Jason Wessel | 5d5314d | 2010-05-20 21:04:20 -0500 | [diff] [blame] | 1 | /* |
| 2 | * Kernel Debugger Architecture Independent Support Functions |
| 3 | * |
| 4 | * This file is subject to the terms and conditions of the GNU General Public |
| 5 | * License. See the file "COPYING" in the main directory of this archive |
| 6 | * for more details. |
| 7 | * |
| 8 | * Copyright (c) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. |
| 9 | * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. |
| 10 | * 03/02/13 added new 2.5 kallsyms <xavier.bru@bull.net> |
| 11 | */ |
| 12 | |
| 13 | #include <stdarg.h> |
| 14 | #include <linux/types.h> |
| 15 | #include <linux/sched.h> |
| 16 | #include <linux/mm.h> |
| 17 | #include <linux/kallsyms.h> |
| 18 | #include <linux/stddef.h> |
| 19 | #include <linux/vmalloc.h> |
| 20 | #include <linux/ptrace.h> |
| 21 | #include <linux/module.h> |
| 22 | #include <linux/highmem.h> |
| 23 | #include <linux/hardirq.h> |
| 24 | #include <linux/delay.h> |
| 25 | #include <linux/uaccess.h> |
| 26 | #include <linux/kdb.h> |
| 27 | #include <linux/slab.h> |
| 28 | #include "kdb_private.h" |
| 29 | |
| 30 | /* |
| 31 | * kdbgetsymval - Return the address of the given symbol. |
| 32 | * |
| 33 | * Parameters: |
| 34 | * symname Character string containing symbol name |
| 35 | * symtab Structure to receive results |
| 36 | * Returns: |
| 37 | * 0 Symbol not found, symtab zero filled |
| 38 | * 1 Symbol mapped to module/symbol/section, data in symtab |
| 39 | */ |
| 40 | int kdbgetsymval(const char *symname, kdb_symtab_t *symtab) |
| 41 | { |
| 42 | if (KDB_DEBUG(AR)) |
| 43 | kdb_printf("kdbgetsymval: symname=%s, symtab=%p\n", symname, |
| 44 | symtab); |
| 45 | memset(symtab, 0, sizeof(*symtab)); |
| 46 | symtab->sym_start = kallsyms_lookup_name(symname); |
| 47 | if (symtab->sym_start) { |
| 48 | if (KDB_DEBUG(AR)) |
| 49 | kdb_printf("kdbgetsymval: returns 1, " |
| 50 | "symtab->sym_start=0x%lx\n", |
| 51 | symtab->sym_start); |
| 52 | return 1; |
| 53 | } |
| 54 | if (KDB_DEBUG(AR)) |
| 55 | kdb_printf("kdbgetsymval: returns 0\n"); |
| 56 | return 0; |
| 57 | } |
| 58 | EXPORT_SYMBOL(kdbgetsymval); |
| 59 | |
| 60 | static char *kdb_name_table[100]; /* arbitrary size */ |
| 61 | |
| 62 | /* |
| 63 | * kdbnearsym - Return the name of the symbol with the nearest address |
| 64 | * less than 'addr'. |
| 65 | * |
| 66 | * Parameters: |
| 67 | * addr Address to check for symbol near |
| 68 | * symtab Structure to receive results |
| 69 | * Returns: |
| 70 | * 0 No sections contain this address, symtab zero filled |
| 71 | * 1 Address mapped to module/symbol/section, data in symtab |
| 72 | * Remarks: |
| 73 | * 2.6 kallsyms has a "feature" where it unpacks the name into a |
| 74 | * string. If that string is reused before the caller expects it |
| 75 | * then the caller sees its string change without warning. To |
| 76 | * avoid cluttering up the main kdb code with lots of kdb_strdup, |
| 77 | * tests and kfree calls, kdbnearsym maintains an LRU list of the |
| 78 | * last few unique strings. The list is sized large enough to |
| 79 | * hold active strings, no kdb caller of kdbnearsym makes more |
| 80 | * than ~20 later calls before using a saved value. |
| 81 | */ |
| 82 | int kdbnearsym(unsigned long addr, kdb_symtab_t *symtab) |
| 83 | { |
| 84 | int ret = 0; |
Jason Wessel | b590cdd | 2010-08-16 15:58:29 -0500 | [diff] [blame] | 85 | unsigned long symbolsize = 0; |
| 86 | unsigned long offset = 0; |
Jason Wessel | 5d5314d | 2010-05-20 21:04:20 -0500 | [diff] [blame] | 87 | #define knt1_size 128 /* must be >= kallsyms table size */ |
| 88 | char *knt1 = NULL; |
| 89 | |
| 90 | if (KDB_DEBUG(AR)) |
| 91 | kdb_printf("kdbnearsym: addr=0x%lx, symtab=%p\n", addr, symtab); |
| 92 | memset(symtab, 0, sizeof(*symtab)); |
| 93 | |
| 94 | if (addr < 4096) |
| 95 | goto out; |
| 96 | knt1 = debug_kmalloc(knt1_size, GFP_ATOMIC); |
| 97 | if (!knt1) { |
| 98 | kdb_printf("kdbnearsym: addr=0x%lx cannot kmalloc knt1\n", |
| 99 | addr); |
| 100 | goto out; |
| 101 | } |
| 102 | symtab->sym_name = kallsyms_lookup(addr, &symbolsize , &offset, |
