZE, "%s\n", buff);
}
static ssize_t show_cmd_result(struct device *dev, struct device_attribute
*devattr, char *buf)
{
struct mms_ts_info *info = dev_get_drvdata(dev);
dev_info(&info->client->dev, "tsp cmd: result: %s\n", info->cmd_result);
mutex_lock(&info->cmd_lock);
info->cmd_is_running = false;
mutex_unlock(&info->cmd_lock);
info->cmd_state = 0;
return snprintf(buf, TSP_BUF_SIZE, "%s\n", info->cmd_result);
}
#endif /* sysfs device function */
#ifdef ESD_DEBUG
static bool intensity_log_flag;
static ssize_t show_intensity_logging_on(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct mms_ts_info *info = dev_get_drvdata(dev);
struct i2c_client *client = info->client;
struct file *fp;
char log_data[160] = {0,};
char buff[16] = {0,};
mm_segment_t old_fs;
long nwrite;
u32 val;
int i, y, c;
old_fs = get_fs();
set_fs(KERNEL_DS);
#define MELFAS_DEBUG_LOG_PATH "/sdcard/melfas_log"
dev_info(&client->dev, "%s: start.\n", __func__);
fp = filp_open(MELFAS_DEBUG_LOG_PATH, O_RDWR|O_CREAT,
S_IRWXU|S_IRWXG|S_IRWXO);
if (IS_ERR(fp)) {
dev_err(&client->dev, "%s: fail to open log file\n", __func__);
goto open_err;
}
intensity_log_flag = 1;
do {
for (y = 0; y < 3; y++) {
/* for tx chanel 0~2 */
memset(log_data, 0x00, 160);
snprintf(buff, 16, "%1u: ", y);
strncat(log_data, buff, strnlen(buff, 16));
for (i = 0; i < RX_NUM; i++) {
val = get_raw_data_one(info, i, y,
MMS_VSC_CMD_INTENSITY);
snprintf(buff, 16, "%5u, ", val);
strncat(log_data, buff, strnlen(buff, 16));
}
memset(buff, '\n', 2);
c = (y == 2) ? 2 : 1;
strncat(log_data, buff, c);
nwrite = vfs_write(fp, (const char __user *)log_data,
strnlen(log_data, 160), &fp->f_pos);
}
usleep_range(5000);
} while (intensity_log_flag);
filp_close(fp, current->files);
set_fs(old_fs);
return 0;
open_err:
set_fs(old_fs);
return FAIL;
}
static ssize_t show_intensity_logging_off(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct mms_ts_info *info = dev_get_drvdata(dev);
intensity_log_flag = 0;
usleep_range(10000);
get_raw_data_all(info, MMS_VSC_CMD_EXIT);
return 0;
}
#endif
#if 0 /* ignore sysfs device creation, for now */
static DEVICE_ATTR(close_tsp_test, S_IRUGO, show_close_tsp_test, NULL);
static DEVICE_ATTR(cmd, S_IWUSR | S_IWGRP, NULL, store_cmd);
static DEVICE_ATTR(cmd_status, S_IRUGO, show_cmd_status, NULL);
static DEVICE_ATTR(cmd_result, S_IRUGO, show_cmd_result, NULL);
#ifdef ESD_DEBUG
static DEVICE_ATTR(intensity_logging_on, S_IRUGO, show_intensity_logging_on,
NULL);
static DEVICE_ATTR(intensity_logging_off, S_IRUGO, show_intensity_logging_off,
NULL);
#endif
static struct attribute *sec_touch_facotry_attributes[] = {
&dev_attr_close_tsp_test.attr,
&dev_attr_cmd.attr,
&dev_attr_cmd_status.attr,
&dev_attr_cmd_result.attr,
#ifdef ESD_DEBUG
&dev_attr_intensity_logging_on.attr,
&dev_attr_intensity_logging_off.attr,
#endif
NULL,
};
static struct attribute_group sec_touch_factory_attr_group = {
.attrs = sec_touch_facotry_attributes,
};
#endif /* ignore sysfs device creation, for now */
#endif /* SEC_TSP_FACTORY_TEST */
#ifdef CONFIG_OF
