blob: a50b39052210d02ae4cb38e2abe3842446f76a09 [file] [log] [blame]
/*
* sec_battery_ttf.c
* Samsung Mobile Battery Driver
*
* Copyright (C) 2019 Samsung Electronics
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include "include/sec_battery.h"
#include "include/sec_battery_ttf.h"
#if IS_ENABLED(CONFIG_CALC_TIME_TO_FULL)
int sec_calc_ttf(struct sec_battery_info *battery, unsigned int ttf_curr)
{
struct sec_cv_slope *cv_data = battery->ttf_d->cv_data;
int i, cc_time = 0, cv_time = 0;
int soc = battery->capacity;
int charge_current = ttf_curr;
int design_cap = battery->ttf_d->ttf_capacity;
union power_supply_propval value = {0, };
value.intval = SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE;
psy_do_property(battery->pdata->fuelgauge_name, get,
POWER_SUPPLY_PROP_CAPACITY, value);
soc = value.intval;
if (!cv_data || (ttf_curr <= 0)) {
pr_info("%s: no cv_data or val: %d\n", __func__, ttf_curr);
return -1;
}
for (i = 0; i < battery->ttf_d->cv_data_length; i++) {
if (charge_current >= cv_data[i].fg_current)
break;
}
i = i >= battery->ttf_d->cv_data_length ? battery->ttf_d->cv_data_length - 1 : i;
if (cv_data[i].soc < soc) {
for (i = 0; i < battery->ttf_d->cv_data_length; i++) {
if (soc <= cv_data[i].soc)
break;
}
cv_time =
((cv_data[i - 1].time - cv_data[i].time) * (cv_data[i].soc - soc)
/ (cv_data[i].soc - cv_data[i - 1].soc)) + cv_data[i].time;
} else { /* CC mode || NONE */
cv_time = cv_data[i].time;
cc_time =
design_cap * (cv_data[i].soc - soc) / ttf_curr * 3600 / 1000;
pr_debug("%s: cc_time: %d\n", __func__, cc_time);
if (cc_time < 0)
cc_time = 0;
}
pr_info("%s: cap: %d, soc: %4d, T: %6d, avg: %4d, cv soc: %4d, i: %4d, val: %d\n",
__func__, design_cap, soc, cv_time + cc_time,
battery->current_avg, cv_data[i].soc, i, ttf_curr);
if (cv_time + cc_time >= 0)
return cv_time + cc_time + 60;
else
return 60; /* minimum 1minutes */
}
void sec_bat_calc_time_to_full(struct sec_battery_info *battery)
{
if (delayed_work_pending(&battery->ttf_d->timetofull_work)) {
pr_info("%s: keep time_to_full(%5d sec)\n", __func__, battery->ttf_d->timetofull);
} else if (battery->status == POWER_SUPPLY_STATUS_CHARGING ||
(battery->status == POWER_SUPPLY_STATUS_FULL && battery->capacity != 100)) {
int charge = 0;
if (is_hv_wire_12v_type(battery->cable_type) ||
battery->max_charge_power >=
(battery->ttf_d->pd_charging_charge_power + 5000)) { /* 20000mW */
charge = battery->ttf_d->ttf_hv_12v_charge_current;
} else if (is_hv_wire_type(battery->cable_type) ||
/* if max_charge_power could support over than max_charging_current,calculate based on ttf_hv_charge_current */
(battery->max_charge_power >= (battery->ttf_d->max_charging_current * 5)) ||
(battery->cable_type == SEC_BATTERY_CABLE_PREPARE_TA)) {
charge = battery->ttf_d->ttf_hv_charge_current;
} else if (is_hv_wireless_type(battery->cable_type) ||
battery->cable_type == SEC_BATTERY_CABLE_PREPARE_WIRELESS_HV) {
if (sec_bat_hv_wc_normal_mode_check(battery))
charge = battery->ttf_d->ttf_wireless_charge_current;
else
charge = battery->ttf_d->ttf_hv_wireless_charge_current;
} else if (is_nv_wireless_type(battery->cable_type)) {
charge = battery->ttf_d->ttf_wireless_charge_current;
} else if (battery->ttf_d->ttf_pd_charge_current != 0 && is_pd_wire_type(battery->cable_type)) {
charge = battery->ttf_d->ttf_pd_charge_current;
#if defined(CONFIG_CCIC_NOTIFIER)
} else if (battery->ttf_d->ttf_rp3_charge_current != 0 && battery->cable_type == SEC_BATTERY_CABLE_TA &&
battery->pdic_info.sink_status.rp_currentlvl == RP_CURRENT_LEVEL3) {
charge = battery->ttf_d->ttf_rp3_charge_current;
#endif
} else {
charge = (battery->max_charge_power / 5) >
battery->pdata->charging_current[battery->cable_type].fast_charging_current ?
