| /* |
| * sec_battery_ttf.c |
| * Samsung Mobile Battery Driver |
| * |
| * Copyright (C) 2019 Samsung Electronics |
| * |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include "include/sec_battery.h" |
| #include "include/sec_battery_ttf.h" |
| |
| #if IS_ENABLED(CONFIG_CALC_TIME_TO_FULL) |
| int sec_calc_ttf(struct sec_battery_info *battery, unsigned int ttf_curr) |
| { |
| struct sec_cv_slope *cv_data = battery->ttf_d->cv_data; |
| int i, cc_time = 0, cv_time = 0; |
| int soc = battery->capacity; |
| int charge_current = ttf_curr; |
| int design_cap = battery->ttf_d->ttf_capacity; |
| union power_supply_propval value = {0, }; |
| |
| value.intval = SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE; |
| psy_do_property(battery->pdata->fuelgauge_name, get, |
| POWER_SUPPLY_PROP_CAPACITY, value); |
| soc = value.intval; |
| |
| if (!cv_data || (ttf_curr <= 0)) { |
| pr_info("%s: no cv_data or val: %d\n", __func__, ttf_curr); |
| return -1; |
| } |
| for (i = 0; i < battery->ttf_d->cv_data_length; i++) { |
| if (charge_current >= cv_data[i].fg_current) |
| break; |
| } |
| i = i >= battery->ttf_d->cv_data_length ? battery->ttf_d->cv_data_length - 1 : i; |
| if (cv_data[i].soc < soc) { |
| for (i = 0; i < battery->ttf_d->cv_data_length; i++) { |
| if (soc <= cv_data[i].soc) |
| break; |
| } |
| cv_time = |
| ((cv_data[i - 1].time - cv_data[i].time) * (cv_data[i].soc - soc) |
| / (cv_data[i].soc - cv_data[i - 1].soc)) + cv_data[i].time; |
| } else { /* CC mode || NONE */ |
| cv_time = cv_data[i].time; |
| cc_time = |
| design_cap * (cv_data[i].soc - soc) / ttf_curr * 3600 / 1000; |
| pr_debug("%s: cc_time: %d\n", __func__, cc_time); |
| if (cc_time < 0) |
| cc_time = 0; |
| } |
| |
| pr_info("%s: cap: %d, soc: %4d, T: %6d, avg: %4d, cv soc: %4d, i: %4d, val: %d\n", |
| __func__, design_cap, soc, cv_time + cc_time, |
| battery->current_avg, cv_data[i].soc, i, ttf_curr); |
| |
| if (cv_time + cc_time >= 0) |
| return cv_time + cc_time + 60; |
| else |
| return 60; /* minimum 1minutes */ |
| } |
| |
| void sec_bat_calc_time_to_full(struct sec_battery_info *battery) |
| { |
| if (delayed_work_pending(&battery->ttf_d->timetofull_work)) { |
| pr_info("%s: keep time_to_full(%5d sec)\n", __func__, battery->ttf_d->timetofull); |
| } else if (battery->status == POWER_SUPPLY_STATUS_CHARGING || |
| (battery->status == POWER_SUPPLY_STATUS_FULL && battery->capacity != 100)) { |
| |
| int charge = 0; |
| |
| if (is_hv_wire_12v_type(battery->cable_type) || |
| battery->max_charge_power >= |
| (battery->ttf_d->pd_charging_charge_power + 5000)) { /* 20000mW */ |
| charge = battery->ttf_d->ttf_hv_12v_charge_current; |
| } else if (is_hv_wire_type(battery->cable_type) || |
| /* if max_charge_power could support over than max_charging_current,calculate based on ttf_hv_charge_current */ |
| (battery->max_charge_power >= (battery->ttf_d->max_charging_current * 5)) || |
| (battery->cable_type == SEC_BATTERY_CABLE_PREPARE_TA)) { |
| charge = battery->ttf_d->ttf_hv_charge_current; |
