Colin Cross | 4de3a8f | 2010-04-05 13:16:42 -0700 | [diff] [blame] | 1 | /* |
| 2 | * arch/arm/mach-tegra/dma.c |
| 3 | * |
| 4 | * System DMA driver for NVIDIA Tegra SoCs |
| 5 | * |
| 6 | * Copyright (c) 2008-2009, NVIDIA Corporation. |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify |
| 9 | * it under the terms of the GNU General Public License as published by |
| 10 | * the Free Software Foundation; either version 2 of the License, or |
| 11 | * (at your option) any later version. |
| 12 | * |
| 13 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 14 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 15 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 16 | * more details. |
| 17 | * |
| 18 | * You should have received a copy of the GNU General Public License along |
| 19 | * with this program; if not, write to the Free Software Foundation, Inc., |
| 20 | * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| 21 | */ |
| 22 | |
| 23 | #include <linux/io.h> |
| 24 | #include <linux/interrupt.h> |
| 25 | #include <linux/module.h> |
| 26 | #include <linux/spinlock.h> |
| 27 | #include <linux/err.h> |
| 28 | #include <linux/irq.h> |
| 29 | #include <linux/delay.h> |
| 30 | #include <mach/dma.h> |
| 31 | #include <mach/irqs.h> |
| 32 | #include <mach/iomap.h> |
| 33 | |
| 34 | #define APB_DMA_GEN 0x000 |
| 35 | #define GEN_ENABLE (1<<31) |
| 36 | |
| 37 | #define APB_DMA_CNTRL 0x010 |
| 38 | |
| 39 | #define APB_DMA_IRQ_MASK 0x01c |
| 40 | |
| 41 | #define APB_DMA_IRQ_MASK_SET 0x020 |
| 42 | |
| 43 | #define APB_DMA_CHAN_CSR 0x000 |
| 44 | #define CSR_ENB (1<<31) |
| 45 | #define CSR_IE_EOC (1<<30) |
| 46 | #define CSR_HOLD (1<<29) |
| 47 | #define CSR_DIR (1<<28) |
| 48 | #define CSR_ONCE (1<<27) |
| 49 | #define CSR_FLOW (1<<21) |
| 50 | #define CSR_REQ_SEL_SHIFT 16 |
| 51 | #define CSR_REQ_SEL_MASK (0x1F<<CSR_REQ_SEL_SHIFT) |
| 52 | #define CSR_REQ_SEL_INVALID (31<<CSR_REQ_SEL_SHIFT) |
| 53 | #define CSR_WCOUNT_SHIFT 2 |
| 54 | #define CSR_WCOUNT_MASK 0xFFFC |
| 55 | |
| 56 | #define APB_DMA_CHAN_STA 0x004 |
| 57 | #define STA_BUSY (1<<31) |
| 58 | #define STA_ISE_EOC (1<<30) |
| 59 | #define STA_HALT (1<<29) |
| 60 | #define STA_PING_PONG (1<<28) |
| 61 | #define STA_COUNT_SHIFT 2 |
| 62 | #define STA_COUNT_MASK 0xFFFC |
| 63 | |
| 64 | #define APB_DMA_CHAN_AHB_PTR 0x010 |
| 65 | |
| 66 | #define APB_DMA_CHAN_AHB_SEQ 0x014 |
| 67 | #define AHB_SEQ_INTR_ENB (1<<31) |
| 68 | #define AHB_SEQ_BUS_WIDTH_SHIFT 28 |
| 69 | #define AHB_SEQ_BUS_WIDTH_MASK (0x7<<AHB_SEQ_BUS_WIDTH_SHIFT) |
| 70 | #define AHB_SEQ_BUS_WIDTH_8 (0<<AHB_SEQ_BUS_WIDTH_SHIFT) |
| 71 | #define AHB_SEQ_BUS_WIDTH_16 (1<<AHB_SEQ_BUS_WIDTH_SHIFT) |
| 72 | #define AHB_SEQ_BUS_WIDTH_32 (2<<AHB_SEQ_BUS_WIDTH_SHIFT) |
| 73 | #define AHB_SEQ_BUS_WIDTH_64 (3<<AHB_SEQ_BUS_WIDTH_SHIFT) |
| 74 | #define AHB_SEQ_BUS_WIDTH_128 (4<<AHB_SEQ_BUS_WIDTH_SHIFT) |
| 75 | #define AHB_SEQ_DATA_SWAP (1<<27) |
| 76 | #define AHB_SEQ_BURST_MASK (0x7<<24) |
| 77 | #define AHB_SEQ_BURST_1 (4<<24) |
| 78 | #define AHB_SEQ_BURST_4 (5<<24) |
| 79 | #define AHB_SEQ_BURST_8 (6<<24) |
| 80 | #define AHB_SEQ_DBL_BUF (1<<19) |
| 81 | #define AHB_SEQ_WRAP_SHIFT 16 |
| 82 | #define AHB_SEQ_WRAP_MASK (0x7<<AHB_SEQ_WRAP_SHIFT) |
| 83 | |
| 84 | #define APB_DMA_CHAN_APB_PTR 0x018 |
| 85 | |
