Jesper Nilsson | 3244c77 | 2007-11-14 17:01:21 -0800 | [diff] [blame] | 1 | /* |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2 | * linux/arch/cris/arch-v10/kernel/time.c |
| 3 | * |
| 4 | * Copyright (C) 1991, 1992, 1995 Linus Torvalds |
| 5 | * Copyright (C) 1999-2002 Axis Communications AB |
| 6 | * |
| 7 | */ |
| 8 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 9 | #include <linux/timex.h> |
| 10 | #include <linux/time.h> |
| 11 | #include <linux/jiffies.h> |
| 12 | #include <linux/interrupt.h> |
| 13 | #include <linux/swap.h> |
| 14 | #include <linux/sched.h> |
| 15 | #include <linux/init.h> |
Jesper Nilsson | a105687 | 2008-03-04 14:28:23 -0800 | [diff] [blame] | 16 | #include <linux/mm.h> |
Jesper Nilsson | 556dcee | 2008-10-21 17:45:58 +0200 | [diff] [blame] | 17 | #include <arch/svinto.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 18 | #include <asm/types.h> |
| 19 | #include <asm/signal.h> |
| 20 | #include <asm/io.h> |
| 21 | #include <asm/delay.h> |
Jesper Nilsson | 3244c77 | 2007-11-14 17:01:21 -0800 | [diff] [blame] | 22 | #include <asm/irq_regs.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 23 | |
| 24 | /* define this if you need to use print_timestamp */ |
| 25 | /* it will make jiffies at 96 hz instead of 100 hz though */ |
| 26 | #undef USE_CASCADE_TIMERS |
| 27 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 28 | unsigned long get_ns_in_jiffie(void) |
| 29 | { |
| 30 | unsigned char timer_count, t1; |
| 31 | unsigned short presc_count; |
| 32 | unsigned long ns; |
| 33 | unsigned long flags; |
| 34 | |
| 35 | local_irq_save(flags); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 36 | timer_count = *R_TIMER0_DATA; |
| 37 | presc_count = *R_TIM_PRESC_STATUS; |
| 38 | /* presc_count might be wrapped */ |
| 39 | t1 = *R_TIMER0_DATA; |
| 40 | |
| 41 | if (timer_count != t1){ |
| 42 | /* it wrapped, read prescaler again... */ |
| 43 | presc_count = *R_TIM_PRESC_STATUS; |
| 44 | timer_count = t1; |
| 45 | } |
| 46 | local_irq_restore(flags); |
| 47 | if (presc_count >= PRESCALE_VALUE/2 ){ |
| 48 | presc_count = PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2; |
| 49 | } else { |
| 50 | presc_count = PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2; |
| 51 | } |
| 52 | |
| 53 | ns = ( (TIMER0_DIV - timer_count) * ((1000000000/HZ)/TIMER0_DIV )) + |
| 54 | ( (presc_count) * (1000000000/PRESCALE_FREQ)); |
| 55 | return ns; |
| 56 | } |
| 57 | |
| 58 | unsigned long do_slow_gettimeoffset(void) |
| 59 | { |
Jesper Nilsson | 60dbd66 | 2010-07-30 17:33:07 +0200 | [diff] [blame] | 60 | unsigned long count; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 61 | |
| 62 | /* The timer interrupt comes from Etrax timer 0. In order to get |
| 63 | * better precision, we check the current value. It might have |
| 64 | * underflowed already though. |
| 65 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 66 | count = *R_TIMER0_DATA; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 67 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 68 | /* Convert timer value to usec */ |
Jesper Nilsson | 60dbd66 | 2010-07-30 17:33:07 +0200 | [diff] [blame] | 69 | return (TIMER0_DIV - count) * ((NSEC_PER_SEC/1000)/HZ)/TIMER0_DIV; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 70 | } |
| 71 | |
| 72 | /* Excerpt from the Etrax100 HSDD about the built-in watchdog: |
| 73 | * |
| 74 | * 3.10.4 Watchdog timer |
| 75 | |
| 76 | * When the watchdog timer is started, it generates an NMI if the watchdog |
| 77 | * isn't restarted or stopped within 0.1 s. If it still isn't restarted or |
| 78 | * stopped after an additional 3.3 ms, the watchdog resets the chip. |
| 79 | * The watchdog timer is stopped after reset. The watchdog timer is controlled |
| 80 | * by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit |
| 81 | * and a 3-bit key value. The effect of writing to the R_WATCHDOG register is |
| 82 | * described in the table below: |
| 83 | * |
| 84 | * Watchdog Value written: |
| 85 | * state: To enable: To key: Operation: |
| 86 | * -------- ---------- ------- ---------- |
| 87 | * stopped 0 X No effect. |
| 88 | * stopped 1 key_val Start watchdog with key = key_val. |
| 89 | * started 0 ~key Stop watchdog |
| 90 | * started 1 ~key Restart watchdog with key = ~key. |
| 91 | * started X new_key_val Change key to new_key_val. |
