Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* Copyright(c) 2000, Compaq Computer Corporation |
| 2 | * Fibre Channel Host Bus Adapter |
| 3 | * 64-bit, 66MHz PCI |
| 4 | * Originally developed and tested on: |
| 5 | * (front): [chip] Tachyon TS HPFC-5166A/1.2 L2C1090 ... |
| 6 | * SP# P225CXCBFIEL6T, Rev XC |
| 7 | * SP# 161290-001, Rev XD |
| 8 | * (back): Board No. 010008-001 A/W Rev X5, FAB REV X5 |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or modify it |
| 11 | * under the terms of the GNU General Public License as published by the |
| 12 | * Free Software Foundation; either version 2, or (at your option) any |
| 13 | * later version. |
| 14 | * |
| 15 | * This program is distributed in the hope that it will be useful, but |
| 16 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 18 | * General Public License for more details. |
| 19 | * Written by Don Zimmerman |
| 20 | * IOCTL and procfs added by Jouke Numan |
| 21 | * SMP testing by Chel Van Gennip |
| 22 | * |
| 23 | * portions copied from: |
| 24 | * QLogic CPQFCTS SCSI-FCP |
| 25 | * Written by Erik H. Moe, ehm@cris.com |
| 26 | * Copyright 1995, Erik H. Moe |
| 27 | * Renamed and updated to 1.3.x by Michael Griffith <grif@cs.ucr.edu> |
| 28 | * Chris Loveland <cwl@iol.unh.edu> to support the isp2100 and isp2200 |
| 29 | */ |
| 30 | |
| 31 | |
| 32 | #define LinuxVersionCode(v, p, s) (((v)<<16)+((p)<<8)+(s)) |
| 33 | |
| 34 | #include <linux/config.h> |
| 35 | #include <linux/interrupt.h> |
| 36 | #include <linux/module.h> |
| 37 | #include <linux/version.h> |
| 38 | #include <linux/blkdev.h> |
| 39 | #include <linux/kernel.h> |
| 40 | #include <linux/string.h> |
| 41 | #include <linux/types.h> |
| 42 | #include <linux/pci.h> |
| 43 | #include <linux/delay.h> |
| 44 | #include <linux/timer.h> |
| 45 | #include <linux/init.h> |
| 46 | #include <linux/ioport.h> // request_region() prototype |
| 47 | #include <linux/completion.h> |
| 48 | |
| 49 | #include <asm/io.h> |
| 50 | #include <asm/uaccess.h> // ioctl related |
| 51 | #include <asm/irq.h> |
| 52 | #include <linux/spinlock.h> |
| 53 | #include "scsi.h" |
| 54 | #include <scsi/scsi_host.h> |
| 55 | #include <scsi/scsi_ioctl.h> |
| 56 | #include "cpqfcTSchip.h" |
| 57 | #include "cpqfcTSstructs.h" |
| 58 | #include "cpqfcTStrigger.h" |
| 59 | |
| 60 | #include "cpqfcTS.h" |
| 61 | |
| 62 | /* Embedded module documentation macros - see module.h */ |
| 63 | MODULE_AUTHOR("Compaq Computer Corporation"); |
| 64 | MODULE_DESCRIPTION("Driver for Compaq 64-bit/66Mhz PCI Fibre Channel HBA v. 2.5.4"); |
| 65 | MODULE_LICENSE("GPL"); |
| 66 | |
| 67 | int cpqfcTS_TargetDeviceReset( Scsi_Device *ScsiDev, unsigned int reset_flags); |
| 68 | |
| 69 | // This struct was originally defined in |
| 70 | // /usr/src/linux/include/linux/proc_fs.h |
| 71 | // since it's only partially implemented, we only use first |
| 72 | // few fields... |
| 73 | // NOTE: proc_fs changes in 2.4 kernel |
| 74 | |
| 75 | #if LINUX_VERSION_CODE < LinuxVersionCode(2,3,27) |
| 76 | static struct proc_dir_entry proc_scsi_cpqfcTS = |
| 77 | { |
| 78 | PROC_SCSI_CPQFCTS, // ushort low_ino (enumerated list) |
| 79 | 7, // ushort namelen |
| 80 | DEV_NAME, // const char* name |
| 81 | S_IFDIR | S_IRUGO | S_IXUGO, // mode_t mode |
| 82 | 2 // nlink_t nlink |
| 83 | // etc. ... |
| 84 | }; |
| 85 | |
| 86 | |
| 87 | #endif |
| 88 | |
| 89 | #if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,7) |
| 90 | # define CPQFC_DECLARE_COMPLETION(x) DECLARE_COMPLETION(x) |
| 91 | # define CPQFC_WAITING waiting |
| 92 | # define CPQFC_COMPLETE(x) complete(x) |
| 93 | # define CPQFC_WAIT_FOR_COMPLETION(x) wait_for_completion(x); |
| 94 | #else |
| 95 | # define CPQFC_DECLARE_COMPLETION(x) DECLARE_MUTEX_LOCKED(x) |
| 96 | # define CPQFC_WAITING sem |
| 97 | # define CPQFC_COMPLETE(x) up(x) |
| 98 | # define CPQFC_WAIT_FOR_COMPLETION(x) down(x) |
| 99 | #endif |
| 100 | |
| 101 | static int cpqfc_alloc_private_data_pool(CPQFCHBA *hba); |
| 102 | |
| 103 | /* local function to load our per-HBA (local) data for chip |
| 104 | registers, FC link state, all FC exchanges, etc. |
| 105 | |
| 106 | We allocate space and compute address offsets for the |
| 107 | most frequently accessed addresses; others (like World Wide |
| 108 | Name) are not necessary. |
| 109 | */ |
| 110 | static void Cpqfc_initHBAdata(CPQFCHBA *cpqfcHBAdata, struct pci_dev *PciDev ) |
| 111 | { |
| 112 | |
| 113 | cpqfcHBAdata->PciDev = PciDev; // copy PCI info ptr |
| 114 | |
| 115 | // since x86 port space is 64k, we only need the lower 16 bits |
| 116 | cpqfcHBAdata->fcChip.Registers.IOBaseL = |
| 117 | PciDev->resource[1].start & PCI_BASE_ADDRESS_IO_MASK; |
| 118 | |
| 119 | cpqfcHBAdata->fcChip.Registers.IOBaseU = |
| 120 | PciDev->resource[2].start & PCI_BASE_ADDRESS_IO_MASK; |
| 121 | |
| 122 | // 32-bit memory addresses |
| 123 | cpqfcHBAdata->fcChip.Registers.MemBase = |
| 124 | PciDev->resource[3].start & PCI_BASE_ADDRESS_MEM_MASK; |
| 125 | |
| 126 | cpqfcHBAdata->fcChip.Registers.ReMapMemBase = |
| 127 | ioremap( PciDev->resource[3].start & PCI_BASE_ADDRESS_MEM_MASK, |
| 128 | 0x200); |
| 129 | |
| 130 | cpqfcHBAdata->fcChip.Registers.RAMBase = |
| 131 | PciDev->resource[4].start; |
| 132 | |
| 133 | cpqfcHBAdata->fcChip.Registers.SROMBase = // NULL for HP TS adapter |
| 134 | PciDev->resource[5].start; |
| 135 | |
| 136 | // now the Tachlite chip registers |
| 137 | // the REGISTER struct holds both the physical address & last |
| 138 | // written value (some TL registers are WRITE ONLY) |
| 139 | |
| 140 | cpqfcHBAdata->fcChip.Registers.SFQconsumerIndex.address = |
| 141 | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_SFQ_CONSUMER_INDEX; |
| 142 | |
| 143 | cpqfcHBAdata->fcChip.Registers.ERQproducerIndex.address = |
| 144 | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_ERQ_PRODUCER_INDEX; |
| 145 | |
| 146 | // TL Frame Manager |
| 147 | cpqfcHBAdata->fcChip.Registers.FMconfig.address = |
| 148 | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_CONFIG; |
| 149 | cpqfcHBAdata->fcChip.Registers.FMcontrol.address = |
| 150 | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_CONTROL; |
| 151 | cpqfcHBAdata->fcChip.Registers.FMstatus.address = |
| 152 | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_STATUS; |
| 153 | cpqfcHBAdata->fcChip.Registers.FMLinkStatus1.address = |
| 154 | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_LINK_STAT1; |
| 155 | cpqfcHBAdata->fcChip.Registers.FMLinkStatus2.address = |
| 156 | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_LINK_STAT2; |
| 157 | cpqfcHBAdata->fcChip.Registers.FMBB_CreditZero.address = |
| 158 | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_BB_CREDIT0; |
| 159 | |
| 160 | // TL Control Regs |
| 161 | cpqfcHBAdata->fcChip.Registers.TYconfig.address = |
| 162 | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_TACH_CONFIG; |
| 163 | cpqfcHBAdata->fcChip.Registers.TYcontrol.address = |
| 164 | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_TACH_CONTROL; |
| 165 | cpqfcHBAdata->fcChip.Registers.TYstatus.address = |
| 166 | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_TACH_STATUS; |
| 167 | cpqfcHBAdata->fcChip.Registers.rcv_al_pa.address = |
| 168 | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_RCV_AL_PA; |
| 169 | cpqfcHBAdata->fcChip.Registers.ed_tov.address = |
| 170 | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_ED_TOV; |
| 171 | |
| 172 | |
| 173 | cpqfcHBAdata->fcChip.Registers.INTEN.address = |
| 174 | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + IINTEN; |
| 175 | cpqfcHBAdata->fcChip.Registers.INTPEND.address = |
| 176 | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + IINTPEND; |
| 177 | cpqfcHBAdata->fcChip.Registers.INTSTAT.address = |
| 178 | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + IINTSTAT; |
| 179 | |
| 180 | DEBUG_PCI(printk(" cpqfcHBAdata->fcChip.Registers. :\n")); |
| 181 | DEBUG_PCI(printk(" IOBaseL = %x\n", |
| 182 | cpqfcHBAdata->fcChip.Registers.IOBaseL)); |
| 183 | DEBUG_PCI(printk(" IOBaseU = %x\n", |
| 184 | cpqfcHBAdata->fcChip.Registers.IOBaseU)); |
| 185 | |
| 186 | /* printk(" ioremap'd Membase: %p\n", cpqfcHBAdata->fcChip.Registers.ReMapMemBase); */ |
| 187 | |
| 188 | DEBUG_PCI(printk(" SFQconsumerIndex.address = %p\n", |
| 189 | cpqfcHBAdata->fcChip.Registers.SFQconsumerIndex.address)); |
| 190 | DEBUG_PCI(printk(" ERQproducerIndex.address = %p\n", |
| 191 | cpqfcHBAdata->fcChip.Registers.ERQproducerIndex.address)); |
| 192 | DEBUG_PCI(printk(" TYconfig.address = %p\n", |
| 193 | cpqfcHBAdata->fcChip.Registers.TYconfig.address)); |
| 194 | DEBUG_PCI(printk(" FMconfig.address = %p\n", |
| 195 | cpqfcHBAdata->fcChip.Registers.FMconfig.address)); |
| 196 | DEBUG_PCI(printk(" FMcontrol.address = %p\n", |
| 197 | cpqfcHBAdata->fcChip.Registers.FMcontrol.address)); |
| 198 | |
| 199 | // set default options for FC controller (chip) |
| 200 | cpqfcHBAdata->fcChip.Options.initiator = 1; // default: SCSI initiator |
| 201 | cpqfcHBAdata->fcChip.Options.target = 0; // default: SCSI target |
| 202 | cpqfcHBAdata->fcChip.Options.extLoopback = 0;// default: no loopback @GBIC |
| 203 | cpqfcHBAdata->fcChip.Options.intLoopback = 0;// default: no loopback inside chip |
| 204 | |
| 205 | // set highest and lowest FC-PH version the adapter/driver supports |
| 206 | // (NOT strict compliance) |
| 207 | cpqfcHBAdata->fcChip.highest_FCPH_ver = FC_PH3; |
| 208 | cpqfcHBAdata->fcChip.lowest_FCPH_ver = FC_PH43; |
| 209 | |
| 210 | // set function points for this controller / adapter |
| 211 | cpqfcHBAdata->fcChip.ResetTachyon = CpqTsResetTachLite; |
| 212 | cpqfcHBAdata->fcChip.FreezeTachyon = CpqTsFreezeTachlite; |
| 213 | cpqfcHBAdata->fcChip.UnFreezeTachyon = CpqTsUnFreezeTachlite; |
| 214 | cpqfcHBAdata->fcChip.CreateTachyonQues = CpqTsCreateTachLiteQues; |
| 215 | cpqfcHBAdata->fcChip.DestroyTachyonQues = CpqTsDestroyTachLiteQues; |