| 86 | #define APB_DMA_CHAN_APB_SEQ 0x01c |
| 87 | #define APB_SEQ_BUS_WIDTH_SHIFT 28 |
| 88 | #define APB_SEQ_BUS_WIDTH_MASK (0x7<<APB_SEQ_BUS_WIDTH_SHIFT) |
| 89 | #define APB_SEQ_BUS_WIDTH_8 (0<<APB_SEQ_BUS_WIDTH_SHIFT) |
| 90 | #define APB_SEQ_BUS_WIDTH_16 (1<<APB_SEQ_BUS_WIDTH_SHIFT) |
| 91 | #define APB_SEQ_BUS_WIDTH_32 (2<<APB_SEQ_BUS_WIDTH_SHIFT) |
| 92 | #define APB_SEQ_BUS_WIDTH_64 (3<<APB_SEQ_BUS_WIDTH_SHIFT) |
| 93 | #define APB_SEQ_BUS_WIDTH_128 (4<<APB_SEQ_BUS_WIDTH_SHIFT) |
| 94 | #define APB_SEQ_DATA_SWAP (1<<27) |
| 95 | #define APB_SEQ_WRAP_SHIFT 16 |
| 96 | #define APB_SEQ_WRAP_MASK (0x7<<APB_SEQ_WRAP_SHIFT) |
| 97 | |
| 98 | #define TEGRA_SYSTEM_DMA_CH_NR 16 |
| 99 | #define TEGRA_SYSTEM_DMA_AVP_CH_NUM 4 |
| 100 | #define TEGRA_SYSTEM_DMA_CH_MIN 0 |
| 101 | #define TEGRA_SYSTEM_DMA_CH_MAX \ |
| 102 | (TEGRA_SYSTEM_DMA_CH_NR - TEGRA_SYSTEM_DMA_AVP_CH_NUM - 1) |
| 103 | |
| 104 | #define NV_DMA_MAX_TRASFER_SIZE 0x10000 |
| 105 | |
| 106 | const unsigned int ahb_addr_wrap_table[8] = { |
| 107 | 0, 32, 64, 128, 256, 512, 1024, 2048 |
| 108 | }; |
| 109 | |
| 110 | const unsigned int apb_addr_wrap_table[8] = {0, 1, 2, 4, 8, 16, 32, 64}; |
| 111 | |
| 112 | const unsigned int bus_width_table[5] = {8, 16, 32, 64, 128}; |
| 113 | |
| 114 | #define TEGRA_DMA_NAME_SIZE 16 |
| 115 | struct tegra_dma_channel { |
| 116 | struct list_head list; |
| 117 | int id; |
| 118 | spinlock_t lock; |
| 119 | char name[TEGRA_DMA_NAME_SIZE]; |
| 120 | void __iomem *addr; |
| 121 | int mode; |
| 122 | int irq; |
| 123 | |
| 124 | /* Register shadow */ |
| 125 | u32 csr; |
| 126 | u32 ahb_seq; |
| 127 | u32 ahb_ptr; |
| 128 | u32 apb_seq; |
| 129 | u32 apb_ptr; |
| 130 | }; |
| 131 | |
| 132 | #define NV_DMA_MAX_CHANNELS 32 |
| 133 | |
| 134 | static DECLARE_BITMAP(channel_usage, NV_DMA_MAX_CHANNELS); |
| 135 | static struct tegra_dma_channel dma_channels[NV_DMA_MAX_CHANNELS]; |
| 136 | |
| 137 | static void tegra_dma_update_hw(struct tegra_dma_channel *ch, |
| 138 | struct tegra_dma_req *req); |
| 139 | static void tegra_dma_update_hw_partial(struct tegra_dma_channel *ch, |
| 140 | struct tegra_dma_req *req); |
| 141 | static void tegra_dma_init_hw(struct tegra_dma_channel *ch); |
| 142 | static void tegra_dma_stop(struct tegra_dma_channel *ch); |
| 143 | |
| 144 | void tegra_dma_flush(struct tegra_dma_channel *ch) |
| 145 | { |
| 146 | } |
| 147 | EXPORT_SYMBOL(tegra_dma_flush); |
| 148 | |
| 149 | void tegra_dma_dequeue(struct tegra_dma_channel *ch) |
| 150 | { |
| 151 | struct tegra_dma_req *req; |
| 152 | |
| 153 | req = list_entry(ch->list.next, typeof(*req), node); |
| 154 | |
| 155 | tegra_dma_dequeue_req(ch, req); |
| 156 | return; |
| 157 | } |
| 158 | |
| 159 | void tegra_dma_stop(struct tegra_dma_channel *ch) |
| 160 | { |
| 161 | unsigned int csr; |
| 162 | unsigned int status; |
| 163 | |
| 164 | csr = ch->csr; |
| 165 | csr &= ~CSR_IE_EOC; |
| 166 | writel(csr, ch->addr + APB_DMA_CHAN_CSR); |
| 167 | |
| 168 | csr &= ~CSR_ENB; |
| 169 | writel(csr, ch->addr + APB_DMA_CHAN_CSR); |
| 170 | |
| 171 | status = readl(ch->addr + APB_DMA_CHAN_STA); |
| 172 | if (status & STA_ISE_EOC) |
| 173 | writel(status, ch->addr + APB_DMA_CHAN_STA); |
| 174 | } |
| 175 | |
| 176 | int tegra_dma_cancel(struct tegra_dma_channel *ch) |
| 177 | { |
| 178 | unsigned int csr; |
