| /* |
| * Copyright (C) 2008 Oracle. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License v2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/blkdev.h> |
| #include <linux/list_sort.h> |
| #include "tree-log.h" |
| #include "disk-io.h" |
| #include "locking.h" |
| #include "print-tree.h" |
| #include "backref.h" |
| #include "hash.h" |
| #include "compression.h" |
| #include "qgroup.h" |
| #include "inode-map.h" |
| |
| /* magic values for the inode_only field in btrfs_log_inode: |
| * |
| * LOG_INODE_ALL means to log everything |
| * LOG_INODE_EXISTS means to log just enough to recreate the inode |
| * during log replay |
| */ |
| #define LOG_INODE_ALL 0 |
| #define LOG_INODE_EXISTS 1 |
| #define LOG_OTHER_INODE 2 |
| |
| /* |
| * directory trouble cases |
| * |
| * 1) on rename or unlink, if the inode being unlinked isn't in the fsync |
| * log, we must force a full commit before doing an fsync of the directory |
| * where the unlink was done. |
| * ---> record transid of last unlink/rename per directory |
| * |
| * mkdir foo/some_dir |
| * normal commit |
| * rename foo/some_dir foo2/some_dir |
| * mkdir foo/some_dir |
| * fsync foo/some_dir/some_file |
| * |
| * The fsync above will unlink the original some_dir without recording |
| * it in its new location (foo2). After a crash, some_dir will be gone |
| * unless the fsync of some_file forces a full commit |
| * |
| * 2) we must log any new names for any file or dir that is in the fsync |
| * log. ---> check inode while renaming/linking. |
| * |
| * 2a) we must log any new names for any file or dir during rename |
| * when the directory they are being removed from was logged. |
| * ---> check inode and old parent dir during rename |
| * |
| * 2a is actually the more important variant. With the extra logging |
| * a crash might unlink the old name without recreating the new one |
| * |
| * 3) after a crash, we must go through any directories with a link count |
| * of zero and redo the rm -rf |
| * |
| * mkdir f1/foo |
| * normal commit |
| * rm -rf f1/foo |
| * fsync(f1) |
| * |
| * The directory f1 was fully removed from the FS, but fsync was never |
| * called on f1, only its parent dir. After a crash the rm -rf must |
| * be replayed. This must be able to recurse down the entire |
| * directory tree. The inode link count fixup code takes care of the |
| * ugly details. |
| */ |
| |
| /* |
| * stages for the tree walking. The first |
| * stage (0) is to only pin down the blocks we find |
| * the second stage (1) is to make sure that all the inodes |
| * we find in the log are created in the subvolume. |
| * |
| * The last stage is to deal with directories and links and extents |
| * and all the other fun semantics |
| */ |
| #define LOG_WALK_PIN_ONLY 0 |
| #define LOG_WALK_REPLAY_INODES 1 |
| #define LOG_WALK_REPLAY_DIR_INDEX 2 |
| #define LOG_WALK_REPLAY_ALL 3 |
| |
| static int btrfs_log_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, struct btrfs_inode *inode, |
| int inode_only, |
| const loff_t start, |
| const loff_t end, |
| struct btrfs_log_ctx *ctx); |
| static int link_to_fixup_dir(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, u64 objectid); |
| static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_root *log, |
| struct btrfs_path *path, |
| u64 dirid, int del_all); |
| |
| /* |
| * tree logging is a special write ahead log used to make sure that |
| * fsyncs and O_SYNCs can happen without doing full tree commits. |
| * |
| * Full tree commits are expensive because they require commonly |
| * modified blocks to be recowed, creating many dirty pages in the |
| * extent tree an 4x-6x higher write load than ext3. |
| * |
| * Instead of doing a tree commit on every fsync, we use the |
| * key ranges and transaction ids to find items for a given file or directory |
| * that have changed in this transaction. Those items are copied into |
| * a special tree (one per subvolume root), that tree is written to disk |
| * and then the fsync is considered complete. |
| * |
| * After a crash, items are copied out of the log-tree back into the |
| * subvolume tree. Any file data extents found are recorded in the extent |
| * allocation tree, and the log-tree freed. |
| * |
| * The log tree is read three times, once to pin down all the extents it is |
| * using in ram and once, once to create all the inodes logged in the tree |
| * and once to do all the other items. |
| */ |
| |
| /* |
| * start a sub transaction and setup the log tree |
| * this increments the log tree writer count to make the people |
| * syncing the tree wait for us to finish |
| */ |
| static int start_log_trans(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int ret = 0; |
| |
| mutex_lock(&root->log_mutex); |
| |
| if (root->log_root) { |
| if (btrfs_need_log_full_commit(fs_info, trans)) { |
| ret = -EAGAIN; |
| goto out; |
| } |
| |
| if (!root->log_start_pid) { |
| clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); |
| root->log_start_pid = current->pid; |
| } else if (root->log_start_pid != current->pid) { |
| set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); |
| } |
| } else { |
| mutex_lock(&fs_info->tree_log_mutex); |
| if (!fs_info->log_root_tree) |
| ret = btrfs_init_log_root_tree(trans, fs_info); |