static void melfas_request_gpio(struct mms_ts_platform_data *pdata)
{
int ret;
pr_info("[TSP] request gpio\n");
ret = gpio_request(pdata->gpio_scl, "melfas_tsp_scl");
if (ret) {
pr_err("[TSP]%s: unable to request melfas_tsp_scl [%d]\n",
__func__, pdata->gpio_scl);
return;
}
ret = gpio_request(pdata->gpio_sda, "melfas_tsp_sda");
if (ret) {
pr_err("[TSP]%s: unable to request melfas_tsp_sda [%d]\n",
__func__, pdata->gpio_sda);
return;
}
ret = gpio_request(pdata->gpio_int, "melfas_tsp_irq");
if (ret) {
pr_err("[TSP]%s: unable to request melfas_tsp_irq [%d]\n",
__func__, pdata->gpio_int);
return;
}
/*
pr_err("Requesting VDD GPIO : %d\n", pdata->vdd_en);
ret = gpio_request(pdata->vdd_en, "melfas_vdd_en");
if (ret) {
pr_err("[TSP]%s: unable to request melfas_vdd_en [%d]\n",
__func__, pdata->vdd_en);
return;
}
*/
}
static int mms_get_dt_coords(struct device *dev, char *name,
struct mms_ts_platform_data *pdata)
{
u32 coords[MMS_COORDS_ARR_SIZE];
struct property *prop;
struct device_node *np = dev->of_node;
int coords_size, rc;
prop = of_find_property(np, name, NULL);
if (!prop)
return -EINVAL;
if (!prop->value)
return -ENODATA;
coords_size = prop->length / sizeof(u32);
if (coords_size != MMS_COORDS_ARR_SIZE) {
dev_err(dev, "invalid %s\n", name);
return -EINVAL;
}
rc = of_property_read_u32_array(np, name, coords, coords_size);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read %s\n", name);
return rc;
}
if (strncmp(name, "melfas,panel-coords",
sizeof("melfas,panel-coords")) == 0) {
pdata->invert_x = coords[0];
pdata->invert_y = coords[1];
pdata->max_x = coords[2];
pdata->max_y = coords[3];
} else {
dev_err(dev, "unsupported property %s\n", name);
return -EINVAL;
}
return 0;
}
static int mms_parse_dt(struct device *dev,
struct mms_ts_platform_data *pdata)
{
int rc;
struct device_node *np = dev->of_node;
rc = mms_get_dt_coords(dev, "melfas,panel-coords", pdata);
if (rc)
return rc;
/* regulator info */
pdata->i2c_pull_up = of_property_read_bool(np, "melfas,i2c-pull-up");
//pdata->vdd_en = of_get_named_gpio(np, "vdd_en-gpio", 0);
pdata->vdd_en_reg = regulator_get(dev, "vdd_ldo19");
if (pdata->vdd_en_reg == NULL) {
pr_err("ERROR: Cannot find vdd_ldo19\n");
}
/* reset, irq gpio info */
pdata->gpio_scl = of_get_named_gpio_flags(np, "melfas,scl-gpio",
0, &pdata->scl_gpio_flags);
pdata->gpio_sda = of_get_named_gpio_flags(np, "melfas,sda-gpio",
0, &pdata->sda_gpio_flags);
pdata->gpio_int = of_get_named_gpio_flags(np, "melfas,irq-gpio",
0, &pdata->irq_gpio_flags);
pdata->config_fw_version = of_get_property(np,
"melfas,config_fw_version", NULL);
return 0;
}
#else
static int mms_parse_dt(struct device *dev,
struct mms_ts_platform_data *pdata)
{
return -ENODEV;
}
#endif
#ifdef W1_DUMMY
static struct device w1_dev = {
.init_name = "w1_bus_master1",
};
static ssize_t w1_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
return snprintf(buf, 5, "1\n");
}
static DEVICE_ATTR(w1_master_check_id, S_IRUGO, w1_show, NULL);
#endif
//static int __devinit mms_ts_probe(struct i2c_client *client,
int __devinit mms_ts_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent);