| 103 | (char **)(&symtab->mod_name), knt1); |
| 104 | if (offset > 8*1024*1024) { |
| 105 | symtab->sym_name = NULL; |
| 106 | addr = offset = symbolsize = 0; |
| 107 | } |
| 108 | symtab->sym_start = addr - offset; |
| 109 | symtab->sym_end = symtab->sym_start + symbolsize; |
| 110 | ret = symtab->sym_name != NULL && *(symtab->sym_name) != '\0'; |
| 111 | |
| 112 | if (ret) { |
| 113 | int i; |
| 114 | /* Another 2.6 kallsyms "feature". Sometimes the sym_name is |
| 115 | * set but the buffer passed into kallsyms_lookup is not used, |
| 116 | * so it contains garbage. The caller has to work out which |
| 117 | * buffer needs to be saved. |
| 118 | * |
| 119 | * What was Rusty smoking when he wrote that code? |
| 120 | */ |
| 121 | if (symtab->sym_name != knt1) { |
| 122 | strncpy(knt1, symtab->sym_name, knt1_size); |
| 123 | knt1[knt1_size-1] = '\0'; |
| 124 | } |
| 125 | for (i = 0; i < ARRAY_SIZE(kdb_name_table); ++i) { |
| 126 | if (kdb_name_table[i] && |
| 127 | strcmp(kdb_name_table[i], knt1) == 0) |
| 128 | break; |
| 129 | } |
| 130 | if (i >= ARRAY_SIZE(kdb_name_table)) { |
| 131 | debug_kfree(kdb_name_table[0]); |
| 132 | memcpy(kdb_name_table, kdb_name_table+1, |
| 133 | sizeof(kdb_name_table[0]) * |
| 134 | (ARRAY_SIZE(kdb_name_table)-1)); |
| 135 | } else { |
| 136 | debug_kfree(knt1); |
| 137 | knt1 = kdb_name_table[i]; |
| 138 | memcpy(kdb_name_table+i, kdb_name_table+i+1, |
| 139 | sizeof(kdb_name_table[0]) * |
| 140 | (ARRAY_SIZE(kdb_name_table)-i-1)); |
| 141 | } |
| 142 | i = ARRAY_SIZE(kdb_name_table) - 1; |
| 143 | kdb_name_table[i] = knt1; |
| 144 | symtab->sym_name = kdb_name_table[i]; |
| 145 | knt1 = NULL; |
| 146 | } |
| 147 | |
| 148 | if (symtab->mod_name == NULL) |
| 149 | symtab->mod_name = "kernel"; |
| 150 | if (KDB_DEBUG(AR)) |
| 151 | kdb_printf("kdbnearsym: returns %d symtab->sym_start=0x%lx, " |
| 152 | "symtab->mod_name=%p, symtab->sym_name=%p (%s)\n", ret, |
| 153 | symtab->sym_start, symtab->mod_name, symtab->sym_name, |
| 154 | symtab->sym_name); |
| 155 | |
| 156 | out: |
| 157 | debug_kfree(knt1); |
| 158 | return ret; |
| 159 | } |
| 160 | |
| 161 | void kdbnearsym_cleanup(void) |
| 162 | { |
| 163 | int i; |
| 164 | for (i = 0; i < ARRAY_SIZE(kdb_name_table); ++i) { |
| 165 | if (kdb_name_table[i]) { |
| 166 | debug_kfree(kdb_name_table[i]); |
| 167 | kdb_name_table[i] = NULL; |
| 168 | } |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | static char ks_namebuf[KSYM_NAME_LEN+1], ks_namebuf_prev[KSYM_NAME_LEN+1]; |
| 173 | |
| 174 | /* |
| 175 | * kallsyms_symbol_complete |
| 176 | * |
| 177 | * Parameters: |
| 178 | * prefix_name prefix of a symbol name to lookup |
| 179 | * max_len maximum length that can be returned |
| 180 | * Returns: |
| 181 | * Number of symbols which match the given prefix. |
| 182 | * Notes: |
| 183 | * prefix_name is changed to contain the longest unique prefix that |
| 184 | * starts with this prefix (tab completion). |
| 185 | */ |
| 186 | int kallsyms_symbol_complete(char *prefix_name, int max_len) |
| 187 | { |
| 188 | loff_t pos = 0; |
| 189 | int prefix_len = strlen(prefix_name), prev_len = 0; |
| 190 | int i, number = 0; |
| 191 | const char *name; |
| 192 | |
| 193 | while ((name = kdb_walk_kallsyms(&pos))) { |
| 194 | if (strncmp(name, prefix_name, prefix_len) == 0) { |
| 195 | strcpy(ks_namebuf, name); |
| 196 | /* Work out the longest name that matches the prefix */ |
| 197 | if (++number == 1) { |
| 198 | prev_len = min_t(int, max_len-1, |
| 199 | strlen(ks_namebuf)); |
| 200 | memcpy(ks_namebuf_prev, ks_namebuf, prev_len); |
| 201 | ks_namebuf_prev[prev_len] = '\0'; |
| 202 | continue; |
| 203 | } |
| 204 | for (i = 0; i < prev_len; i++) { |
| 205 | if (ks_namebuf[i] != ks_namebuf_prev[i]) { |
| 206 | prev_len = i; |
| 207 | ks_namebuf_prev[i] = '\0'; |
| 208 | break; |
| 209 | } |
| 210 | } |
| 211 | } |
| 212 | } |
| 213 | if (prev_len > prefix_len) |
| 214 | memcpy(prefix_name, ks_namebuf_prev, prev_len+1); |
| 215 | return number; |
| 216 | } |
| 217 | |
| 218 | /* |
| 219 | * kallsyms_symbol_next |
| 220 | * |