| mutex_unlock(&fs_info->tree_log_mutex); |
| if (ret) |
| goto out; |
| |
| ret = btrfs_add_log_tree(trans, root); |
| if (ret) |
| goto out; |
| |
| clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); |
| root->log_start_pid = current->pid; |
| } |
| |
| atomic_inc(&root->log_batch); |
| atomic_inc(&root->log_writers); |
| if (ctx) { |
| int index = root->log_transid % 2; |
| list_add_tail(&ctx->list, &root->log_ctxs[index]); |
| ctx->log_transid = root->log_transid; |
| } |
| |
| out: |
| mutex_unlock(&root->log_mutex); |
| return ret; |
| } |
| |
| /* |
| * returns 0 if there was a log transaction running and we were able |
| * to join, or returns -ENOENT if there were not transactions |
| * in progress |
| */ |
| static int join_running_log_trans(struct btrfs_root *root) |
| { |
| int ret = -ENOENT; |
| |
| smp_mb(); |
| if (!root->log_root) |
| return -ENOENT; |
| |
| mutex_lock(&root->log_mutex); |
| if (root->log_root) { |
| ret = 0; |
| atomic_inc(&root->log_writers); |
| } |
| mutex_unlock(&root->log_mutex); |
| return ret; |
| } |
| |
| /* |
| * This either makes the current running log transaction wait |
| * until you call btrfs_end_log_trans() or it makes any future |
| * log transactions wait until you call btrfs_end_log_trans() |
| */ |
| int btrfs_pin_log_trans(struct btrfs_root *root) |
| { |
| int ret = -ENOENT; |
| |
| mutex_lock(&root->log_mutex); |
| atomic_inc(&root->log_writers); |
| mutex_unlock(&root->log_mutex); |
| return ret; |
| } |
| |
| /* |
| * indicate we're done making changes to the log tree |
| * and wake up anyone waiting to do a sync |
| */ |
| void btrfs_end_log_trans(struct btrfs_root *root) |
| { |
| if (atomic_dec_and_test(&root->log_writers)) { |
| /* |
| * Implicit memory barrier after atomic_dec_and_test |
| */ |
| if (waitqueue_active(&root->log_writer_wait)) |
| wake_up(&root->log_writer_wait); |
| } |
| } |
| |
| |
| /* |
| * the walk control struct is used to pass state down the chain when |
| * processing the log tree. The stage field tells us which part |
| * of the log tree processing we are currently doing. The others |
| * are state fields used for that specific part |
| */ |
| struct walk_control { |
| /* should we free the extent on disk when done? This is used |
| * at transaction commit time while freeing a log tree |
| */ |
| int free; |
| |
| /* should we write out the extent buffer? This is used |
| * while flushing the log tree to disk during a sync |
| */ |
| int write; |
| |
| /* should we wait for the extent buffer io to finish? Also used |
| * while flushing the log tree to disk for a sync |
| */ |
| int wait; |
| |
| /* pin only walk, we record which extents on disk belong to the |
| * log trees |
| */ |
| int pin; |
| |
| /* what stage of the replay code we're currently in */ |
| int stage; |
| |
| /* |
| * Ignore any items from the inode currently being processed. Needs |
| * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in |
| * the LOG_WALK_REPLAY_INODES stage. |
| */ |
| bool ignore_cur_inode; |
| |
| /* the root we are currently replaying */ |
| struct btrfs_root *replay_dest; |
| |
| /* the trans handle for the current replay */ |
| struct btrfs_trans_handle *trans; |
| |
| /* the function that gets used to process blocks we find in the |
| * tree. Note the extent_buffer might not be up to date when it is |
| * passed in, and it must be checked or read if you need the data |
| * inside it |
| */ |
| int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, |
| struct walk_control *wc, u64 gen); |
| }; |
| |
| /* |
| * process_func used to pin down extents, write them or wait on them |
| */ |
| static int process_one_buffer(struct btrfs_root *log, |
| struct extent_buffer *eb, |
| struct walk_control *wc, u64 gen) |
| { |
| struct btrfs_fs_info *fs_info = log->fs_info; |
| int ret = 0; |
| |
| /* |
| * If this fs is mixed then we need to be able to process the leaves to |
| * pin down any logged extents, so we have to read the block. |
| */ |
| if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { |
| ret = btrfs_read_buffer(eb, gen); |
| if (ret) |
| return ret; |
| } |
| |
| if (wc->pin) |
| ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start, |
| eb->len); |
| |
| if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { |
| if (wc->pin && btrfs_header_level(eb) == 0) |
| ret = btrfs_exclude_logged_extents(fs_info, eb); |
| if (wc->write) |
| btrfs_write_tree_block(eb); |
| if (wc->wait) |
| btrfs_wait_tree_block_writeback(eb); |
| } |
| return ret; |
| } |
| |
| /* |
| * Item overwrite used by replay and tree logging. eb, slot and key all refer |
| * to the src data we are copying out. |
| * |
| * root is the tree we are copying into, and path is a scratch |
| * path for use in this function (it should be released on entry and |
| * will be released on exit). |
| * |
| * If the key is already in the destination tree the existing item is |
| * overwritten. If the existing item isn't big enough, it is extended. |
| * If it is too large, it is truncated. |
| * |
| * If the key isn't in the destination yet, a new item is inserted. |
| */ |
| static noinline int overwrite_item(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct extent_buffer *eb, int slot, |
| struct btrfs_key *key) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int ret; |