struct mms_ts_platform_data *pdata;
struct mms_ts_info *info;
struct input_dev *input_dev;
int ret = 0;
// int val1 = 0, val2 = 0;
// int fw_core = 0, fw_boot = 0, fw_config = 0;
// char buf[4] = { 0, };
int error;
#ifdef SEC_TSP_FACTORY_TEST
int i;
#if 0 /* ignore sysfs device creation, for now */
struct device *fac_dev_ts;
#endif /* ignore sysfs device creation, for now */
#endif
touch_is_pressed = 0;
printk(KERN_ERR "%s: [TSP] probe START!!\n", __func__);
if (!i2c_check_functionality(adapter, I2C_FUNC_I2C))
return -EIO;
#ifdef CONFIG_OF
if (client->dev.of_node) {
pdata = devm_kzalloc(&client->dev,
sizeof(struct mms_ts_platform_data), GFP_KERNEL);
if (!pdata) {
dev_err(&client->dev, "Failed to allocate memory\n");
return -ENOMEM;
}
error = mms_parse_dt(&client->dev, pdata);
if (error)
return error;
} else
pdata = client->dev.platform_data;
if (!pdata)
return -EINVAL;
melfas_request_gpio(pdata);
#endif
info = kzalloc(sizeof(struct mms_ts_info), GFP_KERNEL);
if (!info) {
dev_err(&client->dev, "Failed to allocate memory\n");
ret = -ENOMEM;
goto err_alloc;
}
input_dev = input_allocate_device();
if (!input_dev) {
dev_err(&client->dev, "Failed to allocate memory for input device\n");
ret = -ENOMEM;
goto err_input_alloc;
}
info->client = client;
info->input_dev = input_dev;
// info->pdata = client->dev.platform_data;
info->pdata = pdata;
if (NULL == info->pdata) {
pr_err("failed to get platform data\n");
goto err_config;
}
info->irq = -1;
//mutex_init(&info->lock);
if (info->pdata) {
info->max_x = info->pdata->max_x;
info->max_y = info->pdata->max_y;
info->invert_x = info->pdata->invert_x;
info->invert_y = info->pdata->invert_y;
info->config_fw_version = info->pdata->config_fw_version;
info->register_cb = melfas_register_callback;
} else {
info->max_x = 720;
info->max_y = 1280;
}
melfas_vdd_on(info, 1);
msleep(100);
i2c_set_clientdata(client, info);
info->callbacks.inform_charger = melfas_ta_cb;
if (info->register_cb)
info->register_cb(&info->callbacks);
input_mt_init_slots(input_dev, MAX_FINGERS, 0);
/*
snprintf(info->phys, sizeof(info->phys),
"%s/input0", dev_name(&client->dev));
*/
input_dev->name = "sec_touchscreen"; /*= "Melfas MMSxxx Touchscreen";*/
input_dev->phys = info->phys;
input_dev->id.bustype = BUS_I2C;
input_dev->dev.parent = &client->dev;
__set_bit(EV_ABS, input_dev->evbit);
__set_bit(INPUT_PROP_DIRECT, input_dev->propbit);
input_set_abs_params(input_dev, ABS_MT_WIDTH_MAJOR, 0, MAX_WIDTH, 0, 0);
input_set_abs_params(input_dev, ABS_MT_POSITION_X,
0, info->max_x, 0, 0);
input_set_abs_params(input_dev, ABS_MT_POSITION_Y,
0, info->max_y, 0, 0);
input_set_abs_params(info->input_dev, ABS_MT_TOUCH_MAJOR,
0, MAX_PRESSURE, 0, 0);
input_set_abs_params(info->input_dev, ABS_MT_TOUCH_MINOR,
0, MAX_PRESSURE, 0, 0);
// input_set_abs_params(input_dev, ABS_MT_ANGLE,
// MIN_ANGLE, MAX_ANGLE, 0, 0);
input_set_abs_params(input_dev, ABS_MT_PALM,
0, 1, 0, 0);
input_set_drvdata(input_dev, info);
ret = input_register_device(input_dev);
if (ret) {
dev_err(&client->dev, "failed to register input dev (%d)\n",