| 216 | cpqfcHBAdata->fcChip.InitializeTachyon = CpqTsInitializeTachLite; |
| 217 | cpqfcHBAdata->fcChip.LaserControl = CpqTsLaserControl; |
| 218 | cpqfcHBAdata->fcChip.ProcessIMQEntry = CpqTsProcessIMQEntry; |
| 219 | cpqfcHBAdata->fcChip.InitializeFrameManager = CpqTsInitializeFrameManager; |
| 220 | cpqfcHBAdata->fcChip.ReadWriteWWN = CpqTsReadWriteWWN; |
| 221 | cpqfcHBAdata->fcChip.ReadWriteNVRAM = CpqTsReadWriteNVRAM; |
| 222 | |
| 223 | if (cpqfc_alloc_private_data_pool(cpqfcHBAdata) != 0) { |
| 224 | printk(KERN_WARNING |
| 225 | "cpqfc: unable to allocate pool for passthru ioctls. " |
| 226 | "Passthru ioctls disabled.\n"); |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | |
| 231 | /* (borrowed from linux/drivers/scsi/hosts.c) */ |
| 232 | static void launch_FCworker_thread(struct Scsi_Host *HostAdapter) |
| 233 | { |
| 234 | DECLARE_MUTEX_LOCKED(sem); |
| 235 | |
| 236 | CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata; |
| 237 | |
| 238 | ENTER("launch_FC_worker_thread"); |
| 239 | |
| 240 | cpqfcHBAdata->notify_wt = &sem; |
| 241 | |
| 242 | /* must unlock before kernel_thread(), for it may cause a reschedule. */ |
| 243 | spin_unlock_irq(HostAdapter->host_lock); |
| 244 | kernel_thread((int (*)(void *))cpqfcTSWorkerThread, |
| 245 | (void *) HostAdapter, 0); |
| 246 | /* |
| 247 | * Now wait for the kernel error thread to initialize itself |
| 248 | |
| 249 | */ |
| 250 | down (&sem); |
| 251 | spin_lock_irq(HostAdapter->host_lock); |
| 252 | cpqfcHBAdata->notify_wt = NULL; |
| 253 | |
| 254 | LEAVE("launch_FC_worker_thread"); |
| 255 | |
| 256 | } |
| 257 | |
| 258 | |
| 259 | /* "Entry" point to discover if any supported PCI |
| 260 | bus adapter can be found |
| 261 | */ |
| 262 | /* We're supporting: |
| 263 | * Compaq 64-bit, 66MHz HBA with Tachyon TS |
| 264 | * Agilent XL2 |
| 265 | * HP Tachyon |
| 266 | */ |
| 267 | #define HBA_TYPES 3 |
| 268 | |
| 269 | #ifndef PCI_DEVICE_ID_COMPAQ_ |
| 270 | #define PCI_DEVICE_ID_COMPAQ_TACHYON 0xa0fc |
| 271 | #endif |
| 272 | |
| 273 | static struct SupportedPCIcards cpqfc_boards[] __initdata = { |
| 274 | {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_TACHYON}, |
| 275 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_TACHLITE}, |
| 276 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_TACHYON}, |
| 277 | }; |
| 278 | |
| 279 | |
| 280 | int cpqfcTS_detect(Scsi_Host_Template *ScsiHostTemplate) |
| 281 | { |
| 282 | int NumberOfAdapters=0; // how many of our PCI adapters are found? |
| 283 | struct pci_dev *PciDev = NULL; |
| 284 | struct Scsi_Host *HostAdapter = NULL; |
| 285 | CPQFCHBA *cpqfcHBAdata = NULL; |
| 286 | struct timer_list *cpqfcTStimer = NULL; |
| 287 | int i; |
| 288 | |
| 289 | ENTER("cpqfcTS_detect"); |
| 290 | |
| 291 | #if LINUX_VERSION_CODE < LinuxVersionCode(2,3,27) |
| 292 | ScsiHostTemplate->proc_dir = &proc_scsi_cpqfcTS; |
| 293 | #else |
| 294 | ScsiHostTemplate->proc_name = "cpqfcTS"; |
| 295 | #endif |
| 296 | |
| 297 | for( i=0; i < HBA_TYPES; i++) |
| 298 | { |
| 299 | // look for all HBAs of each type |
| 300 | |
| 301 | while((PciDev = pci_find_device(cpqfc_boards[i].vendor_id, |
| 302 | cpqfc_boards[i].device_id, PciDev))) |
| 303 | { |
| 304 | |
| 305 | if (pci_enable_device(PciDev)) { |
| 306 | printk(KERN_ERR |
| 307 | "cpqfc: can't enable PCI device at %s\n", pci_name(PciDev)); |
| 308 | goto err_continue; |
| 309 | } |
| 310 | |
| 311 | if (pci_set_dma_mask(PciDev, CPQFCTS_DMA_MASK) != 0) { |
| 312 | printk(KERN_WARNING |
| 313 | "cpqfc: HBA cannot support required DMA mask, skipping.\n"); |
| 314 | goto err_disable_dev; |
| 315 | } |
| 316 | |
| 317 | // NOTE: (kernel 2.2.12-32) limits allocation to 128k bytes... |
| 318 | /* printk(" scsi_register allocating %d bytes for FC HBA\n", |
| 319 | (ULONG)sizeof(CPQFCHBA)); */ |
| 320 | |
| 321 | HostAdapter = scsi_register( ScsiHostTemplate, sizeof( CPQFCHBA ) ); |
| 322 | |
| 323 | if(HostAdapter == NULL) { |
| 324 | printk(KERN_WARNING |
| 325 | "cpqfc: can't register SCSI HBA, skipping.\n"); |
| 326 | goto err_disable_dev; |
| 327 | } |
| 328 | DEBUG_PCI( printk(" HBA found!\n")); |
| 329 | DEBUG_PCI( printk(" HostAdapter->PciDev->irq = %u\n", PciDev->irq) ); |
| 330 | DEBUG_PCI(printk(" PciDev->baseaddress[0]= %lx\n", |
| 331 | PciDev->resource[0].start)); |
| 332 | DEBUG_PCI(printk(" PciDev->baseaddress[1]= %lx\n", |
| 333 | PciDev->resource[1].start)); |
| 334 | DEBUG_PCI(printk(" PciDev->baseaddress[2]= %lx\n", |
| 335 | PciDev->resource[2].start)); |
| 336 | DEBUG_PCI(printk(" PciDev->baseaddress[3]= %lx\n", |
| 337 | PciDev->resource[3].start)); |
| 338 | |
| 339 | scsi_set_device(HostAdapter, &PciDev->dev); |
| 340 | HostAdapter->irq = PciDev->irq; // copy for Scsi layers |
| 341 | |
| 342 | // HP Tachlite uses two (255-byte) ranges of Port I/O (lower & upper), |
| 343 | // for a total I/O port address space of 512 bytes. |
| 344 | // mask out the I/O port address (lower) & record |
| 345 | HostAdapter->io_port = (unsigned int) |
| 346 | PciDev->resource[1].start & PCI_BASE_ADDRESS_IO_MASK; |
| 347 | HostAdapter->n_io_port = 0xff; |
| 348 | |
| 349 | // i.e., expect 128 targets (arbitrary number), while the |
| 350 | // RA-4000 supports 32 LUNs |
| 351 | HostAdapter->max_id = 0; // incremented as devices log in |
| 352 | HostAdapter->max_lun = CPQFCTS_MAX_LUN; // LUNs per FC device |
| 353 | HostAdapter->max_channel = CPQFCTS_MAX_CHANNEL; // multiple busses? |
| 354 | |
| 355 | // get the pointer to our HBA specific data... (one for |
| 356 | // each HBA on the PCI bus(ses)). |
| 357 | cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata; |
| 358 | |
| 359 | // make certain our data struct is clear |
| 360 | memset( cpqfcHBAdata, 0, sizeof( CPQFCHBA ) ); |
| 361 | |
| 362 | |
| 363 | // initialize our HBA info |
| 364 | cpqfcHBAdata->HBAnum = NumberOfAdapters; |
| 365 | |
| 366 | cpqfcHBAdata->HostAdapter = HostAdapter; // back ptr |
| 367 | Cpqfc_initHBAdata( cpqfcHBAdata, PciDev ); // fill MOST fields |
| 368 | |
| 369 | cpqfcHBAdata->HBAnum = NumberOfAdapters; |
| 370 | spin_lock_init(&cpqfcHBAdata->hba_spinlock); |
| 371 | |
| 372 | // request necessary resources and check for conflicts |
| 373 | if( request_irq( HostAdapter->irq, |
| 374 | cpqfcTS_intr_handler, |
| 375 | SA_INTERRUPT | SA_SHIRQ, |
| 376 | DEV_NAME, |
| 377 | HostAdapter) ) |
| 378 | { |
| 379 | printk(KERN_WARNING "cpqfc: IRQ %u already used\n", HostAdapter->irq); |
| 380 | goto err_unregister; |
| 381 | } |
| 382 | |
| 383 | // Since we have two 256-byte I/O port ranges (upper |
| 384 | // and lower), check them both |
| 385 | if( !request_region( cpqfcHBAdata->fcChip.Registers.IOBaseU, |
| 386 | 0xff, DEV_NAME ) ) |
| 387 | { |
| 388 | printk(KERN_WARNING "cpqfc: address in use: %x\n", |
| 389 | cpqfcHBAdata->fcChip.Registers.IOBaseU); |
| 390 | goto err_free_irq; |
| 391 | } |
| 392 | |
| 393 | if( !request_region( cpqfcHBAdata->fcChip.Registers.IOBaseL, |
| 394 | 0xff, DEV_NAME ) ) |
| 395 | { |
| 396 | printk(KERN_WARNING "cpqfc: address in use: %x\n", |
| 397 | cpqfcHBAdata->fcChip.Registers.IOBaseL); |
| 398 | goto err_release_region_U; |
| 399 | } |
| 400 | |
| 401 | // OK, we have grabbed everything we need now. |
| 402 | DEBUG_PCI(printk(" Reserved 255 I/O addresses @ %x\n", |
| 403 | cpqfcHBAdata->fcChip.Registers.IOBaseL )); |
| 404 | DEBUG_PCI(printk(" Reserved 255 I/O addresses @ %x\n", |
| 405 | cpqfcHBAdata->fcChip.Registers.IOBaseU )); |
| 406 | |
| 407 | |
| 408 | |
| 409 | // start our kernel worker thread |
| 410 | |
| 411 | spin_lock_irq(HostAdapter->host_lock); |
| 412 | launch_FCworker_thread(HostAdapter); |
| 413 | |
| 414 | |
| 415 | // start our TimerTask... |
| 416 | |
| 417 | cpqfcTStimer = &cpqfcHBAdata->cpqfcTStimer; |
| 418 | |
| 419 | init_timer( cpqfcTStimer); // Linux clears next/prev values |
| 420 | cpqfcTStimer->expires = jiffies + HZ; // one second |
| 421 | cpqfcTStimer->data = (unsigned long)cpqfcHBAdata; // this adapter |
| 422 | cpqfcTStimer->function = cpqfcTSheartbeat; // handles timeouts, housekeeping |
| 423 | |
| 424 | add_timer( cpqfcTStimer); // give it to Linux |
| 425 | |
| 426 | |
| 427 | // now initialize our hardware... |
| 428 | if (cpqfcHBAdata->fcChip.InitializeTachyon( cpqfcHBAdata, 1,1)) { |
| 429 | printk(KERN_WARNING "cpqfc: initialization of HBA hardware failed.\n"); |
| 430 | goto err_release_region_L; |
| 431 | } |
| 432 | |
| 433 | cpqfcHBAdata->fcStatsTime = jiffies; // (for FC Statistics delta) |
| 434 | |
| 435 | // give our HBA time to initialize and login current devices... |
| 436 | { |
| 437 | // The Brocade switch (e.g. 2400, 2010, etc.) as of March 2000, |
| 438 | // has the following algorithm for FL_Port startup: |
| 439 | // Time(sec) Action |
| 440 | // 0: Device Plugin and LIP(F7,F7) transmission |
| 441 | // 1.0 LIP incoming |
| 442 | // 1.027 LISA incoming, no CLS! (link not up) |
| 443 | // 1.028 NOS incoming (switch test for N_Port) |
| 444 | // 1.577 ED_TOV expired, transmit LIPs again |
| 445 | // 3.0 LIP(F8,F7) incoming (switch passes Tach Prim.Sig) |
| 446 | // 3.028 LILP received, link up, FLOGI starts |
| 447 | // slowest(worst) case, measured on 1Gb Finisar GT analyzer |
| 448 | |
| 449 | unsigned long stop_time; |
| 450 | |
| 451 | spin_unlock_irq(HostAdapter->host_lock); |
| 452 | stop_time = jiffies + 4*HZ; |
| 453 | while ( time_before(jiffies, stop_time) ) |
| 454 | schedule(); // (our worker task needs to run) |
| 455 | |
| 456 | } |
| 457 | |
| 458 | spin_lock_irq(HostAdapter->host_lock); |
| 459 | NumberOfAdapters++; |
| 460 | spin_unlock_irq(HostAdapter->host_lock); |
| 461 | |
| 462 | continue; |
| 463 | |
| 464 | err_release_region_L: |
| 465 | release_region( cpqfcHBAdata->fcChip.Registers.IOBaseL, 0xff ); |
| 466 | err_release_region_U: |
| 467 | release_region( cpqfcHBAdata->fcChip.Registers.IOBaseU, 0xff ); |
| 468 | err_free_irq: |
| 469 | free_irq( HostAdapter->irq, HostAdapter); |
| 470 | err_unregister: |