| u32 item_size; |
| u64 saved_i_size = 0; |
| int save_old_i_size = 0; |
| unsigned long src_ptr; |
| unsigned long dst_ptr; |
| int overwrite_root = 0; |
| bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; |
| |
| if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) |
| overwrite_root = 1; |
| |
| item_size = btrfs_item_size_nr(eb, slot); |
| src_ptr = btrfs_item_ptr_offset(eb, slot); |
| |
| /* look for the key in the destination tree */ |
| ret = btrfs_search_slot(NULL, root, key, path, 0, 0); |
| if (ret < 0) |
| return ret; |
| |
| if (ret == 0) { |
| char *src_copy; |
| char *dst_copy; |
| u32 dst_size = btrfs_item_size_nr(path->nodes[0], |
| path->slots[0]); |
| if (dst_size != item_size) |
| goto insert; |
| |
| if (item_size == 0) { |
| btrfs_release_path(path); |
| return 0; |
| } |
| dst_copy = kmalloc(item_size, GFP_NOFS); |
| src_copy = kmalloc(item_size, GFP_NOFS); |
| if (!dst_copy || !src_copy) { |
| btrfs_release_path(path); |
| kfree(dst_copy); |
| kfree(src_copy); |
| return -ENOMEM; |
| } |
| |
| read_extent_buffer(eb, src_copy, src_ptr, item_size); |
| |
| dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); |
| read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, |
| item_size); |
| ret = memcmp(dst_copy, src_copy, item_size); |
| |
| kfree(dst_copy); |
| kfree(src_copy); |
| /* |
| * they have the same contents, just return, this saves |
| * us from cowing blocks in the destination tree and doing |
| * extra writes that may not have been done by a previous |
| * sync |
| */ |
| if (ret == 0) { |
| btrfs_release_path(path); |
| return 0; |
| } |
| |
| /* |
| * We need to load the old nbytes into the inode so when we |
| * replay the extents we've logged we get the right nbytes. |
| */ |
| if (inode_item) { |
| struct btrfs_inode_item *item; |
| u64 nbytes; |
| u32 mode; |
| |
| item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_inode_item); |
| nbytes = btrfs_inode_nbytes(path->nodes[0], item); |
| item = btrfs_item_ptr(eb, slot, |
| struct btrfs_inode_item); |
| btrfs_set_inode_nbytes(eb, item, nbytes); |
| |
| /* |
| * If this is a directory we need to reset the i_size to |
| * 0 so that we can set it up properly when replaying |
| * the rest of the items in this log. |
| */ |
| mode = btrfs_inode_mode(eb, item); |
| if (S_ISDIR(mode)) |
| btrfs_set_inode_size(eb, item, 0); |
| } |
| } else if (inode_item) { |
| struct btrfs_inode_item *item; |
| u32 mode; |
| |
| /* |
| * New inode, set nbytes to 0 so that the nbytes comes out |
| * properly when we replay the extents. |
| */ |
| item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); |
| btrfs_set_inode_nbytes(eb, item, 0); |
| |
| /* |
| * If this is a directory we need to reset the i_size to 0 so |
| * that we can set it up properly when replaying the rest of |
| * the items in this log. |
| */ |
| mode = btrfs_inode_mode(eb, item); |
| if (S_ISDIR(mode)) |
| btrfs_set_inode_size(eb, item, 0); |
| } |
| insert: |
| btrfs_release_path(path); |
| /* try to insert the key into the destination tree */ |
| path->skip_release_on_error = 1; |
| ret = btrfs_insert_empty_item(trans, root, path, |
| key, item_size); |
| path->skip_release_on_error = 0; |
| |
| /* make sure any existing item is the correct size */ |
| if (ret == -EEXIST || ret == -EOVERFLOW) { |
| u32 found_size; |
| found_size = btrfs_item_size_nr(path->nodes[0], |
| path->slots[0]); |
| if (found_size > item_size) |
| btrfs_truncate_item(fs_info, path, item_size, 1); |
| else if (found_size < item_size) |
| btrfs_extend_item(fs_info, path, |
| item_size - found_size); |
| } else if (ret) { |
| return ret; |
| } |
| dst_ptr = btrfs_item_ptr_offset(path->nodes[0], |
| path->slots[0]); |
| |
| /* don't overwrite an existing inode if the generation number |
| * was logged as zero. This is done when the tree logging code |
| * is just logging an inode to make sure it exists after recovery. |
| * |
| * Also, don't overwrite i_size on directories during replay. |
| * log replay inserts and removes directory items based on the |
| * state of the tree found in the subvolume, and i_size is modified |
| * as it goes |
| */ |
| if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { |
| struct btrfs_inode_item *src_item; |
| struct btrfs_inode_item *dst_item; |
| |
| src_item = (struct btrfs_inode_item *)src_ptr; |
| dst_item = (struct btrfs_inode_item *)dst_ptr; |
| |
| if (btrfs_inode_generation(eb, src_item) == 0) { |
| struct extent_buffer *dst_eb = path->nodes[0]; |
| const u64 ino_size = btrfs_inode_size(eb, src_item); |
| |
| /* |
| * For regular files an ino_size == 0 is used only when |
| * logging that an inode exists, as part of a directory |
| * fsync, and the inode wasn't fsynced before. In this |
| * case don't set the size of the inode in the fs/subvol |
| * tree, otherwise we would be throwing valid data away. |
| */ |
| if (S_ISREG(btrfs_inode_mode(eb, src_item)) && |
| S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && |
| ino_size != 0) { |
| struct btrfs_map_token token; |
| |
| btrfs_init_map_token(&token); |
| btrfs_set_token_inode_size(dst_eb, dst_item, |
| ino_size, &token); |
| } |
| goto no_copy; |
| } |
| |
| if (overwrite_root && |
| S_ISDIR(btrfs_inode_mode(eb, src_item)) && |
