Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public License |
| 6 | * as published by the Free Software Foundation, version 2. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, but |
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| 11 | * NON INFRINGEMENT. See the GNU General Public License for |
| 12 | * more details. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/mm.h> |
| 16 | #include <linux/dma-mapping.h> |
| 17 | #include <linux/vmalloc.h> |
| 18 | #include <asm/tlbflush.h> |
| 19 | #include <asm/homecache.h> |
| 20 | |
| 21 | /* Generic DMA mapping functions: */ |
| 22 | |
| 23 | /* |
| 24 | * Allocate what Linux calls "coherent" memory, which for us just |
| 25 | * means uncached. |
| 26 | */ |
| 27 | void *dma_alloc_coherent(struct device *dev, |
| 28 | size_t size, |
| 29 | dma_addr_t *dma_handle, |
| 30 | gfp_t gfp) |
| 31 | { |
| 32 | u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32); |
| 33 | int node = dev_to_node(dev); |
| 34 | int order = get_order(size); |
| 35 | struct page *pg; |
| 36 | dma_addr_t addr; |
| 37 | |
Chris Metcalf | 482e6f8 | 2010-06-05 09:05:47 -0400 | [diff] [blame] | 38 | gfp |= __GFP_ZERO; |
Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame] | 39 | |
| 40 | /* |
| 41 | * By forcing NUMA node 0 for 32-bit masks we ensure that the |
| 42 | * high 32 bits of the resulting PA will be zero. If the mask |
| 43 | * size is, e.g., 24, we may still not be able to guarantee a |
| 44 | * suitable memory address, in which case we will return NULL. |
| 45 | * But such devices are uncommon. |
| 46 | */ |
| 47 | if (dma_mask <= DMA_BIT_MASK(32)) |
| 48 | node = 0; |
| 49 | |
| 50 | pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_UNCACHED); |
| 51 | if (pg == NULL) |
| 52 | return NULL; |
| 53 | |
| 54 | addr = page_to_phys(pg); |
| 55 | if (addr + size > dma_mask) { |
| 56 | homecache_free_pages(addr, order); |
| 57 | return NULL; |
| 58 | } |
| 59 | |
| 60 | *dma_handle = addr; |
| 61 | return page_address(pg); |
| 62 | } |
| 63 | EXPORT_SYMBOL(dma_alloc_coherent); |
| 64 | |
| 65 | /* |
| 66 | * Free memory that was allocated with dma_alloc_coherent. |
| 67 | */ |
| 68 | void dma_free_coherent(struct device *dev, size_t size, |
| 69 | void *vaddr, dma_addr_t dma_handle) |
| 70 | { |
| 71 | homecache_free_pages((unsigned long)vaddr, get_order(size)); |
| 72 | } |
| 73 | EXPORT_SYMBOL(dma_free_coherent); |
| 74 | |
| 75 | /* |
| 76 | * The map routines "map" the specified address range for DMA |
| 77 | * accesses. The memory belongs to the device after this call is |
| 78 | * issued, until it is unmapped with dma_unmap_single. |
| 79 | * |
| 80 | * We don't need to do any mapping, we just flush the address range |
| 81 | * out of the cache and return a DMA address. |
| 82 | * |
| 83 | * The unmap routines do whatever is necessary before the processor |
| 84 | * accesses the memory again, and must be called before the driver |
| 85 | * touches the memory. We can get away with a cache invalidate if we |
| 86 | * can count on nothing having been touched. |
| 87 | */ |
| 88 | |
| 89 | |
| 90 | /* |
| 91 | * dma_map_single can be passed any memory address, and there appear |
| 92 | * to be no alignment constraints. |
| 93 | * |
| 94 | * There is a chance that the start of the buffer will share a cache |
| 95 | * line with some other data that has been touched in the meantime. |
| 96 | */ |
| 97 | dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size, |
| 98 | enum dma_data_direction direction) |
| 99 | { |
| 100 | struct page *page; |
| 101 | dma_addr_t dma_addr; |
| 102 | int thispage; |
| 103 | |
| 104 | BUG_ON(!valid_dma_direction(direction)); |
| 105 | WARN_ON(size == 0); |
| 106 | |
| 107 | dma_addr = __pa(ptr); |
| 108 | |
| 109 | /* We might have been handed a buffer that wraps a page boundary */ |
| 110 | while ((int)size > 0) { |
| 111 | /* The amount to flush that's on this page */ |
| 112 | thispage = PAGE_SIZE - ((unsigned long)ptr & (PAGE_SIZE - 1)); |
| 113 | thispage = min((int)thispage, (int)size); |
| 114 | /* Is this valid for any page we could be handed? */ |
| 115 | page = pfn_to_page(kaddr_to_pfn(ptr)); |
| 116 | homecache_flush_cache(page, 0); |
| 117 | ptr += thispage; |
| 118 | size -= thispage; |
| 119 | } |
| 120 | |
| 121 | return dma_addr; |
| 122 | } |
| 123 | EXPORT_SYMBOL(dma_map_single); |
| 124 | |
| 125 | void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, |