| 471 | scsi_unregister( HostAdapter); |
| 472 | err_disable_dev: |
| 473 | pci_disable_device( PciDev ); |
| 474 | err_continue: |
| 475 | continue; |
| 476 | } // end of while() |
| 477 | } |
| 478 | |
| 479 | LEAVE("cpqfcTS_detect"); |
| 480 | |
| 481 | return NumberOfAdapters; |
| 482 | } |
| 483 | |
| 484 | #ifdef SUPPORT_RESET |
| 485 | static void my_ioctl_done (Scsi_Cmnd * SCpnt) |
| 486 | { |
| 487 | struct request * req; |
| 488 | |
| 489 | req = SCpnt->request; |
| 490 | req->rq_status = RQ_SCSI_DONE; /* Busy, but indicate request done */ |
| 491 | |
| 492 | if (req->CPQFC_WAITING != NULL) |
| 493 | CPQFC_COMPLETE(req->CPQFC_WAITING); |
| 494 | } |
| 495 | #endif |
| 496 | |
| 497 | static int cpqfc_alloc_private_data_pool(CPQFCHBA *hba) |
| 498 | { |
| 499 | hba->private_data_bits = NULL; |
| 500 | hba->private_data_pool = NULL; |
| 501 | hba->private_data_bits = |
| 502 | kmalloc(((CPQFC_MAX_PASSTHRU_CMDS+BITS_PER_LONG-1) / |
| 503 | BITS_PER_LONG)*sizeof(unsigned long), |
| 504 | GFP_KERNEL); |
| 505 | if (hba->private_data_bits == NULL) |
| 506 | return -1; |
| 507 | memset(hba->private_data_bits, 0, |
| 508 | ((CPQFC_MAX_PASSTHRU_CMDS+BITS_PER_LONG-1) / |
| 509 | BITS_PER_LONG)*sizeof(unsigned long)); |
| 510 | hba->private_data_pool = kmalloc(sizeof(cpqfc_passthru_private_t) * |
| 511 | CPQFC_MAX_PASSTHRU_CMDS, GFP_KERNEL); |
| 512 | if (hba->private_data_pool == NULL) { |
| 513 | kfree(hba->private_data_bits); |
| 514 | hba->private_data_bits = NULL; |
| 515 | return -1; |
| 516 | } |
| 517 | return 0; |
| 518 | } |
| 519 | |
| 520 | static void cpqfc_free_private_data_pool(CPQFCHBA *hba) |
| 521 | { |
| 522 | kfree(hba->private_data_bits); |
| 523 | kfree(hba->private_data_pool); |
| 524 | } |
| 525 | |
| 526 | int is_private_data_of_cpqfc(CPQFCHBA *hba, void *pointer) |
| 527 | { |
| 528 | /* Is pointer within our private data pool? |
| 529 | We use Scsi_Request->upper_private_data (normally |
| 530 | reserved for upper layer drivers, e.g. the sg driver) |
| 531 | We check to see if the pointer is ours by looking at |
| 532 | its address. Is this ok? Hmm, it occurs to me that |
| 533 | a user app might do something bad by using sg to send |
| 534 | a cpqfc passthrough ioctl with upper_data_private |
| 535 | forged to be somewhere in our pool..., though they'd |
| 536 | normally have to be root already to do this. */ |
| 537 | |
| 538 | return (pointer != NULL && |
| 539 | pointer >= (void *) hba->private_data_pool && |
| 540 | pointer < (void *) hba->private_data_pool + |
| 541 | sizeof(*hba->private_data_pool) * |
| 542 | CPQFC_MAX_PASSTHRU_CMDS); |
| 543 | } |
| 544 | |
| 545 | cpqfc_passthru_private_t *cpqfc_alloc_private_data(CPQFCHBA *hba) |
| 546 | { |
| 547 | int i; |
| 548 | |
| 549 | do { |
| 550 | i = find_first_zero_bit(hba->private_data_bits, |
| 551 | CPQFC_MAX_PASSTHRU_CMDS); |
| 552 | if (i == CPQFC_MAX_PASSTHRU_CMDS) |
| 553 | return NULL; |
| 554 | } while ( test_and_set_bit(i & (BITS_PER_LONG - 1), |
| 555 | hba->private_data_bits+(i/BITS_PER_LONG)) != 0); |
| 556 | return &hba->private_data_pool[i]; |
| 557 | } |
| 558 | |
| 559 | void cpqfc_free_private_data(CPQFCHBA *hba, cpqfc_passthru_private_t *data) |
| 560 | { |
| 561 | int i; |
| 562 | i = data - hba->private_data_pool; |
| 563 | clear_bit(i&(BITS_PER_LONG-1), |
| 564 | hba->private_data_bits+(i/BITS_PER_LONG)); |
| 565 | } |
| 566 | |
| 567 | int cpqfcTS_ioctl( struct scsi_device *ScsiDev, int Cmnd, void *arg) |
| 568 | { |
| 569 | int result = 0; |
| 570 | struct Scsi_Host *HostAdapter = ScsiDev->host; |
| 571 | CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata; |
| 572 | PTACHYON fcChip = &cpqfcHBAdata->fcChip; |
| 573 | PFC_LOGGEDIN_PORT pLoggedInPort = NULL; |
| 574 | struct scsi_cmnd *DumCmnd; |
| 575 | int i, j; |
| 576 | VENDOR_IOCTL_REQ ioc; |
| 577 | cpqfc_passthru_t *vendor_cmd; |
| 578 | Scsi_Device *SDpnt; |
| 579 | Scsi_Request *ScsiPassThruReq; |
| 580 | cpqfc_passthru_private_t *privatedata; |
| 581 | |
| 582 | ENTER("cpqfcTS_ioctl "); |
| 583 | |
| 584 | // printk("ioctl CMND %d", Cmnd); |
| 585 | switch (Cmnd) { |
| 586 | // Passthrough provides a mechanism to bypass the RAID |
| 587 | // or other controller and talk directly to the devices |
| 588 | // (e.g. physical disk drive) |
| 589 | // Passthrough commands, unfortunately, tend to be vendor |
| 590 | // specific; this is tailored to COMPAQ's RAID (RA4x00) |
| 591 | case CPQFCTS_SCSI_PASSTHRU: |
| 592 | { |
| 593 | void *buf = NULL; // for kernel space buffer for user data |
| 594 | |
| 595 | /* Check that our pool got allocated ok. */ |
| 596 | if (cpqfcHBAdata->private_data_pool == NULL) |
| 597 | return -ENOMEM; |
| 598 | |
| 599 | if( !arg) |
| 600 | return -EINVAL; |
| 601 | |
| 602 | // must be super user to send stuff directly to the |
| 603 | // controller and/or physical drives... |
| 604 | if( !capable(CAP_SYS_RAWIO) ) |
| 605 | return -EPERM; |
| 606 | |
| 607 | // copy the caller's struct to our space. |
| 608 | if( copy_from_user( &ioc, arg, sizeof( VENDOR_IOCTL_REQ))) |
| 609 | return( -EFAULT); |
| 610 | |
| 611 | vendor_cmd = ioc.argp; // i.e., CPQ specific command struct |
| 612 | |
| 613 | // If necessary, grab a kernel/DMA buffer |
| 614 | if( vendor_cmd->len) |
| 615 | { |
| 616 | buf = kmalloc( vendor_cmd->len, GFP_KERNEL); |
| 617 | if( !buf) |
| 618 | return -ENOMEM; |
| 619 | } |
| 620 | // Now build a Scsi_Request to pass down... |
| 621 | ScsiPassThruReq = scsi_allocate_request(ScsiDev, GFP_KERNEL); |
| 622 | if (ScsiPassThruReq == NULL) { |
| 623 | kfree(buf); |
| 624 | return -ENOMEM; |
| 625 | } |
| 626 | ScsiPassThruReq->upper_private_data = |
| 627 | cpqfc_alloc_private_data(cpqfcHBAdata); |
| 628 | if (ScsiPassThruReq->upper_private_data == NULL) { |
| 629 | kfree(buf); |
| 630 | scsi_release_request(ScsiPassThruReq); // "de-allocate" |
| 631 | return -ENOMEM; |
| 632 | } |
| 633 | |
| 634 | if (vendor_cmd->rw_flag == VENDOR_WRITE_OPCODE) { |
| 635 | if (vendor_cmd->len) { // Need data from user? |
| 636 | if (copy_from_user(buf, vendor_cmd->bufp, |
| 637 | vendor_cmd->len)) { |
| 638 | kfree(buf); |
| 639 | cpqfc_free_private_data(cpqfcHBAdata, |
| 640 | ScsiPassThruReq->upper_private_data); |
| 641 | scsi_release_request(ScsiPassThruReq); |
| 642 | return( -EFAULT); |
| 643 | } |
| 644 | } |
| be7db05 | 2005-04-17 15:26:13 -0500 | [diff] [blame] | 645 | ScsiPassThruReq->sr_data_direction = DMA_TO_DEVICE; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 646 | } else if (vendor_cmd->rw_flag == VENDOR_READ_OPCODE) { |
| be7db05 | 2005-04-17 15:26:13 -0500 | [diff] [blame] | 647 | ScsiPassThruReq->sr_data_direction = DMA_FROM_DEVICE; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 648 | } else |
| 649 | // maybe this means a bug in the user app |
| be7db05 | 2005-04-17 15:26:13 -0500 | [diff] [blame] | 650 | ScsiPassThruReq->sr_data_direction = DMA_BIDIRECTIONAL; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 651 | |
| 652 | ScsiPassThruReq->sr_cmd_len = 0; // set correctly by scsi_do_req() |
| 653 | ScsiPassThruReq->sr_sense_buffer[0] = 0; |
| 654 | ScsiPassThruReq->sr_sense_buffer[2] = 0; |
| 655 | |
| 656 | // We copy the scheme used by sd.c:spinup_disk() to submit commands |
| 657 | // to our own HBA. We do this in order to stall the |
| 658 | // thread calling the IOCTL until it completes, and use |
| 659 | // the same "_quecommand" function for synchronizing |
| 660 | // FC Link events with our "worker thread". |
| 661 | |
| 662 | privatedata = ScsiPassThruReq->upper_private_data; |
| 663 | privatedata->bus = vendor_cmd->bus; |
| 664 | privatedata->pdrive = vendor_cmd->pdrive; |
| 665 | |
| 666 | // eventually gets us to our own _quecommand routine |
| 667 | scsi_wait_req(ScsiPassThruReq, |
| 668 | &vendor_cmd->cdb[0], buf, vendor_cmd->len, |
| 669 | 10*HZ, // timeout |
| 670 | 1); // retries |
| 671 | result = ScsiPassThruReq->sr_result; |
| 672 | |
| 673 | // copy any sense data back to caller |
| 674 | if( result != 0 ) |
| 675 | { |
| 676 | memcpy( vendor_cmd->sense_data, // see struct def - size=40 |
| 677 | ScsiPassThruReq->sr_sense_buffer, |
| 678 | sizeof(ScsiPassThruReq->sr_sense_buffer) < |
| 679 | sizeof(vendor_cmd->sense_data) ? |
| 680 | sizeof(ScsiPassThruReq->sr_sense_buffer) : |
| 681 | sizeof(vendor_cmd->sense_data) |
| 682 | ); |
| 683 | } |
| 684 | SDpnt = ScsiPassThruReq->sr_device; |
| 685 | /* upper_private_data is already freed in call_scsi_done() */ |
| 686 | scsi_release_request(ScsiPassThruReq); // "de-allocate" |
| 687 | ScsiPassThruReq = NULL; |
| 688 | |
| 689 | // need to pass data back to user (space)? |
| 690 | if( (vendor_cmd->rw_flag == VENDOR_READ_OPCODE) && |
| 691 | vendor_cmd->len ) |
| 692 | if( copy_to_user( vendor_cmd->bufp, buf, vendor_cmd->len)) |
| 693 | result = -EFAULT; |
| 694 | |
| 695 | if( buf) |
| 696 | kfree( buf); |
| 697 | |
| 698 | return result; |
| 699 | } |
| 700 | |
| 701 | case CPQFCTS_GETPCIINFO: |
| 702 | { |
| 703 | cpqfc_pci_info_struct pciinfo; |
| 704 | |
| 705 | if( !arg) |
| 706 | return -EINVAL; |
| 707 | |
| 708 | |
| 709 | |
| 710 | pciinfo.bus = cpqfcHBAdata->PciDev->bus->number; |
| 711 | pciinfo.dev_fn = cpqfcHBAdata->PciDev->devfn; |
| 712 | pciinfo.board_id = cpqfcHBAdata->PciDev->device | |
| 713 | (cpqfcHBAdata->PciDev->vendor <<16); |
| 714 | |
| 715 | if(copy_to_user( arg, &pciinfo, sizeof(cpqfc_pci_info_struct))) |
| 716 | return( -EFAULT); |
| 717 | return 0; |
| 718 | } |
| 719 | |
| 720 | case CPQFCTS_GETDRIVVER: |
| 721 | { |
| 722 | DriverVer_type DriverVer = |
| 723 | CPQFCTS_DRIVER_VER( VER_MAJOR,VER_MINOR,VER_SUBMINOR); |
| 724 | |
| 725 | if( !arg) |
| 726 | return -EINVAL; |
| 727 | |
| 728 | if(copy_to_user( arg, &DriverVer, sizeof(DriverVer))) |
| 729 | return( -EFAULT); |
| 730 | return 0; |
| 731 | } |
| 732 | |
| 733 | |
| 734 | |
| 735 | case CPQFC_IOCTL_FC_TARGET_ADDRESS: |
| 736 | // can we find an FC device mapping to this SCSI target? |