| S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { |
| save_old_i_size = 1; |
| saved_i_size = btrfs_inode_size(path->nodes[0], |
| dst_item); |
| } |
| } |
| |
| copy_extent_buffer(path->nodes[0], eb, dst_ptr, |
| src_ptr, item_size); |
| |
| if (save_old_i_size) { |
| struct btrfs_inode_item *dst_item; |
| dst_item = (struct btrfs_inode_item *)dst_ptr; |
| btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); |
| } |
| |
| /* make sure the generation is filled in */ |
| if (key->type == BTRFS_INODE_ITEM_KEY) { |
| struct btrfs_inode_item *dst_item; |
| dst_item = (struct btrfs_inode_item *)dst_ptr; |
| if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { |
| btrfs_set_inode_generation(path->nodes[0], dst_item, |
| trans->transid); |
| } |
| } |
| no_copy: |
| btrfs_mark_buffer_dirty(path->nodes[0]); |
| btrfs_release_path(path); |
| return 0; |
| } |
| |
| /* |
| * simple helper to read an inode off the disk from a given root |
| * This can only be called for subvolume roots and not for the log |
| */ |
| static noinline struct inode *read_one_inode(struct btrfs_root *root, |
| u64 objectid) |
| { |
| struct btrfs_key key; |
| struct inode *inode; |
| |
| key.objectid = objectid; |
| key.type = BTRFS_INODE_ITEM_KEY; |
| key.offset = 0; |
| inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); |
| if (IS_ERR(inode)) { |
| inode = NULL; |
| } else if (is_bad_inode(inode)) { |
| iput(inode); |
| inode = NULL; |
| } |
| return inode; |
| } |
| |
| /* replays a single extent in 'eb' at 'slot' with 'key' into the |
| * subvolume 'root'. path is released on entry and should be released |
| * on exit. |
| * |
| * extents in the log tree have not been allocated out of the extent |
| * tree yet. So, this completes the allocation, taking a reference |
| * as required if the extent already exists or creating a new extent |
| * if it isn't in the extent allocation tree yet. |
| * |
| * The extent is inserted into the file, dropping any existing extents |
| * from the file that overlap the new one. |
| */ |
| static noinline int replay_one_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct extent_buffer *eb, int slot, |
| struct btrfs_key *key) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int found_type; |
| u64 extent_end; |
| u64 start = key->offset; |
| u64 nbytes = 0; |
| struct btrfs_file_extent_item *item; |
| struct inode *inode = NULL; |
| unsigned long size; |
| int ret = 0; |
| |
| item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); |
| found_type = btrfs_file_extent_type(eb, item); |
| |
| if (found_type == BTRFS_FILE_EXTENT_REG || |
| found_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| nbytes = btrfs_file_extent_num_bytes(eb, item); |
| extent_end = start + nbytes; |
| |
| /* |
| * We don't add to the inodes nbytes if we are prealloc or a |
| * hole. |
| */ |
| if (btrfs_file_extent_disk_bytenr(eb, item) == 0) |
| nbytes = 0; |
| } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { |
| size = btrfs_file_extent_ram_bytes(eb, item); |
| nbytes = btrfs_file_extent_ram_bytes(eb, item); |
| extent_end = ALIGN(start + size, |
| fs_info->sectorsize); |
| } else { |
| ret = 0; |
| goto out; |
| } |
| |
| inode = read_one_inode(root, key->objectid); |
| if (!inode) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| /* |
| * first check to see if we already have this extent in the |
| * file. This must be done before the btrfs_drop_extents run |
| * so we don't try to drop this extent. |
| */ |
| ret = btrfs_lookup_file_extent(trans, root, path, |
| btrfs_ino(BTRFS_I(inode)), start, 0); |
| |
| if (ret == 0 && |
| (found_type == BTRFS_FILE_EXTENT_REG || |
| found_type == BTRFS_FILE_EXTENT_PREALLOC)) { |
| struct btrfs_file_extent_item cmp1; |
| struct btrfs_file_extent_item cmp2; |
| struct btrfs_file_extent_item *existing; |
| struct extent_buffer *leaf; |
| |
| leaf = path->nodes[0]; |
| existing = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| |
| read_extent_buffer(eb, &cmp1, (unsigned long)item, |
| sizeof(cmp1)); |
| read_extent_buffer(leaf, &cmp2, (unsigned long)existing, |
| sizeof(cmp2)); |
| |
| /* |
| * we already have a pointer to this exact extent, |
| * we don't have to do anything |
| */ |
| if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { |
| btrfs_release_path(path); |
| goto out; |
| } |
| } |
| btrfs_release_path(path); |
| |
| /* drop any overlapping extents */ |
| ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1); |
| if (ret) |
| goto out; |
| |
| if (found_type == BTRFS_FILE_EXTENT_REG || |
| found_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| u64 offset; |
| unsigned long dest_offset; |
| struct btrfs_key ins; |
| |
| if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && |
| btrfs_fs_incompat(fs_info, NO_HOLES)) |
| goto update_inode; |
| |
| ret = btrfs_insert_empty_item(trans, root, path, key, |
| sizeof(*item)); |
| if (ret) |
| goto out; |
| dest_offset = btrfs_item_ptr_offset(path->nodes[0], |
| path->slots[0]); |
| copy_extent_buffer(path->nodes[0], eb, dest_offset, |
| (unsigned long)item, sizeof(*item)); |
| |
| ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); |
| ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); |
| ins.type = BTRFS_EXTENT_ITEM_KEY; |