| } else if (is_hv_wireless_type(battery->cable_type) || |
| battery->cable_type == SEC_BATTERY_CABLE_PREPARE_WIRELESS_HV) { |
| if (sec_bat_hv_wc_normal_mode_check(battery)) |
| charge = battery->ttf_d->ttf_wireless_charge_current; |
| else |
| charge = battery->ttf_d->ttf_hv_wireless_charge_current; |
| } else if (is_nv_wireless_type(battery->cable_type)) { |
| charge = battery->ttf_d->ttf_wireless_charge_current; |
| } else if (battery->ttf_d->ttf_pd_charge_current != 0 && is_pd_wire_type(battery->cable_type)) { |
| charge = battery->ttf_d->ttf_pd_charge_current; |
| #if defined(CONFIG_CCIC_NOTIFIER) |
| } else if (battery->ttf_d->ttf_rp3_charge_current != 0 && battery->cable_type == SEC_BATTERY_CABLE_TA && |
| battery->pdic_info.sink_status.rp_currentlvl == RP_CURRENT_LEVEL3) { |
| charge = battery->ttf_d->ttf_rp3_charge_current; |
| #endif |
| } else { |
| charge = (battery->max_charge_power / 5) > |
| battery->pdata->charging_current[battery->cable_type].fast_charging_current ? |
| battery->pdata->charging_current[battery->cable_type].fast_charging_current : |
| (battery->max_charge_power / 5); |
| } |
| battery->ttf_d->timetofull = sec_calc_ttf(battery, charge); |
| dev_info(battery->dev, "%s: T: %5d sec, passed time: %5ld, current: %d\n", |
| __func__, battery->ttf_d->timetofull, battery->charging_passed_time, charge); |
| } else { |
| battery->ttf_d->timetofull = -1; |
| } |
| } |
| |
| #ifdef CONFIG_OF |
| int sec_ttf_parse_dt(struct sec_battery_info *battery) |
| { |
| struct device_node *np; |
| struct sec_ttf_data *pdata = battery->ttf_d; |
| sec_battery_platform_data_t *bpdata = battery->pdata; |
| int ret = 0, len = 0; |
| const u32 *p; |
| |
| pdata->pdev = battery; |
| np = of_find_node_by_name(NULL, "battery"); |
| if (!np) { |
| pr_info("%s: np NULL\n", __func__); |
| return 1; |
| } |
| |
| ret = of_property_read_u32(np, "battery,ttf_hv_12v_charge_current", |
| &pdata->ttf_hv_12v_charge_current); |
| if (ret) { |
| pdata->ttf_hv_12v_charge_current = |
| bpdata->charging_current[SEC_BATTERY_CABLE_12V_TA].fast_charging_current; |
| pr_info("%s: ttf_hv_12v_charge_current is Empty, Default value %d \n", |
| __func__, pdata->ttf_hv_12v_charge_current); |
| } |
| ret = of_property_read_u32(np, "battery,ttf_hv_charge_current", |
| &pdata->ttf_hv_charge_current); |
| if (ret) { |
| pdata->ttf_hv_charge_current = |
| bpdata->charging_current[SEC_BATTERY_CABLE_9V_TA].fast_charging_current; |
| pr_info("%s: ttf_hv_charge_current is Empty, Default value %d \n", |
| __func__, pdata->ttf_hv_charge_current); |
| } |
| |
| ret = of_property_read_u32(np, "battery,ttf_pd_charge_current", |
| &pdata->ttf_pd_charge_current); |
| if (ret) { |
| pdata->ttf_pd_charge_current = 0; |
| pr_info("%s: ttf_pd_charge_current is Empty, Default value %d\n", |
| __func__, pdata->ttf_pd_charge_current); |
| } |
| |
| ret = of_property_read_u32(np, "battery,ttf_rp3_charge_current", |
| &pdata->ttf_rp3_charge_current); |
| if (ret) { |
| pdata->ttf_rp3_charge_current = 0; |