| 737 | /* DumCmnd.channel = ScsiDev->channel; */ // For searching |
| 738 | /* DumCmnd.target = ScsiDev->id; */ |
| 739 | /* DumCmnd.lun = ScsiDev->lun; */ |
| 740 | |
| 741 | DumCmnd = scsi_get_command (ScsiDev, GFP_KERNEL); |
| 742 | if (!DumCmnd) |
| 743 | return -ENOMEM; |
| 744 | |
| 745 | pLoggedInPort = fcFindLoggedInPort( fcChip, |
| 746 | DumCmnd, // search Scsi Nexus |
| 747 | 0, // DON'T search linked list for FC port id |
| 748 | NULL, // DON'T search linked list for FC WWN |
| 749 | NULL); // DON'T care about end of list |
| 750 | scsi_put_command (DumCmnd); |
| 751 | if (pLoggedInPort == NULL) { |
| 752 | result = -ENXIO; |
| 753 | break; |
| 754 | } |
| 755 | result = access_ok(VERIFY_WRITE, arg, sizeof(Scsi_FCTargAddress)) ? 0 : -EFAULT; |
| 756 | if (result) break; |
| 757 | |
| 758 | put_user(pLoggedInPort->port_id, |
| 759 | &((Scsi_FCTargAddress *) arg)->host_port_id); |
| 760 | |
| 761 | for( i=3,j=0; i>=0; i--) // copy the LOGIN port's WWN |
| 762 | put_user(pLoggedInPort->u.ucWWN[i], |
| 763 | &((Scsi_FCTargAddress *) arg)->host_wwn[j++]); |
| 764 | for( i=7; i>3; i--) // copy the LOGIN port's WWN |
| 765 | put_user(pLoggedInPort->u.ucWWN[i], |
| 766 | &((Scsi_FCTargAddress *) arg)->host_wwn[j++]); |
| 767 | break; |
| 768 | |
| 769 | |
| 770 | case CPQFC_IOCTL_FC_TDR: |
| 771 | |
| 772 | result = cpqfcTS_TargetDeviceReset( ScsiDev, 0); |
| 773 | |
| 774 | break; |
| 775 | |
| 776 | |
| 777 | |
| 778 | |
| 779 | default: |
| 780 | result = -EINVAL; |
| 781 | break; |
| 782 | } |
| 783 | |
| 784 | LEAVE("cpqfcTS_ioctl"); |
| 785 | return result; |
| 786 | } |
| 787 | |
| 788 | |
| 789 | /* "Release" the Host Bus Adapter... |
| 790 | disable interrupts, stop the HBA, release the interrupt, |
| 791 | and free all resources */ |
| 792 | |
| 793 | int cpqfcTS_release(struct Scsi_Host *HostAdapter) |
| 794 | { |
| 795 | CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata; |
| 796 | |
| 797 | |
| 798 | ENTER("cpqfcTS_release"); |
| 799 | |
| 800 | DEBUG_PCI( printk(" cpqfcTS: delete timer...\n")); |
| 801 | del_timer( &cpqfcHBAdata->cpqfcTStimer); |
| 802 | |
| 803 | // disable the hardware... |
| 804 | DEBUG_PCI( printk(" disable hardware, destroy queues, free mem\n")); |
| 805 | cpqfcHBAdata->fcChip.ResetTachyon( cpqfcHBAdata, CLEAR_FCPORTS); |
| 806 | |
| 807 | // kill kernel thread |
| 808 | if( cpqfcHBAdata->worker_thread ) // (only if exists) |
| 809 | { |
| 810 | DECLARE_MUTEX_LOCKED(sem); // synchronize thread kill |
| 811 | |
| 812 | cpqfcHBAdata->notify_wt = &sem; |
| 813 | DEBUG_PCI( printk(" killing kernel thread\n")); |
| 814 | send_sig( SIGKILL, cpqfcHBAdata->worker_thread, 1); |
| 815 | down( &sem); |
| 816 | cpqfcHBAdata->notify_wt = NULL; |
| 817 | |
| 818 | } |
| 819 | |
| 820 | cpqfc_free_private_data_pool(cpqfcHBAdata); |
| 821 | // free Linux resources |
| 822 | DEBUG_PCI( printk(" cpqfcTS: freeing resources...\n")); |
| 823 | free_irq( HostAdapter->irq, HostAdapter); |
| 824 | scsi_unregister( HostAdapter); |
| 825 | release_region( cpqfcHBAdata->fcChip.Registers.IOBaseL, 0xff); |
| 826 | release_region( cpqfcHBAdata->fcChip.Registers.IOBaseU, 0xff); |
| 827 | /* we get "vfree: bad address" executing this - need to investigate... |
| 828 | if( (void*)((unsigned long)cpqfcHBAdata->fcChip.Registers.MemBase) != |
| 829 | cpqfcHBAdata->fcChip.Registers.ReMapMemBase) |
| 830 | vfree( cpqfcHBAdata->fcChip.Registers.ReMapMemBase); |
| 831 | */ |
| 832 | pci_disable_device( cpqfcHBAdata->PciDev); |
| 833 | |
| 834 | LEAVE("cpqfcTS_release"); |
| 835 | return 0; |
| 836 | } |
| 837 | |
| 838 | |
| 839 | const char * cpqfcTS_info(struct Scsi_Host *HostAdapter) |
| 840 | { |
| 841 | static char buf[300]; |
| 842 | CPQFCHBA *cpqfcHBA; |
| 843 | int BusSpeed, BusWidth; |
| 844 | |
| 845 | // get the pointer to our Scsi layer HBA buffer |
| 846 | cpqfcHBA = (CPQFCHBA *)HostAdapter->hostdata; |
| 847 | |
| 848 | BusWidth = (cpqfcHBA->fcChip.Registers.PCIMCTR &0x4) > 0 ? |
| 849 | 64 : 32; |
| 850 | |
| 851 | if( cpqfcHBA->fcChip.Registers.TYconfig.value & 0x80000000) |
| 852 | BusSpeed = 66; |
| 853 | else |
| 854 | BusSpeed = 33; |
| 855 | |
| 856 | sprintf(buf, |
| 857 | "%s: WWN %08X%08X\n on PCI bus %d device 0x%02x irq %d IObaseL 0x%x, MEMBASE 0x%x\nPCI bus width %d bits, bus speed %d MHz\nFCP-SCSI Driver v%d.%d.%d", |
| 858 | cpqfcHBA->fcChip.Name, |
| 859 | cpqfcHBA->fcChip.Registers.wwn_hi, |
| 860 | cpqfcHBA->fcChip.Registers.wwn_lo, |
| 861 | cpqfcHBA->PciDev->bus->number, |
| 862 | cpqfcHBA->PciDev->device, |
| 863 | HostAdapter->irq, |
| 864 | cpqfcHBA->fcChip.Registers.IOBaseL, |
| 865 | cpqfcHBA->fcChip.Registers.MemBase, |
| 866 | BusWidth, |
| 867 | BusSpeed, |
| 868 | VER_MAJOR, VER_MINOR, VER_SUBMINOR |
| 869 | ); |
| 870 | |
| 871 | |
| 872 | cpqfcTSDecodeGBICtype( &cpqfcHBA->fcChip, &buf[ strlen(buf)]); |
| 873 | cpqfcTSGetLPSM( &cpqfcHBA->fcChip, &buf[ strlen(buf)]); |
| 874 | return buf; |
| 875 | } |
| 876 | |
| 877 | // |
| 878 | // /proc/scsi support. The following routines allow us to do 'normal' |
| 879 | // sprintf like calls to return the currently requested piece (buflenght |
| 880 | // chars, starting at bufoffset) of the file. Although procfs allows for |
| 881 | // a 1 Kb bytes overflow after te supplied buffer, I consider it bad |
| 882 | // programming to use it to make programming a little simpler. This piece |
| 883 | // of coding is borrowed from ncr53c8xx.c with some modifications |
| 884 | // |
| 885 | struct info_str |
| 886 | { |
| 887 | char *buffer; // Pointer to output buffer |
| 888 | int buflength; // It's length |
| 889 | int bufoffset; // File offset corresponding with buf[0] |
| 890 | int buffillen; // Current filled length |
| 891 | int filpos; // Current file offset |
| 892 | }; |
| 893 | |
| 894 | static void copy_mem_info(struct info_str *info, char *data, int datalen) |
| 895 | { |
| 896 | |
| 897 | if (info->filpos < info->bufoffset) { // Current offset before buffer offset |
| 898 | if (info->filpos + datalen <= info->bufoffset) { |
| 899 | info->filpos += datalen; // Discard if completely before buffer |
| 900 | return; |
| 901 | } else { // Partial copy, set to begin |
| 902 | data += (info->bufoffset - info->filpos); |
| 903 | datalen -= (info->bufoffset - info->filpos); |
| 904 | info->filpos = info->bufoffset; |
| 905 | } |
| 906 | } |
| 907 | |
| 908 | info->filpos += datalen; // Update current offset |
| 909 | |
| 910 | if (info->buffillen == info->buflength) // Buffer full, discard |
| 911 | return; |
| 912 | |
| 913 | if (info->buflength - info->buffillen < datalen) // Overflows buffer ? |
| 914 | datalen = info->buflength - info->buffillen; |
| 915 | |
| 916 | memcpy(info->buffer + info->buffillen, data, datalen); |
| 917 | info->buffillen += datalen; |
| 918 | } |
| 919 | |
| 920 | static int copy_info(struct info_str *info, char *fmt, ...) |
| 921 | { |
| 922 | va_list args; |
| 923 | char buf[400]; |
| 924 | int len; |
| 925 | |
| 926 | va_start(args, fmt); |
| 927 | len = vsprintf(buf, fmt, args); |
| 928 | va_end(args); |
| 929 | |
| 930 | copy_mem_info(info, buf, len); |
| 931 | return len; |
| 932 | } |
| 933 | |
| 934 | |
| 935 | // Routine to get data for /proc RAM filesystem |
| 936 | // |
| 937 | int cpqfcTS_proc_info (struct Scsi_Host *host, char *buffer, char **start, off_t offset, int length, |
| 938 | int inout) |
| 939 | { |
| 940 | struct scsi_cmnd *DumCmnd; |
| 941 | struct scsi_device *ScsiDev; |
| 942 | int Chan, Targ, i; |
| 943 | struct info_str info; |
| 944 | CPQFCHBA *cpqfcHBA; |
| 945 | PTACHYON fcChip; |
| 946 | PFC_LOGGEDIN_PORT pLoggedInPort; |
| 947 | char buf[81]; |
| 948 | |
| 949 | if (inout) return -EINVAL; |
| 950 | |
| 951 | // get the pointer to our Scsi layer HBA buffer |
| 952 | cpqfcHBA = (CPQFCHBA *)host->hostdata; |
| 953 | fcChip = &cpqfcHBA->fcChip; |
| 954 | |
| 955 | *start = buffer; |
| 956 | |
| 957 | info.buffer = buffer; |
| 958 | info.buflength = length; |
| 959 | info.bufoffset = offset; |
| 960 | info.filpos = 0; |
| 961 | info.buffillen = 0; |
| 962 | copy_info(&info, "Driver version = %d.%d.%d", VER_MAJOR, VER_MINOR, VER_SUBMINOR); |
| 963 | cpqfcTSDecodeGBICtype( &cpqfcHBA->fcChip, &buf[0]); |
| 964 | cpqfcTSGetLPSM( &cpqfcHBA->fcChip, &buf[ strlen(buf)]); |
| 965 | copy_info(&info, "%s\n", buf); |
| 966 | |
| 967 | #define DISPLAY_WWN_INFO |
| 968 | #ifdef DISPLAY_WWN_INFO |
| 969 | ScsiDev = scsi_get_host_dev (host); |
| 970 | if (!ScsiDev) |
| 971 | return -ENOMEM; |
| 972 | DumCmnd = scsi_get_command (ScsiDev, GFP_KERNEL); |
| 973 | if (!DumCmnd) { |
| 974 | scsi_free_host_dev (ScsiDev); |
| 975 | return -ENOMEM; |
| 976 | } |
| 977 | copy_info(&info, "WWN database: (\"port_id: 000000\" means disconnected)\n"); |
| 978 | for ( Chan=0; Chan <= host->max_channel; Chan++) { |
| 979 | DumCmnd->device->channel = Chan; |
| 980 | for (Targ=0; Targ <= host->max_id; Targ++) { |
| 981 | DumCmnd->device->id = Targ; |
| 982 | if ((pLoggedInPort = fcFindLoggedInPort( fcChip, |
| 983 | DumCmnd, // search Scsi Nexus |
| 984 | 0, // DON'T search list for FC port id |
| 985 | NULL, // DON'T search list for FC WWN |
| 986 | NULL))){ // DON'T care about end of list |
| 987 | copy_info(&info, "Host: scsi%d Channel: %02d TargetId: %02d -> WWN: ", |
| 988 | host->host_no, Chan, Targ); |
| 989 | for( i=3; i>=0; i--) // copy the LOGIN port's WWN |
| 990 | copy_info(&info, "%02X", pLoggedInPort->u.ucWWN[i]); |
| 991 | for( i=7; i>3; i--) // copy the LOGIN port's WWN |
| 992 | copy_info(&info, "%02X", pLoggedInPort->u.ucWWN[i]); |
| 993 | copy_info(&info, " port_id: %06X\n", pLoggedInPort->port_id); |
| 994 | } |
| 995 | } |
| 996 | } |
| 997 | |
| 998 | scsi_put_command (DumCmnd); |
| 999 | scsi_free_host_dev (ScsiDev); |
| 1000 | #endif |
| 1001 | |
| 1002 | |
| 1003 | |
| 1004 | |
| 1005 | |
| 1006 | // Unfortunately, the proc_info buffer isn't big enough |
| 1007 | // for everything we would like... |