| 179 | unsigned long irq_flags; |
| 180 | |
| 181 | spin_lock_irqsave(&ch->lock, irq_flags); |
| 182 | while (!list_empty(&ch->list)) |
| 183 | list_del(ch->list.next); |
| 184 | |
| 185 | csr = ch->csr; |
| 186 | csr &= ~CSR_REQ_SEL_MASK; |
| 187 | csr |= CSR_REQ_SEL_INVALID; |
| 188 | |
| 189 | /* Set the enable as that is not shadowed */ |
| 190 | csr |= CSR_ENB; |
| 191 | writel(csr, ch->addr + APB_DMA_CHAN_CSR); |
| 192 | |
| 193 | tegra_dma_stop(ch); |
| 194 | |
| 195 | spin_unlock_irqrestore(&ch->lock, irq_flags); |
| 196 | return 0; |
| 197 | } |
| 198 | |
| 199 | int tegra_dma_dequeue_req(struct tegra_dma_channel *ch, |
| 200 | struct tegra_dma_req *_req) |
| 201 | { |
| 202 | unsigned int csr; |
| 203 | unsigned int status; |
| 204 | struct tegra_dma_req *req = NULL; |
| 205 | int found = 0; |
| 206 | unsigned long irq_flags; |
| 207 | int to_transfer; |
| 208 | int req_transfer_count; |
| 209 | |
| 210 | spin_lock_irqsave(&ch->lock, irq_flags); |
| 211 | list_for_each_entry(req, &ch->list, node) { |
| 212 | if (req == _req) { |
| 213 | list_del(&req->node); |
| 214 | found = 1; |
| 215 | break; |
| 216 | } |
| 217 | } |
| 218 | if (!found) { |
| 219 | spin_unlock_irqrestore(&ch->lock, irq_flags); |
| 220 | return 0; |
| 221 | } |
| 222 | |
| 223 | /* STOP the DMA and get the transfer count. |
| 224 | * Getting the transfer count is tricky. |
| 225 | * - Change the source selector to invalid to stop the DMA from |
| 226 | * FIFO to memory. |
| 227 | * - Read the status register to know the number of pending |
| 228 | * bytes to be transfered. |
| 229 | * - Finally stop or program the DMA to the next buffer in the |
| 230 | * list. |
| 231 | */ |
| 232 | csr = ch->csr; |
| 233 | csr &= ~CSR_REQ_SEL_MASK; |
| 234 | csr |= CSR_REQ_SEL_INVALID; |
| 235 | |
| 236 | /* Set the enable as that is not shadowed */ |
| 237 | csr |= CSR_ENB; |
| 238 | writel(csr, ch->addr + APB_DMA_CHAN_CSR); |
| 239 | |
| 240 | /* Get the transfer count */ |
| 241 | status = readl(ch->addr + APB_DMA_CHAN_STA); |
| 242 | to_transfer = (status & STA_COUNT_MASK) >> STA_COUNT_SHIFT; |
| 243 | req_transfer_count = (ch->csr & CSR_WCOUNT_MASK) >> CSR_WCOUNT_SHIFT; |
| 244 | req_transfer_count += 1; |
| 245 | to_transfer += 1; |
| 246 | |
| 247 | req->bytes_transferred = req_transfer_count; |
| 248 | |
| 249 | if (status & STA_BUSY) |
| 250 | req->bytes_transferred -= to_transfer; |
| 251 | |
| 252 | /* In continous transfer mode, DMA only tracks the count of the |
| 253 | * half DMA buffer. So, if the DMA already finished half the DMA |
| 254 | * then add the half buffer to the completed count. |
| 255 | * |
| 256 | * FIXME: There can be a race here. What if the req to |
| 257 | * dequue happens at the same time as the DMA just moved to |
| 258 | * the new buffer and SW didn't yet received the interrupt? |
| 259 | */ |
| 260 | if (ch->mode & TEGRA_DMA_MODE_CONTINOUS) |
| 261 | if (req->buffer_status == TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL) |
| 262 | req->bytes_transferred += req_transfer_count; |
| 263 | |
| 264 | req->bytes_transferred *= 4; |
| 265 | |
| 266 | tegra_dma_stop(ch); |
| 267 | if (!list_empty(&ch->list)) { |
| 268 | /* if the list is not empty, queue the next request */ |
| 269 | struct tegra_dma_req *next_req; |