| pr_info("%s: ttf_rp3_charge_current is Empty, Default value %d\n", |
| __func__, pdata->ttf_rp3_charge_current); |
| } |
| |
| ret = of_property_read_u32(np, "battery,ttf_hv_wireless_charge_current", |
| &pdata->ttf_hv_wireless_charge_current); |
| if (ret) { |
| pr_info("%s: ttf_hv_wireless_charge_current is Empty, Default value 0 \n", __func__); |
| pdata->ttf_hv_wireless_charge_current = |
| bpdata->charging_current[SEC_BATTERY_CABLE_HV_WIRELESS].fast_charging_current - 300; |
| } |
| |
| ret = of_property_read_u32(np, "battery,ttf_wireless_charge_current", |
| &pdata->ttf_wireless_charge_current); |
| if (ret) { |
| pr_info("%s: ttf_wireless_charge_current is Empty, Default value 0 \n", __func__); |
| pdata->ttf_wireless_charge_current = |
| bpdata->charging_current[SEC_BATTERY_CABLE_WIRELESS].input_current_limit; |
| } |
| |
| ret = of_property_read_u32(np, "battery,pd_charging_charge_power", |
| &pdata->pd_charging_charge_power); |
| if (ret) { |
| pr_err("%s: pd_charging_charge_power is Empty\n", __func__); |
| pdata->pd_charging_charge_power = 5000; |
| } |
| |
| ret = of_property_read_u32(np, "battery,max_charging_current", |
| &pdata->max_charging_current); |
| if (ret) { |
| pr_err("%s: max_charging_current is Empty\n", __func__); |
| pdata->max_charging_current = 3000; |
| } |
| /* temporary dt setting */ |
| ret = of_property_read_u32(np, "battery,ttf_predict_wc20_charge_current", |
| &pdata->ttf_predict_wc20_charge_current); |
| if (ret) { |
| pr_info("%s: ttf_predict_wc20_charge_current is Empty, Default value 0\n", __func__); |
| pdata->ttf_predict_wc20_charge_current = |
| bpdata->charging_current[SEC_BATTERY_CABLE_WIRELESS].input_current_limit; |
| } |
| |
| ret = of_property_read_u32(np, "battery,ttf_dc25_charge_current", |
| &pdata->ttf_dc25_charge_current); |
| if (ret) { |
| pr_info("%s: ttf_dc25_charge_current is Empty, Default value 0 \n", __func__); |
| pdata->ttf_dc25_charge_current = |
| bpdata->charging_current[SEC_BATTERY_CABLE_9V_TA].fast_charging_current; |
| } |
| |
| ret = of_property_read_u32(np, "battery,ttf_dc45_charge_current", |
| &pdata->ttf_dc45_charge_current); |
| if (ret) { |
| pr_info("%s: ttf_dc45_charge_current is Empty, Default value 0 \n", __func__); |
| pdata->ttf_dc45_charge_current = pdata->ttf_dc25_charge_current; |
| } |
| |
| ret = of_property_read_u32(np, "battery,ttf_capacity", |
| &pdata->ttf_capacity); |
| if (ret < 0) { |
| pr_err("%s error reading capacity_calculation_type %d\n", __func__, ret); |
| pdata->ttf_capacity = bpdata->battery_full_capacity; |
| } |
| |
| p = of_get_property(np, "battery,cv_data", &len); |
| if (p) { |
| pdata->cv_data = kzalloc(len, GFP_KERNEL); |
| pdata->cv_data_length = len / sizeof(struct sec_cv_slope); |
| pr_err("%s: len= %ld, length= %d, %d\n", __func__, |
| sizeof(int) * len, len, pdata->cv_data_length); |
| ret = of_property_read_u32_array(np, "battery,cv_data", |
| (u32 *)pdata->cv_data, len / sizeof(u32)); |
| if (ret) { |
| pr_err("%s: failed to read battery->cv_data: %d\n", |