| 1008 | // For FC stats, compile this and turn off WWN stuff above |
| 1009 | //#define DISPLAY_FC_STATS |
| 1010 | #ifdef DISPLAY_FC_STATS |
| 1011 | // get the Fibre Channel statistics |
| 1012 | { |
| 1013 | int DeltaSecs = (jiffies - cpqfcHBA->fcStatsTime) / HZ; |
| 1014 | int days,hours,minutes,secs; |
| 1015 | |
| 1016 | days = DeltaSecs / (3600*24); // days |
| 1017 | hours = (DeltaSecs% (3600*24)) / 3600; // hours |
| 1018 | minutes = (DeltaSecs%3600 /60); // minutes |
| 1019 | secs = DeltaSecs%60; // secs |
| 1020 | copy_info( &info, "Fibre Channel Stats (time dd:hh:mm:ss %02u:%02u:%02u:%02u\n", |
| 1021 | days, hours, minutes, secs); |
| 1022 | } |
| 1023 | |
| 1024 | cpqfcHBA->fcStatsTime = jiffies; // (for next delta) |
| 1025 | |
| 1026 | copy_info( &info, " LinkUp %9u LinkDown %u\n", |
| 1027 | fcChip->fcStats.linkUp, fcChip->fcStats.linkDown); |
| 1028 | |
| 1029 | copy_info( &info, " Loss of Signal %9u Loss of Sync %u\n", |
| 1030 | fcChip->fcStats.LossofSignal, fcChip->fcStats.LossofSync); |
| 1031 | |
| 1032 | copy_info( &info, " Discarded Frames %9u Bad CRC Frame %u\n", |
| 1033 | fcChip->fcStats.Dis_Frm, fcChip->fcStats.Bad_CRC); |
| 1034 | |
| 1035 | copy_info( &info, " TACH LinkFailTX %9u TACH LinkFailRX %u\n", |
| 1036 | fcChip->fcStats.linkFailTX, fcChip->fcStats.linkFailRX); |
| 1037 | |
| 1038 | copy_info( &info, " TACH RxEOFa %9u TACH Elastic Store %u\n", |
| 1039 | fcChip->fcStats.Rx_EOFa, fcChip->fcStats.e_stores); |
| 1040 | |
| 1041 | copy_info( &info, " BufferCreditWait %9uus TACH FM Inits %u\n", |
| 1042 | fcChip->fcStats.BB0_Timer*10, fcChip->fcStats.FMinits ); |
| 1043 | |
| 1044 | copy_info( &info, " FC-2 Timeouts %9u FC-2 Logouts %u\n", |
| 1045 | fcChip->fcStats.timeouts, fcChip->fcStats.logouts); |
| 1046 | |
| 1047 | copy_info( &info, " FC-2 Aborts %9u FC-4 Aborts %u\n", |
| 1048 | fcChip->fcStats.FC2aborted, fcChip->fcStats.FC4aborted); |
| 1049 | |
| 1050 | // clear the counters |
| 1051 | cpqfcTSClearLinkStatusCounters( fcChip); |
| 1052 | #endif |
| 1053 | |
| 1054 | return info.buffillen; |
| 1055 | } |
| 1056 | |
| 1057 | |
| 1058 | #if DEBUG_CMND |
| 1059 | |
| 1060 | UCHAR *ScsiToAscii( UCHAR ScsiCommand) |
| 1061 | { |
| 1062 | |
| 1063 | /*++ |
| 1064 | |
| 1065 | Routine Description: |
| 1066 | |
| 1067 | Converts a SCSI command to a text string for debugging purposes. |
| 1068 | |
| 1069 | |
| 1070 | Arguments: |
| 1071 | |
| 1072 | ScsiCommand -- hex value SCSI Command |
| 1073 | |
| 1074 | |
| 1075 | Return Value: |
| 1076 | |
| 1077 | An ASCII, null-terminated string if found, else returns NULL. |
| 1078 | |
| 1079 | Original code from M. McGowen, Compaq |
| 1080 | --*/ |
| 1081 | |
| 1082 | |
| 1083 | switch (ScsiCommand) |
| 1084 | { |
| 1085 | case 0x00: |
| 1086 | return( "Test Unit Ready" ); |
| 1087 | |
| 1088 | case 0x01: |
| 1089 | return( "Rezero Unit or Rewind" ); |
| 1090 | |
| 1091 | case 0x02: |
| 1092 | return( "Request Block Address" ); |
| 1093 | |
| 1094 | case 0x03: |
| 1095 | return( "Requese Sense" ); |
| 1096 | |
| 1097 | case 0x04: |
| 1098 | return( "Format Unit" ); |
| 1099 | |
| 1100 | case 0x05: |
| 1101 | return( "Read Block Limits" ); |
| 1102 | |
| 1103 | case 0x07: |
| 1104 | return( "Reassign Blocks" ); |
| 1105 | |
| 1106 | case 0x08: |
| 1107 | return( "Read (6)" ); |
| 1108 | |
| 1109 | case 0x0a: |
| 1110 | return( "Write (6)" ); |
| 1111 | |
| 1112 | case 0x0b: |
| 1113 | return( "Seek (6)" ); |
| 1114 | |
| 1115 | case 0x12: |
| 1116 | return( "Inquiry" ); |
| 1117 | |
| 1118 | case 0x15: |
| 1119 | return( "Mode Select (6)" ); |
| 1120 | |
| 1121 | case 0x16: |
| 1122 | return( "Reserve" ); |
| 1123 | |
| 1124 | case 0x17: |
| 1125 | return( "Release" ); |
| 1126 | |
| 1127 | case 0x1a: |
| 1128 | return( "ModeSen(6)" ); |
| 1129 | |
| 1130 | case 0x1b: |
| 1131 | return( "Start/Stop Unit" ); |
| 1132 | |
| 1133 | case 0x1c: |
| 1134 | return( "Receive Diagnostic Results" ); |
| 1135 | |
| 1136 | case 0x1d: |
| 1137 | return( "Send Diagnostic" ); |
| 1138 | |
| 1139 | case 0x25: |
| 1140 | return( "Read Capacity" ); |
| 1141 | |
| 1142 | case 0x28: |
| 1143 | return( "Read (10)" ); |
| 1144 | |
| 1145 | case 0x2a: |
| 1146 | return( "Write (10)" ); |
| 1147 | |
| 1148 | case 0x2b: |
| 1149 | return( "Seek (10)" ); |
| 1150 | |
| 1151 | case 0x2e: |
| 1152 | return( "Write and Verify" ); |
| 1153 | |
| 1154 | case 0x2f: |
| 1155 | return( "Verify" ); |
| 1156 | |
| 1157 | case 0x34: |
| 1158 | return( "Pre-Fetch" ); |
| 1159 | |
| 1160 | case 0x35: |
| 1161 | return( "Synchronize Cache" ); |
| 1162 | |
| 1163 | case 0x37: |
| 1164 | return( "Read Defect Data (10)" ); |
| 1165 | |
| 1166 | case 0x3b: |
| 1167 | return( "Write Buffer" ); |
| 1168 | |
| 1169 | case 0x3c: |
| 1170 | return( "Read Buffer" ); |
| 1171 | |
| 1172 | case 0x3e: |
| 1173 | return( "Read Long" ); |
| 1174 | |
| 1175 | case 0x3f: |
| 1176 | return( "Write Long" ); |
| 1177 | |
| 1178 | case 0x41: |
| 1179 | return( "Write Same" ); |
| 1180 | |
| 1181 | case 0x4c: |
| 1182 | return( "Log Select" ); |
| 1183 | |
| 1184 | case 0x4d: |
| 1185 | return( "Log Sense" ); |
| 1186 | |
| 1187 | case 0x56: |
| 1188 | return( "Reserve (10)" ); |
| 1189 | |
| 1190 | case 0x57: |
| 1191 | return( "Release (10)" ); |
| 1192 | |
| 1193 | case 0xa0: |
| 1194 | return( "ReportLuns" ); |
| 1195 | |
| 1196 | case 0xb7: |
| 1197 | return( "Read Defect Data (12)" ); |
| 1198 | |
| 1199 | case 0xca: |
| 1200 | return( "Peripheral Device Addressing SCSI Passthrough" ); |
| 1201 | |
| 1202 | case 0xcb: |
| 1203 | return( "Compaq Array Firmware Passthrough" ); |
| 1204 | |
| 1205 | default: |
| 1206 | return( NULL ); |
| 1207 | } |
| 1208 | |
| 1209 | } // end ScsiToAscii() |
| 1210 | |
| 1211 | void cpqfcTS_print_scsi_cmd(Scsi_Cmnd * cmd) |
| 1212 | { |
| 1213 | |
| 1214 | printk("cpqfcTS: (%s) chnl 0x%02x, trgt = 0x%02x, lun = 0x%02x, cmd_len = 0x%02x\n", |
| 1215 | ScsiToAscii( cmd->cmnd[0]), cmd->channel, cmd->target, cmd->lun, cmd->cmd_len); |
| 1216 | |
| 1217 | if( cmd->cmnd[0] == 0) // Test Unit Ready? |
| 1218 | { |
| 1219 | int i; |
| 1220 | |
| 1221 | printk("Cmnd->request_bufflen = 0x%X, ->use_sg = %d, ->bufflen = %d\n", |
| 1222 | cmd->request_bufflen, cmd->use_sg, cmd->bufflen); |
| 1223 | printk("Cmnd->request_buffer = %p, ->sglist_len = %d, ->buffer = %p\n", |
| 1224 | cmd->request_buffer, cmd->sglist_len, cmd->buffer); |
| 1225 | for (i = 0; i < cmd->cmd_len; i++) |
| 1226 | printk("0x%02x ", cmd->cmnd[i]); |
| 1227 | printk("\n"); |
| 1228 | } |
| 1229 | |
| 1230 | } |
| 1231 | |
| 1232 | #endif /* DEBUG_CMND */ |
| 1233 | |
| 1234 | |
| 1235 | |
| 1236 | |
| 1237 | static void QueCmndOnBoardLock( CPQFCHBA *cpqfcHBAdata, Scsi_Cmnd *Cmnd) |
| 1238 | { |
| 1239 | int i; |
| 1240 | |
| 1241 | for( i=0; i< CPQFCTS_REQ_QUEUE_LEN; i++) |
| 1242 | { // find spare slot |
| 1243 | if( cpqfcHBAdata->BoardLockCmnd[i] == NULL ) |
| 1244 | { |
| 1245 | cpqfcHBAdata->BoardLockCmnd[i] = Cmnd; |
| 1246 | // printk(" BoardLockCmnd[%d] %p Queued, chnl/target/lun %d/%d/%d\n", |
| 1247 | // i,Cmnd, Cmnd->channel, Cmnd->target, Cmnd->lun); |
| 1248 | break; |
| 1249 | } |
| 1250 | } |
| 1251 | if( i >= CPQFCTS_REQ_QUEUE_LEN) |
| 1252 | { |
| 1253 | printk(" cpqfcTS WARNING: Lost Cmnd %p on BoardLock Q full!", Cmnd); |
| 1254 | } |
| 1255 | |
| 1256 | } |
| 1257 | |
| 1258 | |
| 1259 | static void QueLinkDownCmnd( CPQFCHBA *cpqfcHBAdata, Scsi_Cmnd *Cmnd) |
| 1260 | { |
| 1261 | int indx; |
| 1262 | |
| 1263 | // Remember the command ptr so we can return; we'll complete when |
| 1264 | // the device comes back, causing immediate retry |
| 1265 | for( indx=0; indx < CPQFCTS_REQ_QUEUE_LEN; indx++)//, SCptr++) |
| 1266 | { |
| 1267 | if( cpqfcHBAdata->LinkDnCmnd[indx] == NULL ) // available? |
| 1268 | { |
| 1269 | #ifdef DUMMYCMND_DBG |
| 1270 | printk(" @add Cmnd %p to LnkDnCmnd[%d]@ ", Cmnd,indx); |
| 1271 | #endif |
| 1272 | cpqfcHBAdata->LinkDnCmnd[indx] = Cmnd; |
| 1273 | break; |
| 1274 | } |
| 1275 | } |
| 1276 | |
| 1277 | if( indx >= CPQFCTS_REQ_QUEUE_LEN ) // no space for Cmnd?? |
| 1278 | { |
| 1279 | // this will result in an _abort call later (with possible trouble) |
| 1280 | printk("no buffer for LinkDnCmnd!! %p\n", Cmnd); |
| 1281 | } |
| 1282 | } |
| 1283 | |
| 1284 | |
| 1285 | |
| 1286 | |
| 1287 | |
| 1288 | // The file <scsi/scsi_host.h> says not to call scsi_done from |
| 1289 | // inside _queuecommand, so we'll do it from the heartbeat timer |
| 1290 | // (clarification: Turns out it's ok to call scsi_done from queuecommand |
| 1291 | // for cases that don't go to the hardware like scsi cmds destined |
| 1292 | // for LUNs we know don't exist, so this code might be simplified...) |
| 1293 | |
| 1294 | static void QueBadTargetCmnd( CPQFCHBA *cpqfcHBAdata, Scsi_Cmnd *Cmnd) |
| 1295 | { |
| 1296 | int i; |
| 1297 | // printk(" can't find target %d\n", Cmnd->target); |
| 1298 | |
| 1299 | for( i=0; i< CPQFCTS_MAX_TARGET_ID; i++) |
| 1300 | { // find spare slot |
| 1301 | if( cpqfcHBAdata->BadTargetCmnd[i] == NULL ) |
| 1302 | { |
| 1303 | cpqfcHBAdata->BadTargetCmnd[i] = Cmnd; |
| 1304 | // printk(" BadTargetCmnd[%d] %p Queued, chnl/target/lun %d/%d/%d\n", |
| 1305 | // i,Cmnd, Cmnd->channel, Cmnd->target, Cmnd->lun); |
| 1306 | break; |
| 1307 | } |
| 1308 | } |
| 1309 | } |
| 1310 | |
| 1311 | |
| 1312 | // This is the "main" entry point for Linux Scsi commands -- |
| 1313 | // it all starts here. |
| 1314 | |
| 1315 | int cpqfcTS_queuecommand(Scsi_Cmnd *Cmnd, void (* done)(Scsi_Cmnd *)) |
| 1316 | { |
| 1317 | struct Scsi_Host *HostAdapter = Cmnd->device->host; |
| 1318 | CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata; |
| 1319 | PTACHYON fcChip = &cpqfcHBAdata->fcChip; |
| 1320 | TachFCHDR_GCMND fchs; // only use for FC destination id field |
| 1321 | PFC_LOGGEDIN_PORT pLoggedInPort; |
| 1322 | ULONG ulStatus, SESTtype; |
| 1323 | LONG ExchangeID; |
| 1324 | |
| 1325 | |
| 1326 | |
| 1327 | |
| 1328 | ENTER("cpqfcTS_queuecommand"); |