ret);
goto err_reg_input_dev;
}
#ifdef TOUCH_BOOSTER
#if TOUCH_BOOSTER
mutex_init(&info->dvfs_lock);
INIT_DELAYED_WORK(&info->work_dvfs_off, set_dvfs_off);
INIT_DELAYED_WORK(&info->work_dvfs_chg, change_dvfs_lock);
info->dvfs_lock_status = false;
#endif
#endif
client->irq = gpio_to_irq(pdata->gpio_int);
#if ISC_DL_MODE
ret = mms_ts_fw_load(info);
#else
ret = mms_ts_fw_info(info);
#endif
if (ret)
dev_err(&client->dev, "failed to check the firmware");
info->enabled = true;
printk(KERN_ERR "%s: tsp : gpio_to_irq : %d\n", __func__, client->irq);
ret = request_threaded_irq(client->irq, NULL, mms_ts_interrupt,
IRQF_TRIGGER_LOW | IRQF_ONESHOT,
MELFAS_TS_NAME, info);
if (ret < 0) {
dev_err(&client->dev, "%s:Failed to register interrupt, ret = %d\n",
__func__, ret);
goto err_req_irq;
}
info->irq = client->irq;
#ifdef CONFIG_HAS_EARLYSUSPEND
info->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 1;
info->early_suspend.suspend = mms_ts_early_suspend;
info->early_suspend.resume = mms_ts_late_resume;
register_early_suspend(&info->early_suspend);
#endif
#ifdef USE_OPEN_CLOSE
input_dev->open = melfas_ts_open;
input_dev->close = melfas_ts_close;
#endif
#ifdef SEC_TSP_FACTORY_TEST
INIT_LIST_HEAD(&info->cmd_list_head);
for (i = 0; i < ARRAY_SIZE(tsp_cmds); i++)
list_add_tail(&tsp_cmds[i].list, &info->cmd_list_head);
mutex_init(&info->cmd_lock);
info->cmd_is_running = false;
#if 0 /* ignore sysfs device creation, for now */
fac_dev_ts = device_create(sec_class,
NULL, 0, info, "tsp");
if (IS_ERR(fac_dev_ts))
dev_err(&client->dev, "Failed to create device for the sysfs\n");
ret = sysfs_create_group(&fac_dev_ts->kobj,
&sec_touch_factory_attr_group);
if (ret)
dev_err(&client->dev, "Failed to create sysfs group\n");
#endif /* ignore sysfs device creation, for now */
#endif
#ifdef W1_DUMMY
ret = device_register(&w1_dev);
if(ret){
pr_err("[W1] error register dummy w1 device\n");
goto w1_out;
}
ret = sysfs_create_file(&w1_dev.kobj, &dev_attr_w1_master_check_id.attr);
if(ret)
pr_err("[W1] couldn't create sysfs\n");
pr_info("[W1] created dummy w1 sysfs\n");
w1_out:
#endif
printk(KERN_ERR "%s: [TSP] probe END!!\n", __func__);
return 0;
err_req_irq:
input_unregister_device(input_dev);
err_reg_input_dev:
err_config:
input_free_device(input_dev);
err_input_alloc:
kfree(info->fw_name);
kfree(info);
err_alloc:
return ret;
}
static int __devexit mms_ts_remove(struct i2c_client *client)
{
struct mms_ts_info *info = i2c_get_clientdata(client);
if (info->irq >= 0)
free_irq(info->irq, info);
input_unregister_device(info->input_dev);
kfree(info->fw_name);
kfree(info);
return 0;
}
#if defined(CONFIG_PM) || defined(CONFIG_HAS_EARLYSUSPEND) || defined(USE_OPEN_CLOSE)
static int mms_ts_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct mms_ts_info *info = i2c_get_clientdata(client);
//#ifdef SEC_TSP_DEBUG
// int mt_val;
//#endif
dev_notice(&info->client->dev, "%s: users=%d\n", __func__,
info->input_dev->users);
// mutex_lock(&info->input_dev->mutex);
// if (!info->input_dev->users)
// goto out;
mms_ts_disable(info, 0);