| offset = key->offset - btrfs_file_extent_offset(eb, item); |
| |
| /* |
| * Manually record dirty extent, as here we did a shallow |
| * file extent item copy and skip normal backref update, |
| * but modifying extent tree all by ourselves. |
| * So need to manually record dirty extent for qgroup, |
| * as the owner of the file extent changed from log tree |
| * (doesn't affect qgroup) to fs/file tree(affects qgroup) |
| */ |
| ret = btrfs_qgroup_trace_extent(trans, fs_info, |
| btrfs_file_extent_disk_bytenr(eb, item), |
| btrfs_file_extent_disk_num_bytes(eb, item), |
| GFP_NOFS); |
| if (ret < 0) |
| goto out; |
| |
| if (ins.objectid > 0) { |
| u64 csum_start; |
| u64 csum_end; |
| LIST_HEAD(ordered_sums); |
| /* |
| * is this extent already allocated in the extent |
| * allocation tree? If so, just add a reference |
| */ |
| ret = btrfs_lookup_data_extent(fs_info, ins.objectid, |
| ins.offset); |
| if (ret == 0) { |
| ret = btrfs_inc_extent_ref(trans, fs_info, |
| ins.objectid, ins.offset, |
| 0, root->root_key.objectid, |
| key->objectid, offset); |
| if (ret) |
| goto out; |
| } else { |
| /* |
| * insert the extent pointer in the extent |
| * allocation tree |
| */ |
| ret = btrfs_alloc_logged_file_extent(trans, |
| fs_info, |
| root->root_key.objectid, |
| key->objectid, offset, &ins); |
| if (ret) |
| goto out; |
| } |
| btrfs_release_path(path); |
| |
| if (btrfs_file_extent_compression(eb, item)) { |
| csum_start = ins.objectid; |
| csum_end = csum_start + ins.offset; |
| } else { |
| csum_start = ins.objectid + |
| btrfs_file_extent_offset(eb, item); |
| csum_end = csum_start + |
| btrfs_file_extent_num_bytes(eb, item); |
| } |
| |
| ret = btrfs_lookup_csums_range(root->log_root, |
| csum_start, csum_end - 1, |
| &ordered_sums, 0); |
| if (ret) |
| goto out; |
| /* |
| * Now delete all existing cums in the csum root that |
| * cover our range. We do this because we can have an |
| * extent that is completely referenced by one file |
| * extent item and partially referenced by another |
| * file extent item (like after using the clone or |
| * extent_same ioctls). In this case if we end up doing |
| * the replay of the one that partially references the |
| * extent first, and we do not do the csum deletion |
| * below, we can get 2 csum items in the csum tree that |
| * overlap each other. For example, imagine our log has |
| * the two following file extent items: |
| * |
| * key (257 EXTENT_DATA 409600) |
| * extent data disk byte 12845056 nr 102400 |
| * extent data offset 20480 nr 20480 ram 102400 |
| * |
| * key (257 EXTENT_DATA 819200) |
| * extent data disk byte 12845056 nr 102400 |
| * extent data offset 0 nr 102400 ram 102400 |
| * |
| * Where the second one fully references the 100K extent |
| * that starts at disk byte 12845056, and the log tree |
| * has a single csum item that covers the entire range |
| * of the extent: |
| * |
| * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 |
| * |
| * After the first file extent item is replayed, the |
| * csum tree gets the following csum item: |
| * |
| * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 |
| * |
| * Which covers the 20K sub-range starting at offset 20K |
| * of our extent. Now when we replay the second file |
| * extent item, if we do not delete existing csum items |
| * that cover any of its blocks, we end up getting two |
| * csum items in our csum tree that overlap each other: |
| * |
| * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 |
| * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 |
| * |
| * Which is a problem, because after this anyone trying |
| * to lookup up for the checksum of any block of our |
| * extent starting at an offset of 40K or higher, will |
| * end up looking at the second csum item only, which |
| * does not contain the checksum for any block starting |
| * at offset 40K or higher of our extent. |
| */ |
| while (!list_empty(&ordered_sums)) { |
| struct btrfs_ordered_sum *sums; |
| sums = list_entry(ordered_sums.next, |
| struct btrfs_ordered_sum, |
| list); |
| if (!ret) |
| ret = btrfs_del_csums(trans, fs_info, |
| sums->bytenr, |
| sums->len); |
| if (!ret) |
| ret = btrfs_csum_file_blocks(trans, |
| fs_info->csum_root, sums); |
| list_del(&sums->list); |
| kfree(sums); |
| } |
| if (ret) |
| goto out; |
| } else { |
| btrfs_release_path(path); |
| } |
| } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { |
| /* inline extents are easy, we just overwrite them */ |
| ret = overwrite_item(trans, root, path, eb, slot, key); |
| if (ret) |
| goto out; |
| } |
| |
| inode_add_bytes(inode, nbytes); |
| update_inode: |
| ret = btrfs_update_inode(trans, root, inode); |
| out: |
| if (inode) |
| iput(inode); |
| return ret; |
| } |
| |
| /* |
| * when cleaning up conflicts between the directory names in the |
| * subvolume, directory names in the log and directory names in the |
| * inode back references, we may have to unlink inodes from directories. |
| * |
| * This is a helper function to do the unlink of a specific directory |
| * item |
| */ |
| static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_inode *dir, |
| struct btrfs_dir_item *di) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct inode *inode; |
| char *name; |
| int name_len; |