| 1329 | |
| 1330 | PCI_TRACEO( (ULONG)Cmnd, 0x98) |
| 1331 | |
| 1332 | |
| 1333 | Cmnd->scsi_done = done; |
| 1334 | #ifdef DEBUG_CMND |
| 1335 | cpqfcTS_print_scsi_cmd( Cmnd); |
| 1336 | #endif |
| 1337 | |
| 1338 | // prevent board contention with kernel thread... |
| 1339 | |
| 1340 | if( cpqfcHBAdata->BoardLock ) |
| 1341 | { |
| 1342 | // printk(" @BrdLck Hld@ "); |
| 1343 | QueCmndOnBoardLock( cpqfcHBAdata, Cmnd); |
| 1344 | } |
| 1345 | |
| 1346 | else |
| 1347 | { |
| 1348 | |
| 1349 | // in the current system (2.2.12), this routine is called |
| 1350 | // after spin_lock_irqsave(), so INTs are disabled. However, |
| 1351 | // we might have something pending in the LinkQ, which |
| 1352 | // might cause the WorkerTask to run. In case that |
| 1353 | // happens, make sure we lock it out. |
| 1354 | |
| 1355 | |
| 1356 | |
| 1357 | PCI_TRACE( 0x98) |
| 1358 | CPQ_SPINLOCK_HBA( cpqfcHBAdata) |
| 1359 | PCI_TRACE( 0x98) |
| 1360 | |
| 1361 | // can we find an FC device mapping to this SCSI target? |
| 1362 | pLoggedInPort = fcFindLoggedInPort( fcChip, |
| 1363 | Cmnd, // search Scsi Nexus |
| 1364 | 0, // DON'T search linked list for FC port id |
| 1365 | NULL, // DON'T search linked list for FC WWN |
| 1366 | NULL); // DON'T care about end of list |
| 1367 | |
| 1368 | if( pLoggedInPort == NULL ) // not found! |
| 1369 | { |
| 1370 | // printk(" @Q bad targ cmnd %p@ ", Cmnd); |
| 1371 | QueBadTargetCmnd( cpqfcHBAdata, Cmnd); |
| 1372 | } |
| 1373 | else if (Cmnd->device->lun >= CPQFCTS_MAX_LUN) |
| 1374 | { |
| 1375 | printk(KERN_WARNING "cpqfc: Invalid LUN: %d\n", Cmnd->device->lun); |
| 1376 | QueBadTargetCmnd( cpqfcHBAdata, Cmnd); |
| 1377 | } |
| 1378 | |
| 1379 | else // we know what FC device to send to... |
| 1380 | { |
| 1381 | |
| 1382 | // does this device support FCP target functions? |
| 1383 | // (determined by PRLI field) |
| 1384 | |
| 1385 | if( !(pLoggedInPort->fcp_info & TARGET_FUNCTION) ) |
| 1386 | { |
| 1387 | printk(" Doesn't support TARGET functions port_id %Xh\n", |
| 1388 | pLoggedInPort->port_id ); |
| 1389 | QueBadTargetCmnd( cpqfcHBAdata, Cmnd); |
| 1390 | } |
| 1391 | |
| 1392 | // In this case (previous login OK), the device is temporarily |
| 1393 | // unavailable waiting for re-login, in which case we expect it |
| 1394 | // to be back in between 25 - 500ms. |
| 1395 | // If the FC port doesn't log back in within several seconds |
| 1396 | // (i.e. implicit "logout"), or we get an explicit logout, |
| 1397 | // we set "device_blocked" in Scsi_Device struct; in this |
| 1398 | // case 30 seconds will elapse before Linux/Scsi sends another |
| 1399 | // command to the device. |
| 1400 | else if( pLoggedInPort->prli != TRUE ) |
| 1401 | { |
| 1402 | // printk("Device (Chnl/Target %d/%d) invalid PRLI, port_id %06lXh\n", |
| 1403 | // Cmnd->channel, Cmnd->target, pLoggedInPort->port_id); |
| 1404 | QueLinkDownCmnd( cpqfcHBAdata, Cmnd); |
| 1405 | // Need to use "blocked" flag?? |
| 1406 | // Cmnd->device->device_blocked = TRUE; // just let it timeout |
| 1407 | } |
| 1408 | else // device supports TARGET functions, and is logged in... |
| 1409 | { |
| 1410 | // (context of fchs is to "reply" to...) |
| 1411 | fchs.s_id = pLoggedInPort->port_id; // destination FC address |
| 1412 | |
| 1413 | // what is the data direction? For data TO the device, |
| 1414 | // we need IWE (Intiator Write Entry). Otherwise, IRE. |
| 1415 | |
| 1416 | if( Cmnd->cmnd[0] == WRITE_10 || |
| 1417 | Cmnd->cmnd[0] == WRITE_6 || |
| 1418 | Cmnd->cmnd[0] == WRITE_BUFFER || |
| 1419 | Cmnd->cmnd[0] == VENDOR_WRITE_OPCODE || // CPQ specific |
| 1420 | Cmnd->cmnd[0] == MODE_SELECT ) |
| 1421 | { |
| 1422 | SESTtype = SCSI_IWE; // data from HBA to Device |
| 1423 | } |
| 1424 | else |
| 1425 | SESTtype = SCSI_IRE; // data from Device to HBA |
| 1426 | |
| 1427 | ulStatus = cpqfcTSBuildExchange( |
| 1428 | cpqfcHBAdata, |
| 1429 | SESTtype, // e.g. Initiator Read Entry (IRE) |
| 1430 | &fchs, // we are originator; only use d_id |
| 1431 | Cmnd, // Linux SCSI command (with scatter/gather list) |
| 1432 | &ExchangeID );// fcController->fcExchanges index, -1 if failed |
| 1433 | |
| 1434 | if( !ulStatus ) // Exchange setup? |
| 1435 | |
| 1436 | { |
| 1437 | if( cpqfcHBAdata->BoardLock ) |
| 1438 | { |
| 1439 | TriggerHBA( fcChip->Registers.ReMapMemBase, 0); |
| 1440 | printk(" @bl! %d, xID %Xh@ ", current->pid, ExchangeID); |
| 1441 | } |
| 1442 | |
| 1443 | ulStatus = cpqfcTSStartExchange( cpqfcHBAdata, ExchangeID ); |
| 1444 | if( !ulStatus ) |
| 1445 | { |
| 1446 | PCI_TRACEO( ExchangeID, 0xB8) |
| 1447 | // submitted to Tach's Outbound Que (ERQ PI incremented) |
| 1448 | // waited for completion for ELS type (Login frames issued |
| 1449 | // synchronously) |
| 1450 | } |
| 1451 | else |
| 1452 | // check reason for Exchange not being started - we might |
| 1453 | // want to Queue and start later, or fail with error |
| 1454 | { |
| 1455 | printk("quecommand: cpqfcTSStartExchange failed: %Xh\n", ulStatus ); |
| 1456 | } |
| 1457 | } // end good BuildExchange status |
| 1458 | |
| 1459 | else // SEST table probably full -- why? hardware hang? |
| 1460 | { |
| 1461 | printk("quecommand: cpqfcTSBuildExchange faild: %Xh\n", ulStatus); |
| 1462 | } |
| 1463 | } // end can't do FCP-SCSI target functions |
| 1464 | } // end can't find target (FC device) |
| 1465 | |
| 1466 | CPQ_SPINUNLOCK_HBA( cpqfcHBAdata) |
| 1467 | } |
| 1468 | |
| 1469 | PCI_TRACEO( (ULONG)Cmnd, 0x9C) |
| 1470 | LEAVE("cpqfcTS_queuecommand"); |
| 1471 | return 0; |
| 1472 | } |
| 1473 | |
| 1474 | |
| 1475 | // Entry point for upper Scsi layer intiated abort. Typically |
| 1476 | // this is called if the command (for hard disk) fails to complete |
| 1477 | // in 30 seconds. This driver intends to complete all disk commands |
| 1478 | // within Exchange ".timeOut" seconds (now 7) with target status, or |
| 1479 | // in case of ".timeOut" expiration, a DID_SOFT_ERROR which causes |
| 1480 | // immediate retry. |
| 1481 | // If any disk commands get the _abort call, except for the case that |
| 1482 | // the physical device was removed or unavailable due to hardware |
| 1483 | // errors, it should be considered a driver error and reported to |
| 1484 | // the author. |
| 1485 | |
| 1486 | int cpqfcTS_abort(Scsi_Cmnd *Cmnd) |
| 1487 | { |
| 1488 | // printk(" cpqfcTS_abort called?? \n"); |
| 1489 | return 0; |
| 1490 | } |
| 1491 | |
| 1492 | int cpqfcTS_eh_abort(Scsi_Cmnd *Cmnd) |
| 1493 | { |
| 1494 | |
| 1495 | struct Scsi_Host *HostAdapter = Cmnd->device->host; |
| 1496 | // get the pointer to our Scsi layer HBA buffer |
| 1497 | CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata; |
| 1498 | PTACHYON fcChip = &cpqfcHBAdata->fcChip; |
| 1499 | FC_EXCHANGES *Exchanges = fcChip->Exchanges; |
| 1500 | int i; |
| 1501 | ENTER("cpqfcTS_eh_abort"); |
| 1502 | |
| 1503 | Cmnd->result = DID_ABORT <<16; // assume we'll find it |
| 1504 | |
| 1505 | printk(" @Linux _abort Scsi_Cmnd %p ", Cmnd); |
| 1506 | // See if we can find a Cmnd pointer that matches... |
| 1507 | // The most likely case is we accepted the command |
| 1508 | // from Linux Scsi (e.g. ceated a SEST entry) and it |
| 1509 | // got lost somehow. If we can't find any reference |
| 1510 | // to the passed pointer, we can only presume it |
| 1511 | // got completed as far as our driver is concerned. |
| 1512 | // If we found it, we will try to abort it through |
| 1513 | // common mechanism. If FC ABTS is successful (ACC) |
| 1514 | // or is rejected (RJT) by target, we will call |
| 1515 | // Scsi "done" quickly. Otherwise, the ABTS will timeout |
| 1516 | // and we'll call "done" later. |
| 1517 | |
| 1518 | // Search the SEST exchanges for a matching Cmnd ptr. |
| 1519 | for( i=0; i< TACH_SEST_LEN; i++) |
| 1520 | { |
| 1521 | if( Exchanges->fcExchange[i].Cmnd == Cmnd ) |
| 1522 | { |
| 1523 | |
| 1524 | // found it! |
| 1525 | printk(" x_ID %Xh, type %Xh\n", i, Exchanges->fcExchange[i].type); |
| 1526 | |
| 1527 | Exchanges->fcExchange[i].status = INITIATOR_ABORT; // seconds default |
| 1528 | Exchanges->fcExchange[i].timeOut = 10; // seconds default (changed later) |
| 1529 | |
| 1530 | // Since we need to immediately return the aborted Cmnd to Scsi |
| 1531 | // upper layers, we can't make future reference to any of its |
| 1532 | // fields (e.g the Nexus). |
| 1533 | |
| 1534 | cpqfcTSPutLinkQue( cpqfcHBAdata, BLS_ABTS, &i); |
| 1535 | |
| 1536 | break; |
| 1537 | } |
| 1538 | } |
| 1539 | |
| 1540 | if( i >= TACH_SEST_LEN ) // didn't find Cmnd ptr in chip's SEST? |
| 1541 | { |
| 1542 | // now search our non-SEST buffers (i.e. Cmnd waiting to |
| 1543 | // start on the HBA or waiting to complete with error for retry). |
| 1544 | |
| 1545 | // first check BadTargetCmnd |
| 1546 | for( i=0; i< CPQFCTS_MAX_TARGET_ID; i++) |
| 1547 | { |
| 1548 | if( cpqfcHBAdata->BadTargetCmnd[i] == Cmnd ) |
| 1549 | { |
| 1550 | cpqfcHBAdata->BadTargetCmnd[i] = NULL; |
| 1551 | printk("in BadTargetCmnd Q\n"); |
| 1552 | goto Done; // exit |
| 1553 | } |
| 1554 | } |
| 1555 | |
| 1556 | // if not found above... |
| 1557 | |
| 1558 | for( i=0; i < CPQFCTS_REQ_QUEUE_LEN; i++) |
| 1559 | { |
| 1560 | if( cpqfcHBAdata->LinkDnCmnd[i] == Cmnd ) |
| 1561 | { |
| 1562 | cpqfcHBAdata->LinkDnCmnd[i] = NULL; |
| 1563 | printk("in LinkDnCmnd Q\n"); |
| 1564 | goto Done; |
| 1565 | } |
| 1566 | } |
| 1567 | |
| 1568 | |
| 1569 | for( i=0; i< CPQFCTS_REQ_QUEUE_LEN; i++) |
| 1570 | { // find spare slot |
| 1571 | if( cpqfcHBAdata->BoardLockCmnd[i] == Cmnd ) |
| 1572 | { |
| 1573 | cpqfcHBAdata->BoardLockCmnd[i] = NULL; |
| 1574 | printk("in BoardLockCmnd Q\n"); |
| 1575 | goto Done; |
| 1576 | } |
| 1577 | } |
| 1578 | |
| 1579 | Cmnd->result = DID_ERROR <<16; // Hmmm... |
| 1580 | printk("Not found! "); |
| 1581 | // panic("_abort"); |
| 1582 | } |
| 1583 | |
| 1584 | Done: |
| 1585 | |
| 1586 | // panic("_abort"); |
| 1587 | LEAVE("cpqfcTS_eh_abort"); |