| 221 | * Parameters: |
| 222 | * prefix_name prefix of a symbol name to lookup |
| 223 | * flag 0 means search from the head, 1 means continue search. |
| 224 | * Returns: |
| 225 | * 1 if a symbol matches the given prefix. |
| 226 | * 0 if no string found |
| 227 | */ |
| 228 | int kallsyms_symbol_next(char *prefix_name, int flag) |
| 229 | { |
| 230 | int prefix_len = strlen(prefix_name); |
| 231 | static loff_t pos; |
| 232 | const char *name; |
| 233 | |
| 234 | if (!flag) |
| 235 | pos = 0; |
| 236 | |
| 237 | while ((name = kdb_walk_kallsyms(&pos))) { |
| 238 | if (strncmp(name, prefix_name, prefix_len) == 0) { |
| 239 | strncpy(prefix_name, name, strlen(name)+1); |
| 240 | return 1; |
| 241 | } |
| 242 | } |
| 243 | return 0; |
| 244 | } |
| 245 | |
| 246 | /* |
| 247 | * kdb_symbol_print - Standard method for printing a symbol name and offset. |
| 248 | * Inputs: |
| 249 | * addr Address to be printed. |
| 250 | * symtab Address of symbol data, if NULL this routine does its |
| 251 | * own lookup. |
| 252 | * punc Punctuation for string, bit field. |
| 253 | * Remarks: |
| 254 | * The string and its punctuation is only printed if the address |
| 255 | * is inside the kernel, except that the value is always printed |
| 256 | * when requested. |
| 257 | */ |
| 258 | void kdb_symbol_print(unsigned long addr, const kdb_symtab_t *symtab_p, |
| 259 | unsigned int punc) |
| 260 | { |
| 261 | kdb_symtab_t symtab, *symtab_p2; |
| 262 | if (symtab_p) { |
| 263 | symtab_p2 = (kdb_symtab_t *)symtab_p; |
| 264 | } else { |
| 265 | symtab_p2 = &symtab; |
| 266 | kdbnearsym(addr, symtab_p2); |
| 267 | } |
| 268 | if (!(symtab_p2->sym_name || (punc & KDB_SP_VALUE))) |
| 269 | return; |
| 270 | if (punc & KDB_SP_SPACEB) |
| 271 | kdb_printf(" "); |
| 272 | if (punc & KDB_SP_VALUE) |
| 273 | kdb_printf(kdb_machreg_fmt0, addr); |
| 274 | if (symtab_p2->sym_name) { |
| 275 | if (punc & KDB_SP_VALUE) |
| 276 | kdb_printf(" "); |
| 277 | if (punc & KDB_SP_PAREN) |
| 278 | kdb_printf("("); |
| 279 | if (strcmp(symtab_p2->mod_name, "kernel")) |
| 280 | kdb_printf("[%s]", symtab_p2->mod_name); |
| 281 | kdb_printf("%s", symtab_p2->sym_name); |
| 282 | if (addr != symtab_p2->sym_start) |
| 283 | kdb_printf("+0x%lx", addr - symtab_p2->sym_start); |
| 284 | if (punc & KDB_SP_SYMSIZE) |
| 285 | kdb_printf("/0x%lx", |
| 286 | symtab_p2->sym_end - symtab_p2->sym_start); |
| 287 | if (punc & KDB_SP_PAREN) |
| 288 | kdb_printf(")"); |
| 289 | } |
| 290 | if (punc & KDB_SP_SPACEA) |
| 291 | kdb_printf(" "); |
| 292 | if (punc & KDB_SP_NEWLINE) |
| 293 | kdb_printf("\n"); |
| 294 | } |
| 295 | |
| 296 | /* |
| 297 | * kdb_strdup - kdb equivalent of strdup, for disasm code. |
| 298 | * Inputs: |
| 299 | * str The string to duplicate. |
| 300 | * type Flags to kmalloc for the new string. |
| 301 | * Returns: |
| 302 | * Address of the new string, NULL if storage could not be allocated. |
| 303 | * Remarks: |
| 304 | * This is not in lib/string.c because it uses kmalloc which is not |
| 305 | * available when string.o is used in boot loaders. |
| 306 | */ |
| 307 | char *kdb_strdup(const char *str, gfp_t type) |
| 308 | { |
| 309 | int n = strlen(str)+1; |
| 310 | char *s = kmalloc(n, type); |
| 311 | if (!s) |
| 312 | return NULL; |
| 313 | return strcpy(s, str); |
| 314 | } |
| 315 | |
| 316 | /* |
| 317 | * kdb_getarea_size - Read an area of data. The kdb equivalent of |
| 318 | * copy_from_user, with kdb messages for invalid addresses. |
| 319 | * Inputs: |
| 320 | * res Pointer to the area to receive the result. |
| 321 | * addr Address of the area to copy. |
| 322 | * size Size of the area. |
| 323 | * Returns: |
| 324 | * 0 for success, < 0 for error. |
| 325 | */ |
| 326 | int kdb_getarea_size(void *res, unsigned long addr, size_t size) |
| 327 | { |
| 328 | int ret = probe_kernel_read((char *)res, (char *)addr, size); |
| 329 | if (ret) { |
| 330 | if (!KDB_STATE(SUPPRESS)) { |
| 331 | kdb_printf("kdb_getarea: Bad address 0x%lx\n", addr); |
| 332 | KDB_STATE_SET(SUPPRESS); |
| 333 | } |
| 334 | ret = KDB_BADADDR; |
| 335 | } else { |
| 336 | KDB_STATE_CLEAR(SUPPRESS); |