| 270 | next_req = list_entry(ch->list.next, |
| 271 | typeof(*next_req), node); |
| 272 | tegra_dma_update_hw(ch, next_req); |
| 273 | } |
| 274 | req->status = -TEGRA_DMA_REQ_ERROR_ABORTED; |
| 275 | |
| 276 | spin_unlock_irqrestore(&ch->lock, irq_flags); |
| 277 | |
| 278 | /* Callback should be called without any lock */ |
| 279 | req->complete(req); |
| 280 | return 0; |
| 281 | } |
| 282 | EXPORT_SYMBOL(tegra_dma_dequeue_req); |
| 283 | |
| 284 | bool tegra_dma_is_empty(struct tegra_dma_channel *ch) |
| 285 | { |
| 286 | unsigned long irq_flags; |
| 287 | bool is_empty; |
| 288 | |
| 289 | spin_lock_irqsave(&ch->lock, irq_flags); |
| 290 | if (list_empty(&ch->list)) |
| 291 | is_empty = true; |
| 292 | else |
| 293 | is_empty = false; |
| 294 | spin_unlock_irqrestore(&ch->lock, irq_flags); |
| 295 | return is_empty; |
| 296 | } |
| 297 | EXPORT_SYMBOL(tegra_dma_is_empty); |
| 298 | |
| 299 | bool tegra_dma_is_req_inflight(struct tegra_dma_channel *ch, |
| 300 | struct tegra_dma_req *_req) |
| 301 | { |
| 302 | unsigned long irq_flags; |
| 303 | struct tegra_dma_req *req; |
| 304 | |
| 305 | spin_lock_irqsave(&ch->lock, irq_flags); |
| 306 | list_for_each_entry(req, &ch->list, node) { |
| 307 | if (req == _req) { |
| 308 | spin_unlock_irqrestore(&ch->lock, irq_flags); |
| 309 | return true; |
| 310 | } |
| 311 | } |
| 312 | spin_unlock_irqrestore(&ch->lock, irq_flags); |
| 313 | return false; |
| 314 | } |
| 315 | EXPORT_SYMBOL(tegra_dma_is_req_inflight); |
| 316 | |
| 317 | int tegra_dma_enqueue_req(struct tegra_dma_channel *ch, |
| 318 | struct tegra_dma_req *req) |
| 319 | { |
| 320 | unsigned long irq_flags; |
| 321 | int start_dma = 0; |
| 322 | |
| 323 | if (req->size > NV_DMA_MAX_TRASFER_SIZE || |
| 324 | req->source_addr & 0x3 || req->dest_addr & 0x3) { |
| 325 | pr_err("Invalid DMA request for channel %d\n", ch->id); |
| 326 | return -EINVAL; |
| 327 | } |
| 328 | |
| 329 | spin_lock_irqsave(&ch->lock, irq_flags); |
| 330 | |
| 331 | req->bytes_transferred = 0; |
| 332 | req->status = 0; |
| 333 | req->buffer_status = 0; |
| 334 | if (list_empty(&ch->list)) |
| 335 | start_dma = 1; |
| 336 | |
| 337 | list_add_tail(&req->node, &ch->list); |
| 338 | |
| 339 | if (start_dma) |
| 340 | tegra_dma_update_hw(ch, req); |
| 341 | |
| 342 | spin_unlock_irqrestore(&ch->lock, irq_flags); |
| 343 | |
| 344 | return 0; |
| 345 | } |
| 346 | EXPORT_SYMBOL(tegra_dma_enqueue_req); |
| 347 | |
| 348 | struct tegra_dma_channel *tegra_dma_allocate_channel(int mode) |
| 349 | { |
| 350 | int channel; |
| 351 | struct tegra_dma_channel *ch; |
| 352 | |
| 353 | /* first channel is the shared channel */ |
| 354 | if (mode & TEGRA_DMA_SHARED) { |
| 355 | channel = TEGRA_SYSTEM_DMA_CH_MIN; |
| 356 | } else { |
| 357 | channel = find_first_zero_bit(channel_usage, |
| 358 | ARRAY_SIZE(dma_channels)); |
| 359 | if (channel >= ARRAY_SIZE(dma_channels)) |
| 360 | return NULL; |
| 361 | } |
| 362 | __set_bit(channel, channel_usage); |
| 363 | ch = &dma_channels[channel]; |
| 364 | ch->mode = mode; |
| 365 | return ch; |
| 366 | } |
| 367 | EXPORT_SYMBOL(tegra_dma_allocate_channel); |
| 368 | |
| 369 | void tegra_dma_free_channel(struct tegra_dma_channel *ch) |
| 370 | { |
| 371 | if (ch->mode & TEGRA_DMA_SHARED) |
| 372 | return; |
| 373 | tegra_dma_cancel(ch); |