battery->pdata->charging_current[battery->cable_type].fast_charging_current :
(battery->max_charge_power / 5);
}
battery->ttf_d->timetofull = sec_calc_ttf(battery, charge);
dev_info(battery->dev, "%s: T: %5d sec, passed time: %5ld, current: %d\n",
__func__, battery->ttf_d->timetofull, battery->charging_passed_time, charge);
} else {
battery->ttf_d->timetofull = -1;
}
}
#ifdef CONFIG_OF
int sec_ttf_parse_dt(struct sec_battery_info *battery)
{
struct device_node *np;
struct sec_ttf_data *pdata = battery->ttf_d;
sec_battery_platform_data_t *bpdata = battery->pdata;
int ret = 0, len = 0;
const u32 *p;
pdata->pdev = battery;
np = of_find_node_by_name(NULL, "battery");
if (!np) {
pr_info("%s: np NULL\n", __func__);
return 1;
}
ret = of_property_read_u32(np, "battery,ttf_hv_12v_charge_current",
&pdata->ttf_hv_12v_charge_current);
if (ret) {
pdata->ttf_hv_12v_charge_current =
bpdata->charging_current[SEC_BATTERY_CABLE_12V_TA].fast_charging_current;
pr_info("%s: ttf_hv_12v_charge_current is Empty, Default value %d \n",
__func__, pdata->ttf_hv_12v_charge_current);
}
ret = of_property_read_u32(np, "battery,ttf_hv_charge_current",
&pdata->ttf_hv_charge_current);
if (ret) {
pdata->ttf_hv_charge_current =
bpdata->charging_current[SEC_BATTERY_CABLE_9V_TA].fast_charging_current;
pr_info("%s: ttf_hv_charge_current is Empty, Default value %d \n",
__func__, pdata->ttf_hv_charge_current);
}
ret = of_property_read_u32(np, "battery,ttf_pd_charge_current",
&pdata->ttf_pd_charge_current);
if (ret) {
pdata->ttf_pd_charge_current = 0;
pr_info("%s: ttf_pd_charge_current is Empty, Default value %d\n",
__func__, pdata->ttf_pd_charge_current);
}
ret = of_property_read_u32(np, "battery,ttf_rp3_charge_current",
&pdata->ttf_rp3_charge_current);
if (ret) {
pdata->ttf_rp3_charge_current = 0;
pr_info("%s: ttf_rp3_charge_current is Empty, Default value %d\n",
__func__, pdata->ttf_rp3_charge_current);
}
ret = of_property_read_u32(np, "battery,ttf_hv_wireless_charge_current",
&pdata->ttf_hv_wireless_charge_current);
if (ret) {
pr_info("%s: ttf_hv_wireless_charge_current is Empty, Default value 0 \n", __func__);
pdata->ttf_hv_wireless_charge_current =
bpdata->charging_current[SEC_BATTERY_CABLE_HV_WIRELESS].fast_charging_current - 300;
}
ret = of_property_read_u32(np, "battery,ttf_wireless_charge_current",
&pdata->ttf_wireless_charge_current);
if (ret) {
pr_info("%s: ttf_wireless_charge_current is Empty, Default value 0 \n", __func__);
pdata->ttf_wireless_charge_current =
bpdata->charging_current[SEC_BATTERY_CABLE_WIRELESS].input_current_limit;
}
ret = of_property_read_u32(np, "battery,pd_charging_charge_power",
&pdata->pd_charging_charge_power);
if (ret) {
pr_err("%s: pd_charging_charge_power is Empty\n", __func__);
pdata->pd_charging_charge_power = 5000;
}
ret = of_property_read_u32(np, "battery,max_charging_current",
&pdata->max_charging_current);
if (ret) {
pr_err("%s: max_charging_current is Empty\n", __func__);
pdata->max_charging_current = 3000;
}
/* temporary dt setting */
ret = of_property_read_u32(np, "battery,ttf_predict_wc20_charge_current",
&pdata->ttf_predict_wc20_charge_current);
if (ret) {
pr_info("%s: ttf_predict_wc20_charge_current is Empty, Default value 0\n", __func__);
pdata->ttf_predict_wc20_charge_current =
bpdata->charging_current[SEC_BATTERY_CABLE_WIRELESS].input_current_limit;
}
ret = of_property_read_u32(np, "battery,ttf_dc25_charge_current",
&pdata->ttf_dc25_charge_current);
if (ret) {
pr_info("%s: ttf_dc25_charge_current is Empty, Default value 0 \n", __func__);
pdata->ttf_dc25_charge_current =