| 1588 | return 0; // (see scsi.h) |
| 1589 | } |
| 1590 | |
| 1591 | |
| 1592 | // FCP-SCSI Target Device Reset |
| 1593 | // See dpANS Fibre Channel Protocol for SCSI |
| 1594 | // X3.269-199X revision 12, pg 25 |
| 1595 | |
| 1596 | #ifdef SUPPORT_RESET |
| 1597 | |
| 1598 | int cpqfcTS_TargetDeviceReset( Scsi_Device *ScsiDev, |
| 1599 | unsigned int reset_flags) |
| 1600 | { |
| 1601 | int timeout = 10*HZ; |
| 1602 | int retries = 1; |
| 1603 | char scsi_cdb[12]; |
| 1604 | int result; |
| 1605 | Scsi_Cmnd * SCpnt; |
| 1606 | Scsi_Device * SDpnt; |
| 1607 | |
| 1608 | // FIXME, cpqfcTS_TargetDeviceReset needs to be fixed |
| 1609 | // similarly to how the passthrough ioctl was fixed |
| 1610 | // around the 2.5.30 kernel. Scsi_Cmnd replaced with |
| 1611 | // Scsi_Request, etc. |
| 1612 | // For now, so people don't fall into a hole... |
| 1613 | |
| 1614 | // printk(" ENTERING cpqfcTS_TargetDeviceReset() - flag=%d \n",reset_flags); |
| 1615 | |
| 1616 | if (ScsiDev->host->eh_active) return FAILED; |
| 1617 | |
| 1618 | memset( scsi_cdb, 0, sizeof( scsi_cdb)); |
| 1619 | |
| 1620 | scsi_cdb[0] = RELEASE; |
| 1621 | |
| 1622 | SCpnt = scsi_get_command(ScsiDev, GFP_KERNEL); |
| 1623 | { |
| 1624 | CPQFC_DECLARE_COMPLETION(wait); |
| 1625 | |
| 1626 | SCpnt->SCp.buffers_residual = FCP_TARGET_RESET; |
| 1627 | |
| 1628 | // FIXME: this would panic, SCpnt->request would be NULL. |
| 1629 | SCpnt->request->CPQFC_WAITING = &wait; |
| 1630 | scsi_do_cmd(SCpnt, scsi_cdb, NULL, 0, my_ioctl_done, timeout, retries); |
| 1631 | CPQFC_WAIT_FOR_COMPLETION(&wait); |
| 1632 | SCpnt->request->CPQFC_WAITING = NULL; |
| 1633 | } |
| 1634 | |
| 1635 | |
| 1636 | if(driver_byte(SCpnt->result) != 0) |
| 1637 | switch(SCpnt->sense_buffer[2] & 0xf) { |
| 1638 | case ILLEGAL_REQUEST: |
| 1639 | if(cmd[0] == ALLOW_MEDIUM_REMOVAL) dev->lockable = 0; |
| 1640 | else printk("SCSI device (ioctl) reports ILLEGAL REQUEST.\n"); |
| 1641 | break; |
| 1642 | case NOT_READY: // This happens if there is no disc in drive |
| 1643 | if(dev->removable && (cmd[0] != TEST_UNIT_READY)){ |
| 1644 | printk(KERN_INFO "Device not ready. Make sure there is a disc in the drive.\n"); |
| 1645 | break; |
| 1646 | } |
| 1647 | case UNIT_ATTENTION: |
| 1648 | if (dev->removable){ |
| 1649 | dev->changed = 1; |
| 1650 | SCpnt->result = 0; // This is no longer considered an error |
| 1651 | // gag this error, VFS will log it anyway /axboe |
| 1652 | // printk(KERN_INFO "Disc change detected.\n"); |
| 1653 | break; |
| 1654 | }; |
| 1655 | default: // Fall through for non-removable media |
| 1656 | printk("SCSI error: host %d id %d lun %d return code = %x\n", |
| 1657 | dev->host->host_no, |
| 1658 | dev->id, |
| 1659 | dev->lun, |
| 1660 | SCpnt->result); |
| 1661 | printk("\tSense class %x, sense error %x, extended sense %x\n", |
| 1662 | sense_class(SCpnt->sense_buffer[0]), |
| 1663 | sense_error(SCpnt->sense_buffer[0]), |
| 1664 | SCpnt->sense_buffer[2] & 0xf); |
| 1665 | |
| 1666 | }; |
| 1667 | result = SCpnt->result; |
| 1668 | |
| 1669 | SDpnt = SCpnt->device; |
| 1670 | scsi_put_command(SCpnt); |
| 1671 | SCpnt = NULL; |
| 1672 | |
| 1673 | // printk(" LEAVING cpqfcTS_TargetDeviceReset() - return SUCCESS \n"); |
| 1674 | return SUCCESS; |
| 1675 | } |
| 1676 | |
| 1677 | #else |
| 1678 | int cpqfcTS_TargetDeviceReset( Scsi_Device *ScsiDev, |
| 1679 | unsigned int reset_flags) |
| 1680 | { |
| 1681 | return -ENOTSUPP; |
| 1682 | } |
| 1683 | |
| 1684 | #endif /* SUPPORT_RESET */ |
| 1685 | |
| 1686 | int cpqfcTS_eh_device_reset(Scsi_Cmnd *Cmnd) |
| 1687 | { |
| 1688 | int retval; |
| 1689 | Scsi_Device *SDpnt = Cmnd->device; |
| 1690 | // printk(" ENTERING cpqfcTS_eh_device_reset() \n"); |
| 1691 | spin_unlock_irq(Cmnd->device->host->host_lock); |
| 1692 | retval = cpqfcTS_TargetDeviceReset( SDpnt, 0); |
| 1693 | spin_lock_irq(Cmnd->device->host->host_lock); |
| 1694 | return retval; |
| 1695 | } |
| 1696 | |
| 1697 | |
| 1698 | int cpqfcTS_reset(Scsi_Cmnd *Cmnd, unsigned int reset_flags) |
| 1699 | { |
| 1700 | |
| 1701 | ENTER("cpqfcTS_reset"); |
| 1702 | |
| 1703 | LEAVE("cpqfcTS_reset"); |
| 1704 | return SCSI_RESET_ERROR; /* Bus Reset Not supported */ |
| 1705 | } |
| 1706 | |
| 1707 | /* This function determines the bios parameters for a given |
| 1708 | harddisk. These tend to be numbers that are made up by the |
| 1709 | host adapter. Parameters: |
| 1710 | size, device number, list (heads, sectors,cylinders). |
| 1711 | (from hosts.h) |
| 1712 | */ |
| 1713 | |
| 1714 | int cpqfcTS_biosparam(struct scsi_device *sdev, struct block_device *n, |
| 1715 | sector_t capacity, int ip[]) |
| 1716 | { |
| 1717 | int size = capacity; |
| 1718 | |
| 1719 | ENTER("cpqfcTS_biosparam"); |
| 1720 | ip[0] = 64; |
| 1721 | ip[1] = 32; |
| 1722 | ip[2] = size >> 11; |
| 1723 | |
| 1724 | if( ip[2] > 1024 ) |
| 1725 | { |
| 1726 | ip[0] = 255; |
| 1727 | ip[1] = 63; |
| 1728 | ip[2] = size / (ip[0] * ip[1]); |
| 1729 | } |
| 1730 | |
| 1731 | LEAVE("cpqfcTS_biosparam"); |
| 1732 | return 0; |
| 1733 | } |
| 1734 | |
| 1735 | |
| 1736 | |
| 1737 | irqreturn_t cpqfcTS_intr_handler( int irq, |
| 1738 | void *dev_id, |
| 1739 | struct pt_regs *regs) |
| 1740 | { |
| 1741 | |
| 1742 | unsigned long flags, InfLoopBrk=0; |
| 1743 | struct Scsi_Host *HostAdapter = dev_id; |
| 1744 | CPQFCHBA *cpqfcHBA = (CPQFCHBA *)HostAdapter->hostdata; |
| 1745 | int MoreMessages = 1; // assume we have something to do |
| 1746 | UCHAR IntPending; |
| 1747 | int handled = 0; |
| 1748 | |
| 1749 | ENTER("intr_handler"); |
| 1750 | spin_lock_irqsave( HostAdapter->host_lock, flags); |
| 1751 | // is this our INT? |
| 1752 | IntPending = readb( cpqfcHBA->fcChip.Registers.INTPEND.address); |
| 1753 | |
| 1754 | // broken boards can generate messages forever, so |
| 1755 | // prevent the infinite loop |
| 1756 | #define INFINITE_IMQ_BREAK 10000 |
| 1757 | if( IntPending ) |
| 1758 | { |
| 1759 | handled = 1; |
| 1760 | // mask our HBA interrupts until we handle it... |
| 1761 | writeb( 0, cpqfcHBA->fcChip.Registers.INTEN.address); |
| 1762 | |
| 1763 | if( IntPending & 0x4) // "INT" - Tach wrote to IMQ |
| 1764 | { |
| 1765 | while( (++InfLoopBrk < INFINITE_IMQ_BREAK) && (MoreMessages ==1) ) |
| 1766 | { |
| 1767 | MoreMessages = CpqTsProcessIMQEntry( HostAdapter); // ret 0 when done |
| 1768 | } |
| 1769 | if( InfLoopBrk >= INFINITE_IMQ_BREAK ) |
| 1770 | { |
| 1771 | printk("WARNING: Compaq FC adapter generating excessive INTs -REPLACE\n"); |
| 1772 | printk("or investigate alternate causes (e.g. physical FC layer)\n"); |
| 1773 | } |
| 1774 | |
| 1775 | else // working normally - re-enable INTs and continue |
| 1776 | writeb( 0x1F, cpqfcHBA->fcChip.Registers.INTEN.address); |
| 1777 | |
| 1778 | } // (...ProcessIMQEntry() clears INT by writing IMQ consumer) |
| 1779 | else // indications of errors or problems... |
| 1780 | // these usually indicate critical system hardware problems. |
| 1781 | { |
| 1782 | if( IntPending & 0x10 ) |
| 1783 | printk(" cpqfcTS adapter external memory parity error detected\n"); |
| 1784 | if( IntPending & 0x8 ) |
| 1785 | printk(" cpqfcTS adapter PCI master address crossed 45-bit boundary\n"); |
| 1786 | if( IntPending & 0x2 ) |
| 1787 | printk(" cpqfcTS adapter DMA error detected\n"); |
| 1788 | if( IntPending & 0x1 ) { |
| 1789 | UCHAR IntStat; |
| 1790 | printk(" cpqfcTS adapter PCI error detected\n"); |
| 1791 | IntStat = readb( cpqfcHBA->fcChip.Registers.INTSTAT.address); |
| 1792 | printk("cpqfc: ISR = 0x%02x\n", IntStat); |
| 1793 | if (IntStat & 0x1) { |
| 1794 | __u16 pcistat; |
| 1795 | /* read the pci status register */ |
| 1796 | pci_read_config_word(cpqfcHBA->PciDev, 0x06, &pcistat); |
| 1797 | printk("PCI status register is 0x%04x\n", pcistat); |
| 1798 | if (pcistat & 0x8000) printk("Parity Error Detected.\n"); |
| 1799 | if (pcistat & 0x4000) printk("Signalled System Error\n"); |
| 1800 | if (pcistat & 0x2000) printk("Received Master Abort\n"); |
| 1801 | if (pcistat & 0x1000) printk("Received Target Abort\n"); |
| 1802 | if (pcistat & 0x0800) printk("Signalled Target Abort\n"); |
| 1803 | } |
| 1804 | if (IntStat & 0x4) printk("(INT)\n"); |
| 1805 | if (IntStat & 0x8) |
| 1806 | printk("CRS: PCI master address crossed 46 bit bouandary\n"); |
| 1807 | if (IntStat & 0x10) printk("MRE: external memory parity error.\n"); |
| 1808 | } |
| 1809 | } |
| 1810 | } |
| 1811 | spin_unlock_irqrestore( HostAdapter->host_lock, flags); |
| 1812 | LEAVE("intr_handler"); |
| 1813 | return IRQ_RETVAL(handled); |
| 1814 | } |
| 1815 | |
| 1816 | |
| 1817 | |
| 1818 | |
| 1819 | int cpqfcTSDecodeGBICtype( PTACHYON fcChip, char cErrorString[]) |
| 1820 | { |
| 1821 | // Verify GBIC type (if any) and correct Tachyon Port State Machine |
| 1822 | // (GBIC) module definition is: |
| 1823 | // GPIO1, GPIO0, GPIO4 for MD2, MD1, MD0. The input states appear |
| 1824 | // to be inverted -- i.e., a setting of 111 is read when there is NO |
| 1825 | // GBIC present. The Module Def (MD) spec says 000 is "no GBIC" |
| 1826 | // Hard code the bit states to detect Copper, |
| 1827 | // Long wave (single mode), Short wave (multi-mode), and absent GBIC |
| 1828 | |
| 1829 | ULONG ulBuff; |
| 1830 | |
| 1831 | sprintf( cErrorString, "\nGBIC detected: "); |
| 1832 | |
| 1833 | ulBuff = fcChip->Registers.TYstatus.value & 0x13; |
| 1834 | switch( ulBuff ) |
| 1835 | { |
| 1836 | case 0x13: // GPIO4, GPIO1, GPIO0 = 111; no GBIC! |
| 1837 | sprintf( &cErrorString[ strlen( cErrorString)], |
| 1838 | "NONE! "); |
| 1839 | return FALSE; |
| 1840 | |
| 1841 | |
| 1842 | case 0x11: // Copper GBIC detected |
| 1843 | sprintf( &cErrorString[ strlen( cErrorString)], |
| 1844 | "Copper. "); |
| 1845 | break; |
| 1846 | |
| 1847 | case 0x10: // Long-wave (single mode) GBIC detected |
| 1848 | sprintf( &cErrorString[ strlen( cErrorString)], |
| 1849 | "Long-wave. "); |
| 1850 | break; |
| 1851 | case 0x1: // Short-wave (multi mode) GBIC detected |