| 374 | __clear_bit(ch->id, channel_usage); |
| 375 | } |
| 376 | EXPORT_SYMBOL(tegra_dma_free_channel); |
| 377 | |
| 378 | static void tegra_dma_update_hw_partial(struct tegra_dma_channel *ch, |
| 379 | struct tegra_dma_req *req) |
| 380 | { |
| 381 | if (req->to_memory) { |
| 382 | ch->apb_ptr = req->source_addr; |
| 383 | ch->ahb_ptr = req->dest_addr; |
| 384 | } else { |
| 385 | ch->apb_ptr = req->dest_addr; |
| 386 | ch->ahb_ptr = req->source_addr; |
| 387 | } |
| 388 | writel(ch->apb_ptr, ch->addr + APB_DMA_CHAN_APB_PTR); |
| 389 | writel(ch->ahb_ptr, ch->addr + APB_DMA_CHAN_AHB_PTR); |
| 390 | |
| 391 | req->status = TEGRA_DMA_REQ_INFLIGHT; |
| 392 | return; |
| 393 | } |
| 394 | |
| 395 | static void tegra_dma_update_hw(struct tegra_dma_channel *ch, |
| 396 | struct tegra_dma_req *req) |
| 397 | { |
| 398 | int ahb_addr_wrap; |
| 399 | int apb_addr_wrap; |
| 400 | int ahb_bus_width; |
| 401 | int apb_bus_width; |
| 402 | int index; |
| 403 | unsigned long csr; |
| 404 | |
| 405 | |
| 406 | ch->csr |= CSR_FLOW; |
| 407 | ch->csr &= ~CSR_REQ_SEL_MASK; |
| 408 | ch->csr |= req->req_sel << CSR_REQ_SEL_SHIFT; |
| 409 | ch->ahb_seq &= ~AHB_SEQ_BURST_MASK; |
| 410 | ch->ahb_seq |= AHB_SEQ_BURST_1; |
| 411 | |
| 412 | /* One shot mode is always single buffered, |
| 413 | * continuous mode is always double buffered |
| 414 | * */ |
| 415 | if (ch->mode & TEGRA_DMA_MODE_ONESHOT) { |
| 416 | ch->csr |= CSR_ONCE; |
| 417 | ch->ahb_seq &= ~AHB_SEQ_DBL_BUF; |
| 418 | ch->csr &= ~CSR_WCOUNT_MASK; |
| 419 | ch->csr |= ((req->size>>2) - 1) << CSR_WCOUNT_SHIFT; |
| 420 | } else { |
| 421 | ch->csr &= ~CSR_ONCE; |
| 422 | ch->ahb_seq |= AHB_SEQ_DBL_BUF; |
| 423 | |
| 424 | /* In double buffered mode, we set the size to half the |
| 425 | * requested size and interrupt when half the buffer |
| 426 | * is full */ |
| 427 | ch->csr &= ~CSR_WCOUNT_MASK; |
| 428 | ch->csr |= ((req->size>>3) - 1) << CSR_WCOUNT_SHIFT; |
| 429 | } |
| 430 | |
| 431 | if (req->to_memory) { |
| 432 | ch->csr &= ~CSR_DIR; |
| 433 | ch->apb_ptr = req->source_addr; |
| 434 | ch->ahb_ptr = req->dest_addr; |
| 435 | |
| 436 | apb_addr_wrap = req->source_wrap; |
| 437 | ahb_addr_wrap = req->dest_wrap; |
| 438 | apb_bus_width = req->source_bus_width; |
| 439 | ahb_bus_width = req->dest_bus_width; |
| 440 | |
| 441 | } else { |
| 442 | ch->csr |= CSR_DIR; |
| 443 | ch->apb_ptr = req->dest_addr; |
| 444 | ch->ahb_ptr = req->source_addr; |
| 445 | |
| 446 | apb_addr_wrap = req->dest_wrap; |
| 447 | ahb_addr_wrap = req->source_wrap; |
| 448 | apb_bus_width = req->dest_bus_width; |
| 449 | ahb_bus_width = req->source_bus_width; |
| 450 | } |
| 451 | |
| 452 | apb_addr_wrap >>= 2; |
| 453 | ahb_addr_wrap >>= 2; |
| 454 | |
| 455 | /* set address wrap for APB size */ |
| 456 | index = 0; |
| 457 | do { |
| 458 | if (apb_addr_wrap_table[index] == apb_addr_wrap) |
| 459 | break; |
| 460 | index++; |
| 461 | } while (index < ARRAY_SIZE(apb_addr_wrap_table)); |
| 462 | BUG_ON(index == ARRAY_SIZE(apb_addr_wrap_table)); |
| 463 | ch->apb_seq &= ~APB_SEQ_WRAP_MASK; |
| 464 | ch->apb_seq |= index << APB_SEQ_WRAP_SHIFT; |
| 465 | |
| 466 | /* set address wrap for AHB size */ |
| 467 | index = 0; |
| 468 | do { |
| 469 | if (ahb_addr_wrap_table[index] == ahb_addr_wrap) |
| 470 | break; |
| 471 | index++; |