bpdata->charging_current[SEC_BATTERY_CABLE_9V_TA].fast_charging_current;
}
ret = of_property_read_u32(np, "battery,ttf_dc45_charge_current",
&pdata->ttf_dc45_charge_current);
if (ret) {
pr_info("%s: ttf_dc45_charge_current is Empty, Default value 0 \n", __func__);
pdata->ttf_dc45_charge_current = pdata->ttf_dc25_charge_current;
}
ret = of_property_read_u32(np, "battery,ttf_capacity",
&pdata->ttf_capacity);
if (ret < 0) {
pr_err("%s error reading capacity_calculation_type %d\n", __func__, ret);
pdata->ttf_capacity = bpdata->battery_full_capacity;
}
p = of_get_property(np, "battery,cv_data", &len);
if (p) {
pdata->cv_data = kzalloc(len, GFP_KERNEL);
pdata->cv_data_length = len / sizeof(struct sec_cv_slope);
pr_err("%s: len= %ld, length= %d, %d\n", __func__,
sizeof(int) * len, len, pdata->cv_data_length);
ret = of_property_read_u32_array(np, "battery,cv_data",
(u32 *)pdata->cv_data, len / sizeof(u32));
if (ret) {
pr_err("%s: failed to read battery->cv_data: %d\n",
__func__, ret);
kfree(pdata->cv_data);
pdata->cv_data = NULL;
}
} else {
pr_err("%s: there is not cv_data\n", __func__);
}
return 0;
}
#endif
void sec_bat_time_to_full_work(struct work_struct *work)
{
struct sec_ttf_data *dev = container_of(work,
struct sec_ttf_data, timetofull_work.work);
struct sec_battery_info *battery = dev->pdev;
union power_supply_propval value = {0, };
psy_do_property(battery->pdata->charger_name, get,
POWER_SUPPLY_PROP_CURRENT_MAX, value);
battery->current_max = value.intval;
value.intval = SEC_BATTERY_CURRENT_MA;
psy_do_property(battery->pdata->fuelgauge_name, get,
POWER_SUPPLY_PROP_CURRENT_NOW, value);
battery->current_now = value.intval;
value.intval = SEC_BATTERY_CURRENT_MA;
psy_do_property(battery->pdata->fuelgauge_name, get,
POWER_SUPPLY_PROP_CURRENT_AVG, value);
battery->current_avg = value.intval;
sec_bat_calc_time_to_full(battery);
dev_info(battery->dev, "%s:\n", __func__);
if (battery->voltage_now > 0)
battery->voltage_now--;
power_supply_changed(battery->psy_bat);
}
void ttf_work_start(struct sec_battery_info *battery)
{
if (lpcharge) {
cancel_delayed_work(&battery->ttf_d->timetofull_work);
if (battery->current_event & SEC_BAT_CURRENT_EVENT_AFC) {
int work_delay = 0;
if (!is_wireless_type(battery->cable_type))
work_delay = battery->pdata->pre_afc_work_delay;
else
work_delay = battery->pdata->pre_wc_afc_work_delay;
queue_delayed_work(battery->monitor_wqueue,
&battery->ttf_d->timetofull_work, msecs_to_jiffies(work_delay));
}
}
}
int ttf_display(struct sec_battery_info *battery)
{
if (battery->capacity == 100)
return -1;
if (((battery->status == POWER_SUPPLY_STATUS_CHARGING) ||
(battery->status == POWER_SUPPLY_STATUS_FULL && battery->capacity != 100)) &&
!battery->swelling_mode)
return battery->ttf_d->timetofull;
else
return -1;
}
void ttf_init(struct sec_battery_info *battery)
{
battery->ttf_d = kzalloc(sizeof(struct sec_ttf_data),
GFP_KERNEL);
if (!battery->ttf_d)
pr_err("Failed to allocate memory\n");
sec_ttf_parse_dt(battery);
battery->ttf_d->timetofull = -1;
INIT_DELAYED_WORK(&battery->ttf_d->timetofull_work, sec_bat_time_to_full_work);
}
#else
int sec_calc_ttf(struct sec_battery_info *battery, unsigned int ttf_curr) { return -ENODEV; }
void sec_bat_calc_time_to_full(struct sec_battery_info *battery) { }
void sec_bat_time_to_full_work(struct work_struct *work) { }
void ttf_init(struct sec_battery_info *battery) { }
void ttf_work_start(struct sec_battery_info *battery) { }
int ttf_display(struct sec_battery_info *battery) { return -1; }
#ifdef CONFIG_OF
int sec_ttf_parse_dt(struct sec_battery_info *battery) { return -ENODEV; }
#endif
#endif