| 337 | } |
| 338 | return ret; |
| 339 | } |
| 340 | |
| 341 | /* |
| 342 | * kdb_putarea_size - Write an area of data. The kdb equivalent of |
| 343 | * copy_to_user, with kdb messages for invalid addresses. |
| 344 | * Inputs: |
| 345 | * addr Address of the area to write to. |
| 346 | * res Pointer to the area holding the data. |
| 347 | * size Size of the area. |
| 348 | * Returns: |
| 349 | * 0 for success, < 0 for error. |
| 350 | */ |
| 351 | int kdb_putarea_size(unsigned long addr, void *res, size_t size) |
| 352 | { |
| 353 | int ret = probe_kernel_read((char *)addr, (char *)res, size); |
| 354 | if (ret) { |
| 355 | if (!KDB_STATE(SUPPRESS)) { |
| 356 | kdb_printf("kdb_putarea: Bad address 0x%lx\n", addr); |
| 357 | KDB_STATE_SET(SUPPRESS); |
| 358 | } |
| 359 | ret = KDB_BADADDR; |
| 360 | } else { |
| 361 | KDB_STATE_CLEAR(SUPPRESS); |
| 362 | } |
| 363 | return ret; |
| 364 | } |
| 365 | |
| 366 | /* |
| 367 | * kdb_getphys - Read data from a physical address. Validate the |
| 368 | * address is in range, use kmap_atomic() to get data |
| 369 | * similar to kdb_getarea() - but for phys addresses |
| 370 | * Inputs: |
| 371 | * res Pointer to the word to receive the result |
| 372 | * addr Physical address of the area to copy |
| 373 | * size Size of the area |
| 374 | * Returns: |
| 375 | * 0 for success, < 0 for error. |
| 376 | */ |
| 377 | static int kdb_getphys(void *res, unsigned long addr, size_t size) |
| 378 | { |
| 379 | unsigned long pfn; |
| 380 | void *vaddr; |
| 381 | struct page *page; |
| 382 | |
| 383 | pfn = (addr >> PAGE_SHIFT); |
| 384 | if (!pfn_valid(pfn)) |
| 385 | return 1; |
| 386 | page = pfn_to_page(pfn); |
Cong Wang | d762a50 | 2011-11-25 23:14:38 +0800 | [diff] [blame] | 387 | vaddr = kmap_atomic(page); |
Jason Wessel | 5d5314d | 2010-05-20 21:04:20 -0500 | [diff] [blame] | 388 | memcpy(res, vaddr + (addr & (PAGE_SIZE - 1)), size); |
Cong Wang | d762a50 | 2011-11-25 23:14:38 +0800 | [diff] [blame] | 389 | kunmap_atomic(vaddr); |
Jason Wessel | 5d5314d | 2010-05-20 21:04:20 -0500 | [diff] [blame] | 390 | |
| 391 | return 0; |
| 392 | } |
| 393 | |
| 394 | /* |
| 395 | * kdb_getphysword |
| 396 | * Inputs: |
| 397 | * word Pointer to the word to receive the result. |
| 398 | * addr Address of the area to copy. |
| 399 | * size Size of the area. |
| 400 | * Returns: |
| 401 | * 0 for success, < 0 for error. |
| 402 | */ |
| 403 | int kdb_getphysword(unsigned long *word, unsigned long addr, size_t size) |
| 404 | { |
| 405 | int diag; |
| 406 | __u8 w1; |
| 407 | __u16 w2; |
| 408 | __u32 w4; |
| 409 | __u64 w8; |
| 410 | *word = 0; /* Default value if addr or size is invalid */ |
| 411 | |
| 412 | switch (size) { |
| 413 | case 1: |
| 414 | diag = kdb_getphys(&w1, addr, sizeof(w1)); |
| 415 | if (!diag) |
| 416 | *word = w1; |
| 417 | break; |
| 418 | case 2: |
| 419 | diag = kdb_getphys(&w2, addr, sizeof(w2)); |
| 420 | if (!diag) |
| 421 | *word = w2; |
| 422 | break; |
| 423 | case 4: |
| 424 | diag = kdb_getphys(&w4, addr, sizeof(w4)); |
| 425 | if (!diag) |
| 426 | *word = w4; |
| 427 | break; |
| 428 | case 8: |
| 429 | if (size <= sizeof(*word)) { |
| 430 | diag = kdb_getphys(&w8, addr, sizeof(w8)); |
| 431 | if (!diag) |
| 432 | *word = w8; |
| 433 | break; |
| 434 | } |
| 435 | /* drop through */ |
| 436 | default: |
| 437 | diag = KDB_BADWIDTH; |
| 438 | kdb_printf("kdb_getphysword: bad width %ld\n", (long) size); |
| 439 | } |
| 440 | return diag; |
| 441 | } |
| 442 | |
| 443 | /* |
| 444 | * kdb_getword - Read a binary value. Unlike kdb_getarea, this treats |
| 445 | * data as numbers. |
| 446 | * Inputs: |
| 447 | * word Pointer to the word to receive the result. |
| 448 | * addr Address of the area to copy. |
| 449 | * size Size of the area. |
| 450 | * Returns: |
| 451 | * 0 for success, < 0 for error. |
| 452 | */ |
| 453 | int kdb_getword(unsigned long *word, unsigned long addr, size_t size) |
| 454 | { |
| 455 | int diag; |
| 456 | __u8 w1; |
| 457 | __u16 w2; |
| 458 | __u32 w4; |
| 459 | __u64 w8; |
| 460 | *word = 0; /* Default value if addr or size is invalid */ |