| struct extent_buffer *leaf; |
| struct btrfs_key location; |
| int ret; |
| |
| leaf = path->nodes[0]; |
| |
| btrfs_dir_item_key_to_cpu(leaf, di, &location); |
| name_len = btrfs_dir_name_len(leaf, di); |
| name = kmalloc(name_len, GFP_NOFS); |
| if (!name) |
| return -ENOMEM; |
| |
| read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); |
| btrfs_release_path(path); |
| |
| inode = read_one_inode(root, location.objectid); |
| if (!inode) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| ret = link_to_fixup_dir(trans, root, path, location.objectid); |
| if (ret) |
| goto out; |
| |
| ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name, |
| name_len); |
| if (ret) |
| goto out; |
| else |
| ret = btrfs_run_delayed_items(trans, fs_info); |
| out: |
| kfree(name); |
| iput(inode); |
| return ret; |
| } |
| |
| /* |
| * helper function to see if a given name and sequence number found |
| * in an inode back reference are already in a directory and correctly |
| * point to this inode |
| */ |
| static noinline int inode_in_dir(struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 dirid, u64 objectid, u64 index, |
| const char *name, int name_len) |
| { |
| struct btrfs_dir_item *di; |
| struct btrfs_key location; |
| int match = 0; |
| |
| di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, |
| index, name, name_len, 0); |
| if (di && !IS_ERR(di)) { |
| btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); |
| if (location.objectid != objectid) |
| goto out; |
| } else |
| goto out; |
| btrfs_release_path(path); |
| |
| di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); |
| if (di && !IS_ERR(di)) { |
| btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); |
| if (location.objectid != objectid) |
| goto out; |
| } else |
| goto out; |
| match = 1; |
| out: |
| btrfs_release_path(path); |
| return match; |
| } |
| |
| /* |
| * helper function to check a log tree for a named back reference in |
| * an inode. This is used to decide if a back reference that is |
| * found in the subvolume conflicts with what we find in the log. |
| * |
| * inode backreferences may have multiple refs in a single item, |
| * during replay we process one reference at a time, and we don't |
| * want to delete valid links to a file from the subvolume if that |
| * link is also in the log. |
| */ |
| static noinline int backref_in_log(struct btrfs_root *log, |
| struct btrfs_key *key, |
| u64 ref_objectid, |
| const char *name, int namelen) |
| { |
| struct btrfs_path *path; |
| struct btrfs_inode_ref *ref; |
| unsigned long ptr; |
| unsigned long ptr_end; |
| unsigned long name_ptr; |
| int found_name_len; |
| int item_size; |
| int ret; |
| int match = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| ret = btrfs_search_slot(NULL, log, key, path, 0, 0); |
| if (ret != 0) |
| goto out; |
| |
| ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); |
| |
| if (key->type == BTRFS_INODE_EXTREF_KEY) { |
| if (btrfs_find_name_in_ext_backref(path, ref_objectid, |
| name, namelen, NULL)) |
| match = 1; |
| |
| goto out; |
| } |
| |
| item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); |
| ptr_end = ptr + item_size; |
| while (ptr < ptr_end) { |
| ref = (struct btrfs_inode_ref *)ptr; |
| found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); |
| if (found_name_len == namelen) { |
| name_ptr = (unsigned long)(ref + 1); |
| ret = memcmp_extent_buffer(path->nodes[0], name, |
| name_ptr, namelen); |
| if (ret == 0) { |
| match = 1; |
| goto out; |
| } |
| } |
| ptr = (unsigned long)(ref + 1) + found_name_len; |
| } |
| out: |
| btrfs_free_path(path); |
| return match; |
| } |
| |
| static inline int __add_inode_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_root *log_root, |
| struct btrfs_inode *dir, |
| struct btrfs_inode *inode, |
| u64 inode_objectid, u64 parent_objectid, |
| u64 ref_index, char *name, int namelen, |
| int *search_done) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int ret; |
| char *victim_name; |
| int victim_name_len; |
| struct extent_buffer *leaf; |
| struct btrfs_dir_item *di; |
| struct btrfs_key search_key; |
| struct btrfs_inode_extref *extref; |
| |
| again: |
| /* Search old style refs */ |
| search_key.objectid = inode_objectid; |
| search_key.type = BTRFS_INODE_REF_KEY; |
| search_key.offset = parent_objectid; |
| ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); |
| if (ret == 0) { |
| struct btrfs_inode_ref *victim_ref; |
| unsigned long ptr; |
| unsigned long ptr_end; |
| |
| leaf = path->nodes[0]; |
| |
| /* are we trying to overwrite a back ref for the root directory |
| * if so, just jump out, we're done |
| */ |
| if (search_key.objectid == search_key.offset) |
| return 1; |
| |
| /* check all the names in this back reference to see |
| * if they are in the log. if so, we allow them to stay |
| * otherwise they must be unlinked as a conflict |
| */ |
| ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); |
| while (ptr < ptr_end) { |
| victim_ref = (struct btrfs_inode_ref *)ptr; |
| victim_name_len = btrfs_inode_ref_name_len(leaf, |
| victim_ref); |
| victim_name = kmalloc(victim_name_len, GFP_NOFS); |
| if (!victim_name) |
| return -ENOMEM; |
| |
| read_extent_buffer(leaf, victim_name, |
| (unsigned long)(victim_ref + 1), |