| __func__, ret); |
| kfree(pdata->cv_data); |
| pdata->cv_data = NULL; |
| } |
| } else { |
| pr_err("%s: there is not cv_data\n", __func__); |
| } |
| return 0; |
| } |
| #endif |
| |
| void sec_bat_time_to_full_work(struct work_struct *work) |
| { |
| struct sec_ttf_data *dev = container_of(work, |
| struct sec_ttf_data, timetofull_work.work); |
| struct sec_battery_info *battery = dev->pdev; |
| union power_supply_propval value = {0, }; |
| |
| psy_do_property(battery->pdata->charger_name, get, |
| POWER_SUPPLY_PROP_CURRENT_MAX, value); |
| battery->current_max = value.intval; |
| |
| value.intval = SEC_BATTERY_CURRENT_MA; |
| psy_do_property(battery->pdata->fuelgauge_name, get, |
| POWER_SUPPLY_PROP_CURRENT_NOW, value); |
| battery->current_now = value.intval; |
| |
| value.intval = SEC_BATTERY_CURRENT_MA; |
| psy_do_property(battery->pdata->fuelgauge_name, get, |
| POWER_SUPPLY_PROP_CURRENT_AVG, value); |
| battery->current_avg = value.intval; |
| |
| sec_bat_calc_time_to_full(battery); |
| dev_info(battery->dev, "%s:\n", __func__); |
| if (battery->voltage_now > 0) |
| battery->voltage_now--; |
| |
| power_supply_changed(battery->psy_bat); |
| } |
| |
| void ttf_work_start(struct sec_battery_info *battery) |
| { |
| if (lpcharge) { |
| cancel_delayed_work(&battery->ttf_d->timetofull_work); |
| if (battery->current_event & SEC_BAT_CURRENT_EVENT_AFC) { |
| int work_delay = 0; |
| |
| if (!is_wireless_type(battery->cable_type)) |
| work_delay = battery->pdata->pre_afc_work_delay; |
| else |
| work_delay = battery->pdata->pre_wc_afc_work_delay; |
| queue_delayed_work(battery->monitor_wqueue, |
| &battery->ttf_d->timetofull_work, msecs_to_jiffies(work_delay)); |
| } |
| } |
| } |
| |
| int ttf_display(struct sec_battery_info *battery) |
| { |
| if (battery->capacity == 100) |
| return -1; |
| |
| if (((battery->status == POWER_SUPPLY_STATUS_CHARGING) || |
| (battery->status == POWER_SUPPLY_STATUS_FULL && battery->capacity != 100)) && |
| !battery->swelling_mode) |
| return battery->ttf_d->timetofull; |
| else |
| return -1; |
| } |
| |
| void ttf_init(struct sec_battery_info *battery) |
| { |
| battery->ttf_d = kzalloc(sizeof(struct sec_ttf_data), |
| GFP_KERNEL); |
| if (!battery->ttf_d) |
| pr_err("Failed to allocate memory\n"); |
| sec_ttf_parse_dt(battery); |
| battery->ttf_d->timetofull = -1; |
| |
| INIT_DELAYED_WORK(&battery->ttf_d->timetofull_work, sec_bat_time_to_full_work); |
| } |
| #else |
| int sec_calc_ttf(struct sec_battery_info *battery, unsigned int ttf_curr) { return -ENODEV; } |
| void sec_bat_calc_time_to_full(struct sec_battery_info *battery) { } |
| void sec_bat_time_to_full_work(struct work_struct *work) { } |
| void ttf_init(struct sec_battery_info *battery) { } |
| void ttf_work_start(struct sec_battery_info *battery) { } |
| int ttf_display(struct sec_battery_info *battery) { return -1; } |
| #ifdef CONFIG_OF |
| int sec_ttf_parse_dt(struct sec_battery_info *battery) { return -ENODEV; } |
| #endif |
| #endif |