| 1852 | sprintf( &cErrorString[ strlen( cErrorString)], |
| 1853 | "Short-wave. "); |
| 1854 | break; |
| 1855 | default: // unknown GBIC - presumably it will work (?) |
| 1856 | sprintf( &cErrorString[ strlen( cErrorString)], |
| 1857 | "Unknown. "); |
| 1858 | |
| 1859 | break; |
| 1860 | } // end switch GBIC detection |
| 1861 | |
| 1862 | return TRUE; |
| 1863 | } |
| 1864 | |
| 1865 | |
| 1866 | |
| 1867 | |
| 1868 | |
| 1869 | |
| 1870 | int cpqfcTSGetLPSM( PTACHYON fcChip, char cErrorString[]) |
| 1871 | { |
| 1872 | // Tachyon's Frame Manager LPSM in LinkDown state? |
| 1873 | // (For non-loop port, check PSM instead.) |
| 1874 | // return string with state and FALSE is Link Down |
| 1875 | |
| 1876 | int LinkUp; |
| 1877 | |
| 1878 | if( fcChip->Registers.FMstatus.value & 0x80 ) |
| 1879 | LinkUp = FALSE; |
| 1880 | else |
| 1881 | LinkUp = TRUE; |
| 1882 | |
| 1883 | sprintf( &cErrorString[ strlen( cErrorString)], |
| 1884 | " LPSM %Xh ", |
| 1885 | (fcChip->Registers.FMstatus.value >>4) & 0xf ); |
| 1886 | |
| 1887 | |
| 1888 | switch( fcChip->Registers.FMstatus.value & 0xF0) |
| 1889 | { |
| 1890 | // bits set in LPSM |
| 1891 | case 0x10: |
| 1892 | sprintf( &cErrorString[ strlen( cErrorString)], "ARB"); |
| 1893 | break; |
| 1894 | case 0x20: |
| 1895 | sprintf( &cErrorString[ strlen( cErrorString)], "ARBwon"); |
| 1896 | break; |
| 1897 | case 0x30: |
| 1898 | sprintf( &cErrorString[ strlen( cErrorString)], "OPEN"); |
| 1899 | break; |
| 1900 | case 0x40: |
| 1901 | sprintf( &cErrorString[ strlen( cErrorString)], "OPENed"); |
| 1902 | break; |
| 1903 | case 0x50: |
| 1904 | sprintf( &cErrorString[ strlen( cErrorString)], "XmitCLS"); |
| 1905 | break; |
| 1906 | case 0x60: |
| 1907 | sprintf( &cErrorString[ strlen( cErrorString)], "RxCLS"); |
| 1908 | break; |
| 1909 | case 0x70: |
| 1910 | sprintf( &cErrorString[ strlen( cErrorString)], "Xfer"); |
| 1911 | break; |
| 1912 | case 0x80: |
| 1913 | sprintf( &cErrorString[ strlen( cErrorString)], "Init"); |
| 1914 | break; |
| 1915 | case 0x90: |
| 1916 | sprintf( &cErrorString[ strlen( cErrorString)], "O-IInitFin"); |
| 1917 | break; |
| 1918 | case 0xa0: |
| 1919 | sprintf( &cErrorString[ strlen( cErrorString)], "O-IProtocol"); |
| 1920 | break; |
| 1921 | case 0xb0: |
| 1922 | sprintf( &cErrorString[ strlen( cErrorString)], "O-ILipRcvd"); |
| 1923 | break; |
| 1924 | case 0xc0: |
| 1925 | sprintf( &cErrorString[ strlen( cErrorString)], "HostControl"); |
| 1926 | break; |
| 1927 | case 0xd0: |
| 1928 | sprintf( &cErrorString[ strlen( cErrorString)], "LoopFail"); |
| 1929 | break; |
| 1930 | case 0xe0: |
| 1931 | sprintf( &cErrorString[ strlen( cErrorString)], "Offline"); |
| 1932 | break; |
| 1933 | case 0xf0: |
| 1934 | sprintf( &cErrorString[ strlen( cErrorString)], "OldPort"); |
| 1935 | break; |
| 1936 | case 0: |
| 1937 | default: |
| 1938 | sprintf( &cErrorString[ strlen( cErrorString)], "Monitor"); |
| 1939 | break; |
| 1940 | |
| 1941 | } |
| 1942 | |
| 1943 | return LinkUp; |
| 1944 | } |
| 1945 | |
| 1946 | |
| 1947 | |
| 1948 | |
| 1949 | #include "linux/slab.h" |
| 1950 | |
| 1951 | // Dynamic memory allocation alignment routines |
| 1952 | // HP's Tachyon Fibre Channel Controller chips require |
| 1953 | // certain memory queues and register pointers to be aligned |
| 1954 | // on various boundaries, usually the size of the Queue in question. |
| 1955 | // Alignment might be on 2, 4, 8, ... or even 512 byte boundaries. |
| 1956 | // Since most O/Ss don't allow this (usually only Cache aligned - |
| 1957 | // 32-byte boundary), these routines provide generic alignment (after |
| 1958 | // O/S allocation) at any boundary, and store the original allocated |
| 1959 | // pointer for deletion (O/S free function). Typically, we expect |
| 1960 | // these functions to only be called at HBA initialization and |
| 1961 | // removal time (load and unload times) |
| 1962 | // ALGORITHM notes: |
| 1963 | // Memory allocation varies by compiler and platform. In the worst case, |
| 1964 | // we are only assured BYTE alignment, but in the best case, we can |
| 1965 | // request allocation on any desired boundary. Our strategy: pad the |
| 1966 | // allocation request size (i.e. waste memory) so that we are assured |
| 1967 | // of passing desired boundary near beginning of contiguous space, then |
| 1968 | // mask out lower address bits. |
| 1969 | // We define the following algorithm: |
| 1970 | // allocBoundary - compiler/platform specific address alignment |
| 1971 | // in number of bytes (default is single byte; i.e. 1) |
| 1972 | // n_alloc - number of bytes application wants @ aligned address |
| 1973 | // ab - alignment boundary, in bytes (e.g. 4, 32, ...) |
| 1974 | // t_alloc - total allocation needed to ensure desired boundary |
| 1975 | // mask - to clear least significant address bits for boundary |
| 1976 | // Compute: |
| 1977 | // t_alloc = n_alloc + (ab - allocBoundary) |
| 1978 | // allocate t_alloc bytes @ alloc_address |
| 1979 | // mask = NOT (ab - 1) |
| 1980 | // (e.g. if ab=32 _0001 1111 -> _1110 0000 |
| 1981 | // aligned_address = alloc_address & mask |
| 1982 | // set n_alloc bytes to 0 |
| 1983 | // return aligned_address (NULL if failed) |
| 1984 | // |
| 1985 | // If u32_AlignedAddress is non-zero, then search for BaseAddress (stored |
| 1986 | // from previous allocation). If found, invoke call to FREE the memory. |
| 1987 | // Return NULL if BaseAddress not found |
| 1988 | |
| 1989 | // we need about 8 allocations per HBA. Figuring at most 10 HBAs per server |
| 1990 | // size the dynamic_mem array at 80. |
| 1991 | |
| 1992 | void* fcMemManager( struct pci_dev *pdev, ALIGNED_MEM *dynamic_mem, |
| 1993 | ULONG n_alloc, ULONG ab, ULONG u32_AlignedAddress, |
| 1994 | dma_addr_t *dma_handle) |
| 1995 | { |
| 1996 | USHORT allocBoundary=1; // compiler specific - worst case 1 |
| 1997 | // best case - replace malloc() call |
| 1998 | // with function that allocates exactly |
| 1999 | // at desired boundary |
| 2000 | |
| 2001 | unsigned long ulAddress; |
| 2002 | ULONG t_alloc, i; |
| 2003 | void *alloc_address = 0; // def. error code / address not found |
| 2004 | LONG mask; // must be 32-bits wide! |
| 2005 | |
| 2006 | ENTER("fcMemManager"); |
| 2007 | if( u32_AlignedAddress ) // are we freeing existing memory? |
| 2008 | { |
| 2009 | // printk(" freeing AlignedAddress %Xh\n", u32_AlignedAddress); |
| 2010 | for( i=0; i<DYNAMIC_ALLOCATIONS; i++) // look for the base address |
| 2011 | { |
| 2012 | // printk("dynamic_mem[%u].AlignedAddress %lX\n", i, dynamic_mem[i].AlignedAddress); |
| 2013 | if( dynamic_mem[i].AlignedAddress == u32_AlignedAddress ) |
| 2014 | { |
| 2015 | alloc_address = dynamic_mem[i].BaseAllocated; // 'success' status |
| 2016 | pci_free_consistent(pdev,dynamic_mem[i].size, |
| 2017 | alloc_address, |
| 2018 | dynamic_mem[i].dma_handle); |
| 2019 | dynamic_mem[i].BaseAllocated = 0; // clear for next use |
| 2020 | dynamic_mem[i].AlignedAddress = 0; |
| 2021 | dynamic_mem[i].size = 0; |
| 2022 | break; // quit for loop; done |
| 2023 | } |
| 2024 | } |
| 2025 | } |
| 2026 | else if( n_alloc ) // want new memory? |
| 2027 | { |
| 2028 | dma_addr_t handle; |
| 2029 | t_alloc = n_alloc + (ab - allocBoundary); // pad bytes for alignment |
| 2030 | // printk("pci_alloc_consistent() for Tach alignment: %ld bytes\n", t_alloc); |
| 2031 | |
| 2032 | // (would like to) allow thread block to free pages |
| 2033 | alloc_address = // total bytes (NumberOfBytes) |
| 2034 | pci_alloc_consistent(pdev, t_alloc, &handle); |
| 2035 | |
| 2036 | // now mask off least sig. bits of address |
| 2037 | if( alloc_address ) // (only if non-NULL) |
| 2038 | { |
| 2039 | // find place to store ptr, so we |
| 2040 | // can free it later... |
| 2041 | |
| 2042 | mask = (LONG)(ab - 1); // mask all low-order bits |
| 2043 | mask = ~mask; // invert bits |
| 2044 | for( i=0; i<DYNAMIC_ALLOCATIONS; i++) // look for free slot |
| 2045 | { |
| 2046 | if( dynamic_mem[i].BaseAllocated == 0) // take 1st available |
| 2047 | { |
| 2048 | dynamic_mem[i].BaseAllocated = alloc_address;// address from O/S |
| 2049 | dynamic_mem[i].dma_handle = handle; |
| 2050 | if (dma_handle != NULL) |
| 2051 | { |
| 2052 | // printk("handle = %p, ab=%d, boundary = %d, mask=0x%08x\n", |
| 2053 | // handle, ab, allocBoundary, mask); |
| 2054 | *dma_handle = (dma_addr_t) |
| 2055 | ((((ULONG)handle) + (ab - allocBoundary)) & mask); |
| 2056 | } |
| 2057 | dynamic_mem[i].size = t_alloc; |
| 2058 | break; |
| 2059 | } |
| 2060 | } |
| 2061 | ulAddress = (unsigned long)alloc_address; |
| 2062 | |
| 2063 | ulAddress += (ab - allocBoundary); // add the alignment bytes- |
| 2064 | // then truncate address... |
| 2065 | alloc_address = (void*)(ulAddress & mask); |
| 2066 | |
| 2067 | dynamic_mem[i].AlignedAddress = |
| 2068 | (ULONG)(ulAddress & mask); // 32bit Tach address |
| 2069 | memset( alloc_address, 0, n_alloc ); // clear new memory |
| 2070 | } |
| 2071 | else // O/S dynamic mem alloc failed! |
| 2072 | alloc_address = 0; // (for debugging breakpt) |
| 2073 | |
| 2074 | } |
| 2075 | |
| 2076 | LEAVE("fcMemManager"); |
| 2077 | return alloc_address; // good (or NULL) address |
| 2078 | } |
| 2079 | |
| 2080 | |
| 2081 | static Scsi_Host_Template driver_template = { |
| 2082 | .detect = cpqfcTS_detect, |
| 2083 | .release = cpqfcTS_release, |
| 2084 | .info = cpqfcTS_info, |
| 2085 | .proc_info = cpqfcTS_proc_info, |
| 2086 | .ioctl = cpqfcTS_ioctl, |
| 2087 | .queuecommand = cpqfcTS_queuecommand, |
| 2088 | .eh_device_reset_handler = cpqfcTS_eh_device_reset, |
| 2089 | .eh_abort_handler = cpqfcTS_eh_abort, |
| 2090 | .bios_param = cpqfcTS_biosparam, |
| 2091 | .can_queue = CPQFCTS_REQ_QUEUE_LEN, |
| 2092 | .this_id = -1, |
| 2093 | .sg_tablesize = SG_ALL, |
| 2094 | .cmd_per_lun = CPQFCTS_CMD_PER_LUN, |
| 2095 | .use_clustering = ENABLE_CLUSTERING, |
| 2096 | }; |
| 2097 | #include "scsi_module.c" |
| 2098 | |