| 461 | switch (size) { |
| 462 | case 1: |
| 463 | diag = kdb_getarea(w1, addr); |
| 464 | if (!diag) |
| 465 | *word = w1; |
| 466 | break; |
| 467 | case 2: |
| 468 | diag = kdb_getarea(w2, addr); |
| 469 | if (!diag) |
| 470 | *word = w2; |
| 471 | break; |
| 472 | case 4: |
| 473 | diag = kdb_getarea(w4, addr); |
| 474 | if (!diag) |
| 475 | *word = w4; |
| 476 | break; |
| 477 | case 8: |
| 478 | if (size <= sizeof(*word)) { |
| 479 | diag = kdb_getarea(w8, addr); |
| 480 | if (!diag) |
| 481 | *word = w8; |
| 482 | break; |
| 483 | } |
| 484 | /* drop through */ |
| 485 | default: |
| 486 | diag = KDB_BADWIDTH; |
| 487 | kdb_printf("kdb_getword: bad width %ld\n", (long) size); |
| 488 | } |
| 489 | return diag; |
| 490 | } |
| 491 | |
| 492 | /* |
| 493 | * kdb_putword - Write a binary value. Unlike kdb_putarea, this |
| 494 | * treats data as numbers. |
| 495 | * Inputs: |
| 496 | * addr Address of the area to write to.. |
| 497 | * word The value to set. |
| 498 | * size Size of the area. |
| 499 | * Returns: |
| 500 | * 0 for success, < 0 for error. |
| 501 | */ |
| 502 | int kdb_putword(unsigned long addr, unsigned long word, size_t size) |
| 503 | { |
| 504 | int diag; |
| 505 | __u8 w1; |
| 506 | __u16 w2; |
| 507 | __u32 w4; |
| 508 | __u64 w8; |
| 509 | switch (size) { |
| 510 | case 1: |
| 511 | w1 = word; |
| 512 | diag = kdb_putarea(addr, w1); |
| 513 | break; |
| 514 | case 2: |
| 515 | w2 = word; |
| 516 | diag = kdb_putarea(addr, w2); |
| 517 | break; |
| 518 | case 4: |
| 519 | w4 = word; |
| 520 | diag = kdb_putarea(addr, w4); |
| 521 | break; |
| 522 | case 8: |
| 523 | if (size <= sizeof(word)) { |
| 524 | w8 = word; |
| 525 | diag = kdb_putarea(addr, w8); |
| 526 | break; |
| 527 | } |
| 528 | /* drop through */ |
| 529 | default: |
| 530 | diag = KDB_BADWIDTH; |
| 531 | kdb_printf("kdb_putword: bad width %ld\n", (long) size); |
| 532 | } |
| 533 | return diag; |
| 534 | } |
| 535 | |
| 536 | /* |
| 537 | * kdb_task_state_string - Convert a string containing any of the |
| 538 | * letters DRSTCZEUIMA to a mask for the process state field and |
| 539 | * return the value. If no argument is supplied, return the mask |
| 540 | * that corresponds to environment variable PS, DRSTCZEU by |
| 541 | * default. |
| 542 | * Inputs: |
| 543 | * s String to convert |
| 544 | * Returns: |
| 545 | * Mask for process state. |
| 546 | * Notes: |
| 547 | * The mask folds data from several sources into a single long value, so |
Lucas De Marchi | 25985ed | 2011-03-30 22:57:33 -0300 | [diff] [blame] | 548 | * be careful not to overlap the bits. TASK_* bits are in the LSB, |
Jason Wessel | 5d5314d | 2010-05-20 21:04:20 -0500 | [diff] [blame] | 549 | * special cases like UNRUNNABLE are in the MSB. As of 2.6.10-rc1 there |
| 550 | * is no overlap between TASK_* and EXIT_* but that may not always be |
| 551 | * true, so EXIT_* bits are shifted left 16 bits before being stored in |
| 552 | * the mask. |
| 553 | */ |
| 554 | |
| 555 | /* unrunnable is < 0 */ |
| 556 | #define UNRUNNABLE (1UL << (8*sizeof(unsigned long) - 1)) |
| 557 | #define RUNNING (1UL << (8*sizeof(unsigned long) - 2)) |
| 558 | #define IDLE (1UL << (8*sizeof(unsigned long) - 3)) |
| 559 | #define DAEMON (1UL << (8*sizeof(unsigned long) - 4)) |
| 560 | |
| 561 | unsigned long kdb_task_state_string(const char *s) |
| 562 | { |
| 563 | long res = 0; |
| 564 | if (!s) { |
| 565 | s = kdbgetenv("PS"); |
| 566 | if (!s) |
| 567 | s = "DRSTCZEU"; /* default value for ps */ |
| 568 | } |
| 569 | while (*s) { |
| 570 | switch (*s) { |
| 571 | case 'D': |
| 572 | res |= TASK_UNINTERRUPTIBLE; |
| 573 | break; |
| 574 | case 'R': |
| 575 | res |= RUNNING; |
| 576 | break; |
| 577 | case 'S': |
| 578 | res |= TASK_INTERRUPTIBLE; |
| 579 | break; |
| 580 | case 'T': |
| 581 | res |= TASK_STOPPED; |
| 582 | break; |
| 583 | case 'C': |
| 584 | res |= TASK_TRACED; |
| 585 | break; |
| 586 | case 'Z': |
| 587 | res |= EXIT_ZOMBIE << 16; |
| 588 | break; |
| 589 | case 'E': |
| 590 | res |= EXIT_DEAD << 16; |
| 591 | break; |
| 592 | case 'U': |
| 593 | res |= UNRUNNABLE; |