| 472 | } while (index < ARRAY_SIZE(ahb_addr_wrap_table)); |
| 473 | BUG_ON(index == ARRAY_SIZE(ahb_addr_wrap_table)); |
| 474 | ch->ahb_seq &= ~AHB_SEQ_WRAP_MASK; |
| 475 | ch->ahb_seq |= index << AHB_SEQ_WRAP_SHIFT; |
| 476 | |
| 477 | for (index = 0; index < ARRAY_SIZE(bus_width_table); index++) { |
| 478 | if (bus_width_table[index] == ahb_bus_width) |
| 479 | break; |
| 480 | } |
| 481 | BUG_ON(index == ARRAY_SIZE(bus_width_table)); |
| 482 | ch->ahb_seq &= ~AHB_SEQ_BUS_WIDTH_MASK; |
| 483 | ch->ahb_seq |= index << AHB_SEQ_BUS_WIDTH_SHIFT; |
| 484 | |
| 485 | for (index = 0; index < ARRAY_SIZE(bus_width_table); index++) { |
| 486 | if (bus_width_table[index] == apb_bus_width) |
| 487 | break; |
| 488 | } |
| 489 | BUG_ON(index == ARRAY_SIZE(bus_width_table)); |
| 490 | ch->apb_seq &= ~APB_SEQ_BUS_WIDTH_MASK; |
| 491 | ch->apb_seq |= index << APB_SEQ_BUS_WIDTH_SHIFT; |
| 492 | |
| 493 | ch->csr |= CSR_IE_EOC; |
| 494 | |
| 495 | /* update hw registers with the shadow */ |
| 496 | writel(ch->csr, ch->addr + APB_DMA_CHAN_CSR); |
| 497 | writel(ch->apb_seq, ch->addr + APB_DMA_CHAN_APB_SEQ); |
| 498 | writel(ch->apb_ptr, ch->addr + APB_DMA_CHAN_APB_PTR); |
| 499 | writel(ch->ahb_seq, ch->addr + APB_DMA_CHAN_AHB_SEQ); |
| 500 | writel(ch->ahb_ptr, ch->addr + APB_DMA_CHAN_AHB_PTR); |
| 501 | |
| 502 | csr = ch->csr | CSR_ENB; |
| 503 | writel(csr, ch->addr + APB_DMA_CHAN_CSR); |
| 504 | |
| 505 | req->status = TEGRA_DMA_REQ_INFLIGHT; |
| 506 | } |
| 507 | |
| 508 | static void tegra_dma_init_hw(struct tegra_dma_channel *ch) |
| 509 | { |
| 510 | /* One shot with an interrupt to CPU after transfer */ |
| 511 | ch->csr = CSR_ONCE | CSR_IE_EOC; |
| 512 | ch->ahb_seq = AHB_SEQ_BUS_WIDTH_32 | AHB_SEQ_INTR_ENB; |
| 513 | ch->apb_seq = APB_SEQ_BUS_WIDTH_32 | 1 << APB_SEQ_WRAP_SHIFT; |
| 514 | } |
| 515 | |
| 516 | static void handle_oneshot_dma(struct tegra_dma_channel *ch) |
| 517 | { |
| 518 | struct tegra_dma_req *req; |
| 519 | |
| 520 | spin_lock(&ch->lock); |
| 521 | if (list_empty(&ch->list)) { |
| 522 | spin_unlock(&ch->lock); |
| 523 | return; |
| 524 | } |
| 525 | |
| 526 | req = list_entry(ch->list.next, typeof(*req), node); |
| 527 | if (req) { |
| 528 | int bytes_transferred; |
| 529 | |
| 530 | bytes_transferred = |
| 531 | (ch->csr & CSR_WCOUNT_MASK) >> CSR_WCOUNT_SHIFT; |
| 532 | bytes_transferred += 1; |
| 533 | bytes_transferred <<= 2; |
| 534 | |
| 535 | list_del(&req->node); |
| 536 | req->bytes_transferred = bytes_transferred; |
| 537 | req->status = TEGRA_DMA_REQ_SUCCESS; |
| 538 | |
| 539 | spin_unlock(&ch->lock); |
| 540 | /* Callback should be called without any lock */ |
| 541 | pr_debug("%s: transferred %d bytes\n", __func__, |
| 542 | req->bytes_transferred); |
| 543 | req->complete(req); |
| 544 | spin_lock(&ch->lock); |
| 545 | } |
| 546 | |
| 547 | if (!list_empty(&ch->list)) { |
| 548 | req = list_entry(ch->list.next, typeof(*req), node); |
| 549 | /* the complete function we just called may have enqueued |
| 550 | another req, in which case dma has already started */ |
| 551 | if (req->status != TEGRA_DMA_REQ_INFLIGHT) |
| 552 | tegra_dma_update_hw(ch, req); |
| 553 | } |
| 554 | spin_unlock(&ch->lock); |
| 555 | } |
| 556 | |
| 557 | static void handle_continuous_dma(struct tegra_dma_channel *ch) |
| 558 | { |