| 126 | enum dma_data_direction direction) |
| 127 | { |
| 128 | BUG_ON(!valid_dma_direction(direction)); |
| 129 | } |
| 130 | EXPORT_SYMBOL(dma_unmap_single); |
| 131 | |
| 132 | int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents, |
| 133 | enum dma_data_direction direction) |
| 134 | { |
| 135 | struct scatterlist *sg; |
| 136 | int i; |
| 137 | |
| 138 | BUG_ON(!valid_dma_direction(direction)); |
| 139 | |
| 140 | WARN_ON(nents == 0 || sglist->length == 0); |
| 141 | |
| 142 | for_each_sg(sglist, sg, nents, i) { |
| 143 | struct page *page; |
| 144 | sg->dma_address = sg_phys(sg); |
| 145 | page = pfn_to_page(sg->dma_address >> PAGE_SHIFT); |
| 146 | homecache_flush_cache(page, 0); |
| 147 | } |
| 148 | |
| 149 | return nents; |
| 150 | } |
| 151 | EXPORT_SYMBOL(dma_map_sg); |
| 152 | |
| 153 | void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries, |
| 154 | enum dma_data_direction direction) |
| 155 | { |
| 156 | BUG_ON(!valid_dma_direction(direction)); |
| 157 | } |
| 158 | EXPORT_SYMBOL(dma_unmap_sg); |
| 159 | |
| 160 | dma_addr_t dma_map_page(struct device *dev, struct page *page, |
| 161 | unsigned long offset, size_t size, |
| 162 | enum dma_data_direction direction) |
| 163 | { |
| 164 | BUG_ON(!valid_dma_direction(direction)); |
| 165 | |
| 166 | homecache_flush_cache(page, 0); |
| 167 | |
| 168 | return page_to_pa(page) + offset; |
| 169 | } |
| 170 | EXPORT_SYMBOL(dma_map_page); |
| 171 | |
| 172 | void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size, |
| 173 | enum dma_data_direction direction) |
| 174 | { |
| 175 | BUG_ON(!valid_dma_direction(direction)); |
| 176 | } |
| 177 | EXPORT_SYMBOL(dma_unmap_page); |
| 178 | |
| 179 | void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, |
| 180 | size_t size, enum dma_data_direction direction) |
| 181 | { |
| 182 | BUG_ON(!valid_dma_direction(direction)); |
| 183 | } |
| 184 | EXPORT_SYMBOL(dma_sync_single_for_cpu); |
| 185 | |
| 186 | void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, |
| 187 | size_t size, enum dma_data_direction direction) |
| 188 | { |
| 189 | unsigned long start = PFN_DOWN(dma_handle); |
| 190 | unsigned long end = PFN_DOWN(dma_handle + size - 1); |
| 191 | unsigned long i; |
| 192 | |
| 193 | BUG_ON(!valid_dma_direction(direction)); |
| 194 | for (i = start; i <= end; ++i) |
| 195 | homecache_flush_cache(pfn_to_page(i), 0); |
| 196 | } |
| 197 | EXPORT_SYMBOL(dma_sync_single_for_device); |
| 198 | |
| 199 | void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems, |
| 200 | enum dma_data_direction direction) |
| 201 | { |
| 202 | BUG_ON(!valid_dma_direction(direction)); |
| 203 | WARN_ON(nelems == 0 || sg[0].length == 0); |
| 204 | } |
| 205 | EXPORT_SYMBOL(dma_sync_sg_for_cpu); |
| 206 | |
| 207 | /* |
| 208 | * Flush and invalidate cache for scatterlist. |
| 209 | */ |
| 210 | void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist, |
| 211 | int nelems, enum dma_data_direction direction) |
| 212 | { |
| 213 | struct scatterlist *sg; |
| 214 | int i; |
| 215 | |
| 216 | BUG_ON(!valid_dma_direction(direction)); |
| 217 | WARN_ON(nelems == 0 || sglist->length == 0); |
| 218 | |
| 219 | for_each_sg(sglist, sg, nelems, i) { |
| 220 | dma_sync_single_for_device(dev, sg->dma_address, |
| 221 | sg_dma_len(sg), direction); |
| 222 | } |
| 223 | } |
| 224 | EXPORT_SYMBOL(dma_sync_sg_for_device); |
| 225 | |
| 226 | void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle, |
| 227 | unsigned long offset, size_t size, |
| 228 | enum dma_data_direction direction) |
| 229 | { |
| 230 | dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction); |
| 231 | } |
| 232 | EXPORT_SYMBOL(dma_sync_single_range_for_cpu); |
| 233 | |
| 234 | void dma_sync_single_range_for_device(struct device *dev, |
| 235 | dma_addr_t dma_handle, |
| 236 | unsigned long offset, size_t size, |
| 237 | enum dma_data_direction direction) |
| 238 | { |
| 239 | dma_sync_single_for_device(dev, dma_handle + offset, size, direction); |
| 240 | } |
| 241 | EXPORT_SYMBOL(dma_sync_single_range_for_device); |
| 242 | |
| 243 | /* |
| 244 | * dma_alloc_noncoherent() returns non-cacheable memory, so there's no |
| 245 | * need to do any flushing here. |
| 246 | */ |
| 247 | void dma_cache_sync(void *vaddr, size_t size, |
| 248 | enum dma_data_direction direction) |
| 249 | { |
| 250 | } |
| 251 | EXPORT_SYMBOL(dma_cache_sync); |