| victim_name_len); |
| |
| if (!backref_in_log(log_root, &search_key, |
| parent_objectid, |
| victim_name, |
| victim_name_len)) { |
| inc_nlink(&inode->vfs_inode); |
| btrfs_release_path(path); |
| |
| ret = btrfs_unlink_inode(trans, root, dir, inode, |
| victim_name, victim_name_len); |
| kfree(victim_name); |
| if (ret) |
| return ret; |
| ret = btrfs_run_delayed_items(trans, fs_info); |
| if (ret) |
| return ret; |
| *search_done = 1; |
| goto again; |
| } |
| kfree(victim_name); |
| |
| ptr = (unsigned long)(victim_ref + 1) + victim_name_len; |
| } |
| |
| /* |
| * NOTE: we have searched root tree and checked the |
| * corresponding ref, it does not need to check again. |
| */ |
| *search_done = 1; |
| } |
| btrfs_release_path(path); |
| |
| /* Same search but for extended refs */ |
| extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, |
| inode_objectid, parent_objectid, 0, |
| 0); |
| if (!IS_ERR_OR_NULL(extref)) { |
| u32 item_size; |
| u32 cur_offset = 0; |
| unsigned long base; |
| struct inode *victim_parent; |
| |
| leaf = path->nodes[0]; |
| |
| item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| base = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| |
| while (cur_offset < item_size) { |
| extref = (struct btrfs_inode_extref *)(base + cur_offset); |
| |
| victim_name_len = btrfs_inode_extref_name_len(leaf, extref); |
| |
| if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) |
| goto next; |
| |
| victim_name = kmalloc(victim_name_len, GFP_NOFS); |
| if (!victim_name) |
| return -ENOMEM; |
| read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, |
| victim_name_len); |
| |
| search_key.objectid = inode_objectid; |
| search_key.type = BTRFS_INODE_EXTREF_KEY; |
| search_key.offset = btrfs_extref_hash(parent_objectid, |
| victim_name, |
| victim_name_len); |
| ret = 0; |
| if (!backref_in_log(log_root, &search_key, |
| parent_objectid, victim_name, |
| victim_name_len)) { |
| ret = -ENOENT; |
| victim_parent = read_one_inode(root, |
| parent_objectid); |
| if (victim_parent) { |
| inc_nlink(&inode->vfs_inode); |
| btrfs_release_path(path); |
| |
| ret = btrfs_unlink_inode(trans, root, |
| BTRFS_I(victim_parent), |
| inode, |
| victim_name, |
| victim_name_len); |
| if (!ret) |
| ret = btrfs_run_delayed_items( |
| trans, |
| fs_info); |
| } |
| iput(victim_parent); |
| kfree(victim_name); |
| if (ret) |
| return ret; |
| *search_done = 1; |
| goto again; |
| } |
| kfree(victim_name); |
| next: |
| cur_offset += victim_name_len + sizeof(*extref); |
| } |
| *search_done = 1; |
| } |
| btrfs_release_path(path); |
| |
| /* look for a conflicting sequence number */ |
| di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), |
| ref_index, name, namelen, 0); |
| if (di && !IS_ERR(di)) { |
| ret = drop_one_dir_item(trans, root, path, dir, di); |
| if (ret) |
| return ret; |
| } |
| btrfs_release_path(path); |
| |
| /* look for a conflicing name */ |
| di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), |
| name, namelen, 0); |
| if (di && !IS_ERR(di)) { |
| ret = drop_one_dir_item(trans, root, path, dir, di); |
| if (ret) |
| return ret; |
| } |
| btrfs_release_path(path); |
| |
| return 0; |
| } |
| |
| static int extref_get_fields(struct extent_buffer *eb, int slot, |
| unsigned long ref_ptr, u32 *namelen, char **name, |
| u64 *index, u64 *parent_objectid) |
| { |
| struct btrfs_inode_extref *extref; |
| |
| extref = (struct btrfs_inode_extref *)ref_ptr; |
| |
| *namelen = btrfs_inode_extref_name_len(eb, extref); |
| if (!btrfs_is_name_len_valid(eb, slot, (unsigned long)&extref->name, |
| *namelen)) |
| return -EIO; |
| |
| *name = kmalloc(*namelen, GFP_NOFS); |
| if (*name == NULL) |
| return -ENOMEM; |
| |
| read_extent_buffer(eb, *name, (unsigned long)&extref->name, |
| *namelen); |
| |
| *index = btrfs_inode_extref_index(eb, extref); |
| if (parent_objectid) |
| *parent_objectid = btrfs_inode_extref_parent(eb, extref); |
| |
| return 0; |
| } |
| |
| static int ref_get_fields(struct extent_buffer *eb, int slot, |
| unsigned long ref_ptr, u32 *namelen, char **name, |
| u64 *index) |
| { |
| struct btrfs_inode_ref *ref; |
| |
| ref = (struct btrfs_inode_ref *)ref_ptr; |
| |
| *namelen = btrfs_inode_ref_name_len(eb, ref); |
| if (!btrfs_is_name_len_valid(eb, slot, (unsigned long)(ref + 1), |
| *namelen)) |
| return -EIO; |
| |
| *name = kmalloc(*namelen, GFP_NOFS); |
| if (*name == NULL) |
| return -ENOMEM; |
| |
| read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); |
| |
| *index = btrfs_inode_ref_index(eb, ref); |
| |
| return 0; |
| } |
| |
| /* |
| * replay one inode back reference item found in the log tree. |
| * eb, slot and key refer to the buffer and key found in the log tree. |
| * root is the destination we are replaying into, and path is for temp |
| * use by this function. (it should be released on return). |
| */ |
| static noinline int add_inode_ref(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_root *log, |
| struct btrfs_path *path, |
| struct extent_buffer *eb, int slot, |
| struct btrfs_key *key) |
| { |
| struct inode *dir = NULL; |
| struct inode *inode = NULL; |
| unsigned long ref_ptr; |
| unsigned long ref_end; |
| char *name = NULL; |
| int namelen; |
| int ret; |
| int search_done = 0; |
| int log_ref_ver = 0; |