| 559 | struct tegra_dma_req *req; |
| 560 | |
| 561 | spin_lock(&ch->lock); |
| 562 | if (list_empty(&ch->list)) { |
| 563 | spin_unlock(&ch->lock); |
| 564 | return; |
| 565 | } |
| 566 | |
| 567 | req = list_entry(ch->list.next, typeof(*req), node); |
| 568 | if (req) { |
| 569 | if (req->buffer_status == TEGRA_DMA_REQ_BUF_STATUS_EMPTY) { |
| 570 | /* Load the next request into the hardware, if available |
| 571 | * */ |
| 572 | if (!list_is_last(&req->node, &ch->list)) { |
| 573 | struct tegra_dma_req *next_req; |
| 574 | |
| 575 | next_req = list_entry(req->node.next, |
| 576 | typeof(*next_req), node); |
| 577 | tegra_dma_update_hw_partial(ch, next_req); |
| 578 | } |
| 579 | req->buffer_status = TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL; |
| 580 | req->status = TEGRA_DMA_REQ_SUCCESS; |
| 581 | /* DMA lock is NOT held when callback is called */ |
| 582 | spin_unlock(&ch->lock); |
| 583 | if (likely(req->threshold)) |
| 584 | req->threshold(req); |
| 585 | return; |
| 586 | |
| 587 | } else if (req->buffer_status == |
| 588 | TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL) { |
| 589 | /* Callback when the buffer is completely full (i.e on |
| 590 | * the second interrupt */ |
| 591 | int bytes_transferred; |
| 592 | |
| 593 | bytes_transferred = |
| 594 | (ch->csr & CSR_WCOUNT_MASK) >> CSR_WCOUNT_SHIFT; |
| 595 | bytes_transferred += 1; |
| 596 | bytes_transferred <<= 3; |
| 597 | |
| 598 | req->buffer_status = TEGRA_DMA_REQ_BUF_STATUS_FULL; |
| 599 | req->bytes_transferred = bytes_transferred; |
| 600 | req->status = TEGRA_DMA_REQ_SUCCESS; |
| 601 | list_del(&req->node); |
| 602 | |
| 603 | /* DMA lock is NOT held when callbak is called */ |
| 604 | spin_unlock(&ch->lock); |
| 605 | req->complete(req); |
| 606 | return; |
| 607 | |
| 608 | } else { |
| 609 | BUG(); |
| 610 | } |
| 611 | } |
| 612 | spin_unlock(&ch->lock); |
| 613 | } |
| 614 | |
| 615 | static irqreturn_t dma_isr(int irq, void *data) |
| 616 | { |
| 617 | struct tegra_dma_channel *ch = data; |
| 618 | unsigned long status; |
| 619 | |
| 620 | status = readl(ch->addr + APB_DMA_CHAN_STA); |
| 621 | if (status & STA_ISE_EOC) |
| 622 | writel(status, ch->addr + APB_DMA_CHAN_STA); |
| 623 | else { |
| 624 | pr_warning("Got a spurious ISR for DMA channel %d\n", ch->id); |
| 625 | return IRQ_HANDLED; |
| 626 | } |
| 627 | return IRQ_WAKE_THREAD; |
| 628 | } |
| 629 | |
| 630 | static irqreturn_t dma_thread_fn(int irq, void *data) |
| 631 | { |
| 632 | struct tegra_dma_channel *ch = data; |
| 633 | |
| 634 | if (ch->mode & TEGRA_DMA_MODE_ONESHOT) |
| 635 | handle_oneshot_dma(ch); |
| 636 | else |
| 637 | handle_continuous_dma(ch); |
| 638 | |
| 639 | |
| 640 | return IRQ_HANDLED; |
| 641 | } |
| 642 | |
| 643 | int __init tegra_dma_init(void) |
| 644 | { |
| 645 | int ret = 0; |
| 646 | int i; |
| 647 | unsigned int irq; |
| 648 | void __iomem *addr; |
| 649 | |
| 650 | addr = IO_ADDRESS(TEGRA_APB_DMA_BASE); |
| 651 | writel(GEN_ENABLE, addr + APB_DMA_GEN); |
| 652 | writel(0, addr + APB_DMA_CNTRL); |
| 653 | writel(0xFFFFFFFFul >> (31 - TEGRA_SYSTEM_DMA_CH_MAX), |
| 654 | addr + APB_DMA_IRQ_MASK_SET); |
| 655 | |
| 656 | memset(channel_usage, 0, sizeof(channel_usage)); |
| 657 | memset(dma_channels, 0, sizeof(dma_channels)); |
| 658 | |