touch_is_pressed = 0;
release_all_fingers(info);
melfas_vdd_on(info, 0);
msleep(50);
//out:
// mutex_unlock(&info->input_dev->mutex);
return 0;
}
static int mms_ts_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct mms_ts_info *info = i2c_get_clientdata(client);
int ret = 0;
dev_notice(&info->client->dev, "%s: users=%d\n", __func__,
info->input_dev->users);
melfas_vdd_on(info, 1);
msleep(50);
if (info->ta_status) {
dev_notice(&client->dev, "TA connect!!!\n");
i2c_smbus_write_byte_data(info->client, 0x33, 0x1);
} else {
dev_notice(&client->dev, "TA disconnect!!!\n");
i2c_smbus_write_byte_data(info->client, 0x33, 0x2);
}
mms_set_noise_mode(info);
// mutex_lock(&info->input_dev->mutex);
// if (info->input_dev->users)
#ifdef SEC_TSP_FACTORY_TEST
cover_set(info, info->cover_state);
#endif
ret = mms_ts_enable(info, 0);
// mutex_unlock(&info->input_dev->mutex);
return ret;
}
#endif
#ifdef CONFIG_HAS_EARLYSUSPEND
static void mms_ts_early_suspend(struct early_suspend *h)
{
struct mms_ts_info *info;
info = container_of(h, struct mms_ts_info, early_suspend);
mms_ts_suspend(&info->client->dev);
}
static void mms_ts_late_resume(struct early_suspend *h)
{
struct mms_ts_info *info;
info = container_of(h, struct mms_ts_info, early_suspend);
mms_ts_resume(&info->client->dev);
}
#endif
#ifdef USE_OPEN_CLOSE
static void melfas_ts_close(struct input_dev *dev)
{
struct mms_ts_info *info = input_get_drvdata(dev);
printk(KERN_ERR "[TSP], %s, %d\n",__func__, __LINE__);
mms_ts_suspend(&info->client->dev);
}
static int melfas_ts_open(struct input_dev *dev)
{
struct mms_ts_info *info = input_get_drvdata(dev);
printk(KERN_ERR "[TSP], %s, %d\n",__func__, __LINE__);
mms_ts_resume(&info->client->dev);
return 0;
}
#endif
#if defined(CONFIG_PM) && !defined(CONFIG_HAS_EARLYSUSPEND) && !defined(USE_OPEN_CLOSE)
static const struct dev_pm_ops mms_ts_pm_ops = {
.suspend = mms_ts_suspend,
.resume = mms_ts_resume,
};
#endif
static const struct i2c_device_id mms_ts_id[] = {
{MELFAS_TS_NAME, 0},
{ }
};
MODULE_DEVICE_TABLE(i2c, mms_ts_id);
#ifdef CONFIG_OF
static struct of_device_id mms_match_table[] = {
{ .compatible = "melfas,mms-ts",},
{ },
};
#else
#define mms_match_table NULL
#endif
static struct i2c_driver mms_ts_driver = {
.probe = mms_ts_probe,
.remove = __devexit_p(mms_ts_remove),
.driver = {
.name = MELFAS_TS_NAME,
#ifdef CONFIG_OF
.of_match_table = mms_match_table,
#endif
#if defined(CONFIG_PM) && !defined(CONFIG_HAS_EARLYSUSPEND) && !defined(USE_OPEN_CLOSE)
.pm = &mms_ts_pm_ops,
#endif
},
.id_table = mms_ts_id,
};
static int __init mms_ts_init(void)
{
#if 0 /* reference to battery driver variable */
if (poweroff_charging) {
pr_info("%s : LPM Charging Mode!!\n", __func__);
return 0;
}
#endif /* reference to battery driver variable */
return i2c_add_driver(&mms_ts_driver);
}
static void __exit mms_ts_exit(void)
{
i2c_del_driver(&mms_ts_driver);
}
module_init(mms_ts_init);
module_exit(mms_ts_exit);
/* Module information */
MODULE_DESCRIPTION("Touchscreen driver for Melfas MMS-series controllers");
MODULE_LICENSE("GPL");