| 594 | break; |
| 595 | case 'I': |
| 596 | res |= IDLE; |
| 597 | break; |
| 598 | case 'M': |
| 599 | res |= DAEMON; |
| 600 | break; |
| 601 | case 'A': |
| 602 | res = ~0UL; |
| 603 | break; |
| 604 | default: |
| 605 | kdb_printf("%s: unknown flag '%c' ignored\n", |
| 606 | __func__, *s); |
| 607 | break; |
| 608 | } |
| 609 | ++s; |
| 610 | } |
| 611 | return res; |
| 612 | } |
| 613 | |
| 614 | /* |
| 615 | * kdb_task_state_char - Return the character that represents the task state. |
| 616 | * Inputs: |
| 617 | * p struct task for the process |
| 618 | * Returns: |
| 619 | * One character to represent the task state. |
| 620 | */ |
| 621 | char kdb_task_state_char (const struct task_struct *p) |
| 622 | { |
| 623 | int cpu; |
| 624 | char state; |
| 625 | unsigned long tmp; |
| 626 | |
| 627 | if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long))) |
| 628 | return 'E'; |
| 629 | |
| 630 | cpu = kdb_process_cpu(p); |
| 631 | state = (p->state == 0) ? 'R' : |
| 632 | (p->state < 0) ? 'U' : |
| 633 | (p->state & TASK_UNINTERRUPTIBLE) ? 'D' : |
| 634 | (p->state & TASK_STOPPED) ? 'T' : |
| 635 | (p->state & TASK_TRACED) ? 'C' : |
| 636 | (p->exit_state & EXIT_ZOMBIE) ? 'Z' : |
| 637 | (p->exit_state & EXIT_DEAD) ? 'E' : |
| 638 | (p->state & TASK_INTERRUPTIBLE) ? 'S' : '?'; |
Paul E. McKenney | 7fc20c5 | 2011-11-10 15:59:58 -0800 | [diff] [blame] | 639 | if (is_idle_task(p)) { |
Jason Wessel | 5d5314d | 2010-05-20 21:04:20 -0500 | [diff] [blame] | 640 | /* Idle task. Is it really idle, apart from the kdb |
| 641 | * interrupt? */ |
| 642 | if (!kdb_task_has_cpu(p) || kgdb_info[cpu].irq_depth == 1) { |
| 643 | if (cpu != kdb_initial_cpu) |
| 644 | state = 'I'; /* idle task */ |
| 645 | } |
| 646 | } else if (!p->mm && state == 'S') { |
| 647 | state = 'M'; /* sleeping system daemon */ |
| 648 | } |
| 649 | return state; |
| 650 | } |
| 651 | |
| 652 | /* |
| 653 | * kdb_task_state - Return true if a process has the desired state |
| 654 | * given by the mask. |
| 655 | * Inputs: |
| 656 | * p struct task for the process |
| 657 | * mask mask from kdb_task_state_string to select processes |
| 658 | * Returns: |
| 659 | * True if the process matches at least one criteria defined by the mask. |
| 660 | */ |
| 661 | unsigned long kdb_task_state(const struct task_struct *p, unsigned long mask) |
| 662 | { |
| 663 | char state[] = { kdb_task_state_char(p), '\0' }; |
| 664 | return (mask & kdb_task_state_string(state)) != 0; |
| 665 | } |
| 666 | |
| 667 | /* |
| 668 | * kdb_print_nameval - Print a name and its value, converting the |
| 669 | * value to a symbol lookup if possible. |
| 670 | * Inputs: |
| 671 | * name field name to print |
| 672 | * val value of field |
| 673 | */ |
| 674 | void kdb_print_nameval(const char *name, unsigned long val) |
| 675 | { |
| 676 | kdb_symtab_t symtab; |
| 677 | kdb_printf(" %-11.11s ", name); |
| 678 | if (kdbnearsym(val, &symtab)) |
| 679 | kdb_symbol_print(val, &symtab, |
| 680 | KDB_SP_VALUE|KDB_SP_SYMSIZE|KDB_SP_NEWLINE); |
| 681 | else |
| 682 | kdb_printf("0x%lx\n", val); |
| 683 | } |
| 684 | |
| 685 | /* Last ditch allocator for debugging, so we can still debug even when |
| 686 | * the GFP_ATOMIC pool has been exhausted. The algorithms are tuned |
| 687 | * for space usage, not for speed. One smallish memory pool, the free |
| 688 | * chain is always in ascending address order to allow coalescing, |
| 689 | * allocations are done in brute force best fit. |
| 690 | */ |
| 691 | |
| 692 | struct debug_alloc_header { |
| 693 | u32 next; /* offset of next header from start of pool */ |
| 694 | u32 size; |
| 695 | void *caller; |
| 696 | }; |
| 697 | |
| 698 | /* The memory returned by this allocator must be aligned, which means |
| 699 | * so must the header size. Do not assume that sizeof(struct |
| 700 | * debug_alloc_header) is a multiple of the alignment, explicitly |
| 701 | * calculate the overhead of this header, including the alignment. |
| 702 | * The rest of this code must not use sizeof() on any header or |
| 703 | * pointer to a header. |
| 704 | */ |
| 705 | #define dah_align 8 |