| 92 | * |
| 93 | * Note: '~' is the bitwise NOT operator. |
| 94 | * |
| 95 | */ |
| 96 | |
| 97 | /* right now, starting the watchdog is the same as resetting it */ |
| 98 | #define start_watchdog reset_watchdog |
| 99 | |
| 100 | #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM) |
| 101 | static int watchdog_key = 0; /* arbitrary number */ |
| 102 | #endif |
| 103 | |
| 104 | /* number of pages to consider "out of memory". it is normal that the memory |
| 105 | * is used though, so put this really low. |
| 106 | */ |
| 107 | |
| 108 | #define WATCHDOG_MIN_FREE_PAGES 8 |
| 109 | |
| 110 | void |
| 111 | reset_watchdog(void) |
| 112 | { |
| 113 | #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM) |
| 114 | /* only keep watchdog happy as long as we have memory left! */ |
| 115 | if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) { |
| 116 | /* reset the watchdog with the inverse of the old key */ |
| 117 | watchdog_key ^= 0x7; /* invert key, which is 3 bits */ |
| 118 | *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) | |
| 119 | IO_STATE(R_WATCHDOG, enable, start); |
| 120 | } |
| 121 | #endif |
| 122 | } |
| 123 | |
| 124 | /* stop the watchdog - we still need the correct key */ |
| 125 | |
| 126 | void |
| 127 | stop_watchdog(void) |
| 128 | { |
| 129 | #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM) |
| 130 | watchdog_key ^= 0x7; /* invert key, which is 3 bits */ |
| 131 | *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) | |
| 132 | IO_STATE(R_WATCHDOG, enable, stop); |
| 133 | #endif |
| 134 | } |
| 135 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 136 | |
| 137 | /* |
| 138 | * timer_interrupt() needs to keep up the real-time clock, |
Torben Hohn | 17588b9 | 2011-01-27 15:59:36 +0100 | [diff] [blame] | 139 | * as well as call the "xtime_update()" routine every clocktick |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 140 | */ |
| 141 | |
| 142 | //static unsigned short myjiff; /* used by our debug routine print_timestamp */ |
| 143 | |
| 144 | extern void cris_do_profile(struct pt_regs *regs); |
| 145 | |
| 146 | static inline irqreturn_t |
Jesper Nilsson | 3244c77 | 2007-11-14 17:01:21 -0800 | [diff] [blame] | 147 | timer_interrupt(int irq, void *dev_id) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 148 | { |
Jesper Nilsson | 3244c77 | 2007-11-14 17:01:21 -0800 | [diff] [blame] | 149 | struct pt_regs *regs = get_irq_regs(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 150 | /* acknowledge the timer irq */ |
| 151 | |
| 152 | #ifdef USE_CASCADE_TIMERS |
| 153 | *R_TIMER_CTRL = |
| 154 | IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) | |
| 155 | IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) | |
| 156 | IO_STATE( R_TIMER_CTRL, i1, clr) | |
| 157 | IO_STATE( R_TIMER_CTRL, tm1, run) | |
| 158 | IO_STATE( R_TIMER_CTRL, clksel1, cascade0) | |
| 159 | IO_STATE( R_TIMER_CTRL, i0, clr) | |
| 160 | IO_STATE( R_TIMER_CTRL, tm0, run) | |
| 161 | IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz); |
| 162 | #else |
| 163 | *R_TIMER_CTRL = r_timer_ctrl_shadow | |
| 164 | IO_STATE(R_TIMER_CTRL, i0, clr); |
| 165 | #endif |
| 166 | |
| 167 | /* reset watchdog otherwise it resets us! */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 168 | reset_watchdog(); |
| 169 | |
Jesper Nilsson | 3244c77 | 2007-11-14 17:01:21 -0800 | [diff] [blame] | 170 | /* Update statistics. */ |
| 171 | update_process_times(user_mode(regs)); |
| 172 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 173 | /* call the real timer interrupt handler */ |
| 174 | |
Torben Hohn | 17588b9 | 2011-01-27 15:59:36 +0100 | [diff] [blame] | 175 | xtime_update(1); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 176 | |
| 177 | cris_do_profile(regs); /* Save profiling information */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 178 | return IRQ_HANDLED; |
| 179 | } |
| 180 | |
Thomas Gleixner | aa7135f | 2006-07-01 19:29:14 -0700 | [diff] [blame] | 181 | /* timer is IRQF_SHARED so drivers can add stuff to the timer irq chain |
| 182 | * it needs to be IRQF_DISABLED to make the jiffies update work properly |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 183 | */ |
| 184 | |
Thomas Gleixner | e5f7178 | 2007-10-16 01:26:38 -0700 | [diff] [blame] | 185 | static struct irqaction irq2 = { |