| 659 | /* Reserve all the channels we are not supposed to touch */ |
| 660 | for (i = 0; i < TEGRA_SYSTEM_DMA_CH_MIN; i++) |
| 661 | __set_bit(i, channel_usage); |
| 662 | |
| 663 | for (i = TEGRA_SYSTEM_DMA_CH_MIN; i <= TEGRA_SYSTEM_DMA_CH_MAX; i++) { |
| 664 | struct tegra_dma_channel *ch = &dma_channels[i]; |
| 665 | |
| 666 | __clear_bit(i, channel_usage); |
| 667 | |
| 668 | ch->id = i; |
| 669 | snprintf(ch->name, TEGRA_DMA_NAME_SIZE, "dma_channel_%d", i); |
| 670 | |
| 671 | ch->addr = IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE + |
| 672 | TEGRA_APB_DMA_CH0_SIZE * i); |
| 673 | |
| 674 | spin_lock_init(&ch->lock); |
| 675 | INIT_LIST_HEAD(&ch->list); |
| 676 | tegra_dma_init_hw(ch); |
| 677 | |
| 678 | irq = INT_APB_DMA_CH0 + i; |
| 679 | ret = request_threaded_irq(irq, dma_isr, dma_thread_fn, 0, |
| 680 | dma_channels[i].name, ch); |
| 681 | if (ret) { |
| 682 | pr_err("Failed to register IRQ %d for DMA %d\n", |
| 683 | irq, i); |
| 684 | goto fail; |
| 685 | } |
| 686 | ch->irq = irq; |
| 687 | } |
| 688 | /* mark the shared channel allocated */ |
| 689 | __set_bit(TEGRA_SYSTEM_DMA_CH_MIN, channel_usage); |
| 690 | |
| 691 | for (i = TEGRA_SYSTEM_DMA_CH_MAX+1; i < NV_DMA_MAX_CHANNELS; i++) |
| 692 | __set_bit(i, channel_usage); |
| 693 | |
| 694 | return ret; |
| 695 | fail: |
| 696 | writel(0, addr + APB_DMA_GEN); |
| 697 | for (i = TEGRA_SYSTEM_DMA_CH_MIN; i <= TEGRA_SYSTEM_DMA_CH_MAX; i++) { |
| 698 | struct tegra_dma_channel *ch = &dma_channels[i]; |
| 699 | if (ch->irq) |
| 700 | free_irq(ch->irq, ch); |
| 701 | } |
| 702 | return ret; |
| 703 | } |
| 704 | |
| 705 | #ifdef CONFIG_PM |
| 706 | static u32 apb_dma[5*TEGRA_SYSTEM_DMA_CH_NR + 3]; |
| 707 | |
| 708 | void tegra_dma_suspend(void) |
| 709 | { |
| 710 | void __iomem *addr = IO_ADDRESS(TEGRA_APB_DMA_BASE); |
| 711 | u32 *ctx = apb_dma; |
| 712 | int i; |
| 713 | |
| 714 | *ctx++ = readl(addr + APB_DMA_GEN); |
| 715 | *ctx++ = readl(addr + APB_DMA_CNTRL); |
| 716 | *ctx++ = readl(addr + APB_DMA_IRQ_MASK); |
| 717 | |
| 718 | for (i = 0; i < TEGRA_SYSTEM_DMA_CH_NR; i++) { |
| 719 | addr = IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE + |
| 720 | TEGRA_APB_DMA_CH0_SIZE * i); |
| 721 | |
| 722 | *ctx++ = readl(addr + APB_DMA_CHAN_CSR); |
| 723 | *ctx++ = readl(addr + APB_DMA_CHAN_AHB_PTR); |
| 724 | *ctx++ = readl(addr + APB_DMA_CHAN_AHB_SEQ); |
| 725 | *ctx++ = readl(addr + APB_DMA_CHAN_APB_PTR); |
| 726 | *ctx++ = readl(addr + APB_DMA_CHAN_APB_SEQ); |
| 727 | } |
| 728 | } |
| 729 | |
| 730 | void tegra_dma_resume(void) |
| 731 | { |
| 732 | void __iomem *addr = IO_ADDRESS(TEGRA_APB_DMA_BASE); |
| 733 | u32 *ctx = apb_dma; |
| 734 | int i; |
| 735 | |
| 736 | writel(*ctx++, addr + APB_DMA_GEN); |
| 737 | writel(*ctx++, addr + APB_DMA_CNTRL); |
| 738 | writel(*ctx++, addr + APB_DMA_IRQ_MASK); |
| 739 | |
| 740 | for (i = 0; i < TEGRA_SYSTEM_DMA_CH_NR; i++) { |
| 741 | addr = IO_ADDRESS(TEGRA_APB_DMA_CH0_BASE + |
| 742 | TEGRA_APB_DMA_CH0_SIZE * i); |
| 743 | |
| 744 | writel(*ctx++, addr + APB_DMA_CHAN_CSR); |
| 745 | writel(*ctx++, addr + APB_DMA_CHAN_AHB_PTR); |
| 746 | writel(*ctx++, addr + APB_DMA_CHAN_AHB_SEQ); |
| 747 | writel(*ctx++, addr + APB_DMA_CHAN_APB_PTR); |
| 748 | writel(*ctx++, addr + APB_DMA_CHAN_APB_SEQ); |
| 749 | } |
| 750 | } |
| 751 | |
| 752 | #endif |