| 706 | #define dah_overhead ALIGN(sizeof(struct debug_alloc_header), dah_align) |
| 707 | |
| 708 | static u64 debug_alloc_pool_aligned[256*1024/dah_align]; /* 256K pool */ |
| 709 | static char *debug_alloc_pool = (char *)debug_alloc_pool_aligned; |
| 710 | static u32 dah_first, dah_first_call = 1, dah_used, dah_used_max; |
| 711 | |
| 712 | /* Locking is awkward. The debug code is called from all contexts, |
| 713 | * including non maskable interrupts. A normal spinlock is not safe |
| 714 | * in NMI context. Try to get the debug allocator lock, if it cannot |
| 715 | * be obtained after a second then give up. If the lock could not be |
| 716 | * previously obtained on this cpu then only try once. |
| 717 | * |
| 718 | * sparse has no annotation for "this function _sometimes_ acquires a |
| 719 | * lock", so fudge the acquire/release notation. |
| 720 | */ |
| 721 | static DEFINE_SPINLOCK(dap_lock); |
| 722 | static int get_dap_lock(void) |
| 723 | __acquires(dap_lock) |
| 724 | { |
| 725 | static int dap_locked = -1; |
| 726 | int count; |
| 727 | if (dap_locked == smp_processor_id()) |
| 728 | count = 1; |
| 729 | else |
| 730 | count = 1000; |
| 731 | while (1) { |
| 732 | if (spin_trylock(&dap_lock)) { |
| 733 | dap_locked = -1; |
| 734 | return 1; |
| 735 | } |
| 736 | if (!count--) |
| 737 | break; |
| 738 | udelay(1000); |
| 739 | } |
| 740 | dap_locked = smp_processor_id(); |
| 741 | __acquire(dap_lock); |
| 742 | return 0; |
| 743 | } |
| 744 | |
| 745 | void *debug_kmalloc(size_t size, gfp_t flags) |
| 746 | { |
| 747 | unsigned int rem, h_offset; |
| 748 | struct debug_alloc_header *best, *bestprev, *prev, *h; |
| 749 | void *p = NULL; |
| 750 | if (!get_dap_lock()) { |
| 751 | __release(dap_lock); /* we never actually got it */ |
| 752 | return NULL; |
| 753 | } |
| 754 | h = (struct debug_alloc_header *)(debug_alloc_pool + dah_first); |
| 755 | if (dah_first_call) { |
| 756 | h->size = sizeof(debug_alloc_pool_aligned) - dah_overhead; |
| 757 | dah_first_call = 0; |
| 758 | } |
| 759 | size = ALIGN(size, dah_align); |
| 760 | prev = best = bestprev = NULL; |
| 761 | while (1) { |
| 762 | if (h->size >= size && (!best || h->size < best->size)) { |
| 763 | best = h; |
| 764 | bestprev = prev; |
| 765 | if (h->size == size) |
| 766 | break; |
| 767 | } |
| 768 | if (!h->next) |
| 769 | break; |
| 770 | prev = h; |
| 771 | h = (struct debug_alloc_header *)(debug_alloc_pool + h->next); |
| 772 | } |
| 773 | if (!best) |
| 774 | goto out; |
| 775 | rem = best->size - size; |
| 776 | /* The pool must always contain at least one header */ |
| 777 | if (best->next == 0 && bestprev == NULL && rem < dah_overhead) |
| 778 | goto out; |
| 779 | if (rem >= dah_overhead) { |
| 780 | best->size = size; |
| 781 | h_offset = ((char *)best - debug_alloc_pool) + |
| 782 | dah_overhead + best->size; |
| 783 | h = (struct debug_alloc_header *)(debug_alloc_pool + h_offset); |
| 784 | h->size = rem - dah_overhead; |
| 785 | h->next = best->next; |
| 786 | } else |
| 787 | h_offset = best->next; |
| 788 | best->caller = __builtin_return_address(0); |
| 789 | dah_used += best->size; |
| 790 | dah_used_max = max(dah_used, dah_used_max); |
| 791 | if (bestprev) |
| 792 | bestprev->next = h_offset; |
| 793 | else |
| 794 | dah_first = h_offset; |
| 795 | p = (char *)best + dah_overhead; |
| 796 | memset(p, POISON_INUSE, best->size - 1); |
| 797 | *((char *)p + best->size - 1) = POISON_END; |
| 798 | out: |
| 799 | spin_unlock(&dap_lock); |
| 800 | return p; |
| 801 | } |
| 802 | |
| 803 | void debug_kfree(void *p) |
| 804 | { |
| 805 | struct debug_alloc_header *h; |
| 806 | unsigned int h_offset; |
| 807 | if (!p) |
| 808 | return; |
| 809 | if ((char *)p < debug_alloc_pool || |
| 810 | (char *)p >= debug_alloc_pool + sizeof(debug_alloc_pool_aligned)) { |
| 811 | kfree(p); |
| 812 | return; |
| 813 | } |
| 814 | if (!get_dap_lock()) { |
| 815 | __release(dap_lock); /* we never actually got it */ |
| 816 | return; /* memory leak, cannot be helped */ |
| 817 | } |
| 818 | h = (struct debug_alloc_header *)((char *)p - dah_overhead); |