| 186 | .handler = timer_interrupt, |
| 187 | .flags = IRQF_SHARED | IRQF_DISABLED, |
Thomas Gleixner | e5f7178 | 2007-10-16 01:26:38 -0700 | [diff] [blame] | 188 | .name = "timer", |
| 189 | }; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 190 | |
| 191 | void __init |
| 192 | time_init(void) |
| 193 | { |
| 194 | /* probe for the RTC and read it if it exists |
| 195 | * Before the RTC can be probed the loops_per_usec variable needs |
| 196 | * to be initialized to make usleep work. A better value for |
| 197 | * loops_per_usec is calculated by the kernel later once the |
| 198 | * clock has started. |
| 199 | */ |
| 200 | loops_per_usec = 50; |
| 201 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 202 | /* Setup the etrax timers |
| 203 | * Base frequency is 25000 hz, divider 250 -> 100 HZ |
| 204 | * In normal mode, we use timer0, so timer1 is free. In cascade |
| 205 | * mode (which we sometimes use for debugging) both timers are used. |
| 206 | * Remember that linux/timex.h contains #defines that rely on the |
| 207 | * timer settings below (hz and divide factor) !!! |
| 208 | */ |
| 209 | |
| 210 | #ifdef USE_CASCADE_TIMERS |
| 211 | *R_TIMER_CTRL = |
| 212 | IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) | |
| 213 | IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) | |
| 214 | IO_STATE( R_TIMER_CTRL, i1, nop) | |
| 215 | IO_STATE( R_TIMER_CTRL, tm1, stop_ld) | |
| 216 | IO_STATE( R_TIMER_CTRL, clksel1, cascade0) | |
| 217 | IO_STATE( R_TIMER_CTRL, i0, nop) | |
| 218 | IO_STATE( R_TIMER_CTRL, tm0, stop_ld) | |
| 219 | IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz); |
| 220 | |
| 221 | *R_TIMER_CTRL = r_timer_ctrl_shadow = |
| 222 | IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) | |
| 223 | IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) | |
| 224 | IO_STATE( R_TIMER_CTRL, i1, nop) | |
| 225 | IO_STATE( R_TIMER_CTRL, tm1, run) | |
| 226 | IO_STATE( R_TIMER_CTRL, clksel1, cascade0) | |
| 227 | IO_STATE( R_TIMER_CTRL, i0, nop) | |
| 228 | IO_STATE( R_TIMER_CTRL, tm0, run) | |
| 229 | IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz); |
| 230 | #else |
| 231 | *R_TIMER_CTRL = |
| 232 | IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) | |
| 233 | IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) | |
| 234 | IO_STATE(R_TIMER_CTRL, i1, nop) | |
| 235 | IO_STATE(R_TIMER_CTRL, tm1, stop_ld) | |
| 236 | IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) | |
| 237 | IO_STATE(R_TIMER_CTRL, i0, nop) | |
| 238 | IO_STATE(R_TIMER_CTRL, tm0, stop_ld) | |
| 239 | IO_STATE(R_TIMER_CTRL, clksel0, flexible); |
| 240 | |
| 241 | *R_TIMER_CTRL = r_timer_ctrl_shadow = |
| 242 | IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) | |
| 243 | IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) | |
| 244 | IO_STATE(R_TIMER_CTRL, i1, nop) | |
| 245 | IO_STATE(R_TIMER_CTRL, tm1, run) | |
| 246 | IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) | |
| 247 | IO_STATE(R_TIMER_CTRL, i0, nop) | |
| 248 | IO_STATE(R_TIMER_CTRL, tm0, run) | |
| 249 | IO_STATE(R_TIMER_CTRL, clksel0, flexible); |
| 250 | |
| 251 | *R_TIMER_PRESCALE = PRESCALE_VALUE; |
| 252 | #endif |
| 253 | |
| 254 | *R_IRQ_MASK0_SET = |
| 255 | IO_STATE(R_IRQ_MASK0_SET, timer0, set); /* unmask the timer irq */ |
| 256 | |
| 257 | /* now actually register the timer irq handler that calls timer_interrupt() */ |
| 258 | |
| 259 | setup_irq(2, &irq2); /* irq 2 is the timer0 irq in etrax */ |
| 260 | |
| 261 | /* enable watchdog if we should use one */ |
| 262 | |
| 263 | #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM) |
| 264 | printk("Enabling watchdog...\n"); |
| 265 | start_watchdog(); |
| 266 | |
| 267 | /* If we use the hardware watchdog, we want to trap it as an NMI |
| 268 | and dump registers before it resets us. For this to happen, we |
| 269 | must set the "m" NMI enable flag (which once set, is unset only |
| 270 | when an NMI is taken). |
| 271 | |
| 272 | The same goes for the external NMI, but that doesn't have any |
| 273 | driver or infrastructure support yet. */ |
| 274 | asm ("setf m"); |
| 275 | |
| 276 | *R_IRQ_MASK0_SET = |
| 277 | IO_STATE(R_IRQ_MASK0_SET, watchdog_nmi, set); |
| 278 | *R_VECT_MASK_SET = |
| 279 | IO_STATE(R_VECT_MASK_SET, nmi, set); |
| 280 | #endif |
| 281 | } |