| 819 | memset(p, POISON_FREE, h->size - 1); |
| 820 | *((char *)p + h->size - 1) = POISON_END; |
| 821 | h->caller = NULL; |
| 822 | dah_used -= h->size; |
| 823 | h_offset = (char *)h - debug_alloc_pool; |
| 824 | if (h_offset < dah_first) { |
| 825 | h->next = dah_first; |
| 826 | dah_first = h_offset; |
| 827 | } else { |
| 828 | struct debug_alloc_header *prev; |
| 829 | unsigned int prev_offset; |
| 830 | prev = (struct debug_alloc_header *)(debug_alloc_pool + |
| 831 | dah_first); |
| 832 | while (1) { |
| 833 | if (!prev->next || prev->next > h_offset) |
| 834 | break; |
| 835 | prev = (struct debug_alloc_header *) |
| 836 | (debug_alloc_pool + prev->next); |
| 837 | } |
| 838 | prev_offset = (char *)prev - debug_alloc_pool; |
| 839 | if (prev_offset + dah_overhead + prev->size == h_offset) { |
| 840 | prev->size += dah_overhead + h->size; |
| 841 | memset(h, POISON_FREE, dah_overhead - 1); |
| 842 | *((char *)h + dah_overhead - 1) = POISON_END; |
| 843 | h = prev; |
| 844 | h_offset = prev_offset; |
| 845 | } else { |
| 846 | h->next = prev->next; |
| 847 | prev->next = h_offset; |
| 848 | } |
| 849 | } |
| 850 | if (h_offset + dah_overhead + h->size == h->next) { |
| 851 | struct debug_alloc_header *next; |
| 852 | next = (struct debug_alloc_header *) |
| 853 | (debug_alloc_pool + h->next); |
| 854 | h->size += dah_overhead + next->size; |
| 855 | h->next = next->next; |
| 856 | memset(next, POISON_FREE, dah_overhead - 1); |
| 857 | *((char *)next + dah_overhead - 1) = POISON_END; |
| 858 | } |
| 859 | spin_unlock(&dap_lock); |
| 860 | } |
| 861 | |
| 862 | void debug_kusage(void) |
| 863 | { |
| 864 | struct debug_alloc_header *h_free, *h_used; |
| 865 | #ifdef CONFIG_IA64 |
| 866 | /* FIXME: using dah for ia64 unwind always results in a memory leak. |
| 867 | * Fix that memory leak first, then set debug_kusage_one_time = 1 for |
| 868 | * all architectures. |
| 869 | */ |
| 870 | static int debug_kusage_one_time; |
| 871 | #else |
| 872 | static int debug_kusage_one_time = 1; |
| 873 | #endif |
| 874 | if (!get_dap_lock()) { |
| 875 | __release(dap_lock); /* we never actually got it */ |
| 876 | return; |
| 877 | } |
| 878 | h_free = (struct debug_alloc_header *)(debug_alloc_pool + dah_first); |
| 879 | if (dah_first == 0 && |
| 880 | (h_free->size == sizeof(debug_alloc_pool_aligned) - dah_overhead || |
| 881 | dah_first_call)) |
| 882 | goto out; |
| 883 | if (!debug_kusage_one_time) |
| 884 | goto out; |
| 885 | debug_kusage_one_time = 0; |
| 886 | kdb_printf("%s: debug_kmalloc memory leak dah_first %d\n", |
| 887 | __func__, dah_first); |
| 888 | if (dah_first) { |
| 889 | h_used = (struct debug_alloc_header *)debug_alloc_pool; |
| 890 | kdb_printf("%s: h_used %p size %d\n", __func__, h_used, |
| 891 | h_used->size); |
| 892 | } |
| 893 | do { |
| 894 | h_used = (struct debug_alloc_header *) |
| 895 | ((char *)h_free + dah_overhead + h_free->size); |
| 896 | kdb_printf("%s: h_used %p size %d caller %p\n", |
| 897 | __func__, h_used, h_used->size, h_used->caller); |
| 898 | h_free = (struct debug_alloc_header *) |
| 899 | (debug_alloc_pool + h_free->next); |
| 900 | } while (h_free->next); |
| 901 | h_used = (struct debug_alloc_header *) |
| 902 | ((char *)h_free + dah_overhead + h_free->size); |
| 903 | if ((char *)h_used - debug_alloc_pool != |
| 904 | sizeof(debug_alloc_pool_aligned)) |
| 905 | kdb_printf("%s: h_used %p size %d caller %p\n", |
| 906 | __func__, h_used, h_used->size, h_used->caller); |
| 907 | out: |
| 908 | spin_unlock(&dap_lock); |
| 909 | } |
| 910 | |
| 911 | /* Maintain a small stack of kdb_flags to allow recursion without disturbing |
| 912 | * the global kdb state. |
| 913 | */ |
| 914 | |
| 915 | static int kdb_flags_stack[4], kdb_flags_index; |
| 916 | |
| 917 | void kdb_save_flags(void) |
| 918 | { |
| 919 | BUG_ON(kdb_flags_index >= ARRAY_SIZE(kdb_flags_stack)); |
| 920 | kdb_flags_stack[kdb_flags_index++] = kdb_flags; |
| 921 | } |
| 922 | |
| 923 | void kdb_restore_flags(void) |
| 924 | { |
| 925 | BUG_ON(kdb_flags_index <= 0); |
| 926 | kdb_flags = kdb_flags_stack[--kdb_flags_index]; |
| 927 | } |