| u64 parent_objectid; |
| u64 inode_objectid; |
| u64 ref_index = 0; |
| int ref_struct_size; |
| |
| ref_ptr = btrfs_item_ptr_offset(eb, slot); |
| ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); |
| |
| if (key->type == BTRFS_INODE_EXTREF_KEY) { |
| struct btrfs_inode_extref *r; |
| |
| ref_struct_size = sizeof(struct btrfs_inode_extref); |
| log_ref_ver = 1; |
| r = (struct btrfs_inode_extref *)ref_ptr; |
| parent_objectid = btrfs_inode_extref_parent(eb, r); |
| } else { |
| ref_struct_size = sizeof(struct btrfs_inode_ref); |
| parent_objectid = key->offset; |
| } |
| inode_objectid = key->objectid; |
| |
| /* |
| * it is possible that we didn't log all the parent directories |
| * for a given inode. If we don't find the dir, just don't |
| * copy the back ref in. The link count fixup code will take |
| * care of the rest |
| */ |
| dir = read_one_inode(root, parent_objectid); |
| if (!dir) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| inode = read_one_inode(root, inode_objectid); |
| if (!inode) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| while (ref_ptr < ref_end) { |
| if (log_ref_ver) { |
| ret = extref_get_fields(eb, slot, ref_ptr, &namelen, |
| &name, &ref_index, &parent_objectid); |
| /* |
| * parent object can change from one array |
| * item to another. |
| */ |
| if (!dir) |
| dir = read_one_inode(root, parent_objectid); |
| if (!dir) { |
| ret = -ENOENT; |
| goto out; |
| } |
| } else { |
| ret = ref_get_fields(eb, slot, ref_ptr, &namelen, |
| &name, &ref_index); |
| } |
| if (ret) |
| goto out; |
| |
| /* if we already have a perfect match, we're done */ |
| if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), |
| btrfs_ino(BTRFS_I(inode)), ref_index, |
| name, namelen)) { |
| /* |
| * look for a conflicting back reference in the |
| * metadata. if we find one we have to unlink that name |
| * of the file before we add our new link. Later on, we |
| * overwrite any existing back reference, and we don't |
| * want to create dangling pointers in the directory. |
| */ |
| |
| if (!search_done) { |
| ret = __add_inode_ref(trans, root, path, log, |
| BTRFS_I(dir), |
| BTRFS_I(inode), |
| inode_objectid, |
| parent_objectid, |
| ref_index, name, namelen, |
| &search_done); |
| if (ret) { |
| if (ret == 1) |
| ret = 0; |
| goto out; |
| } |
| } |
| |
| /* insert our name */ |
| ret = btrfs_add_link(trans, BTRFS_I(dir), |
| BTRFS_I(inode), |
| name, namelen, 0, ref_index); |
| if (ret) |
| goto out; |
| |
| btrfs_update_inode(trans, root, inode); |
| } |
| |
| ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; |
| kfree(name); |
| name = NULL; |
| if (log_ref_ver) { |
| iput(dir); |
| dir = NULL; |
| } |
| } |
| |
| /* finally write the back reference in the inode */ |
| ret = overwrite_item(trans, root, path, eb, slot, key); |
| out: |
| btrfs_release_path(path); |
| kfree(name); |
| iput(dir); |
| iput(inode); |
| return ret; |
| } |
| |
| static int insert_orphan_item(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, u64 ino) |
| { |
| int ret; |
| |
| ret = btrfs_insert_orphan_item(trans, root, ino); |
| if (ret == -EEXIST) |
| ret = 0; |
| |
| return ret; |
| } |
| |
| static int count_inode_extrefs(struct btrfs_root *root, |
| struct btrfs_inode *inode, struct btrfs_path *path) |
| { |
| int ret = 0; |
| int name_len; |
| unsigned int nlink = 0; |
| u32 item_size; |
| u32 cur_offset = 0; |
| u64 inode_objectid = btrfs_ino(inode); |
| u64 offset = 0; |
| unsigned long ptr; |
| struct btrfs_inode_extref *extref; |
| struct extent_buffer *leaf; |
| |
| while (1) { |
| ret = btrfs_find_one_extref(root, inode_objectid, offset, path, |
| &extref, &offset); |
| if (ret) |
| break; |
| |
| leaf = path->nodes[0]; |
| item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| cur_offset = 0; |
| |
| while (cur_offset < item_size) { |
| extref = (struct btrfs_inode_extref *) (ptr + cur_offset); |
| name_len = btrfs_inode_extref_name_len(leaf, extref); |
| |
| nlink++; |
| |
| cur_offset += name_len + sizeof(*extref); |
| } |
| |
| offset++; |
| btrfs_release_path(path); |
| } |
| btrfs_release_path(path); |
| |
| if (ret < 0 && ret != -ENOENT) |
| return ret; |
| return nlink; |
| } |
| |
| static int count_inode_refs(struct btrfs_root *root, |
| struct btrfs_inode *inode, struct btrfs_path *path) |
| { |
| int ret; |
| struct btrfs_key key; |
| unsigned int nlink = 0; |
| unsigned long ptr; |
| unsigned long ptr_end; |
| int name_len; |
| u64 ino = btrfs_ino(inode); |
| |
| key.objectid = ino; |
| key.type = BTRFS_INODE_REF_KEY; |
| key.offset = (u64)-1; |
| |
| while (1) { |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| break; |
| if (ret > 0) { |
| if (path->slots[0] == 0) |
| break; |
| path->slots[0]--; |
| } |
| process_slot: |
| btrfs_item_key_to_cpu(path->nodes[0], &key, |
| path->slots[0]); |
| if (key.objectid != ino || |
| key.type != BTRFS_INODE_REF_KEY) |
| break; |
| ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); |
| ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], |
| path->slots[0]); |
| while (ptr < ptr_end) { |
| struct btrfs_inode_ref *ref; |
| |
| ref = (struct btrfs_inode_ref *)ptr; |
| name_len = btrfs_inode_ref_name_len(path->nodes[0], |
| ref); |
| ptr = (unsigned long)(ref + 1) + name_len; |
| nlink++; |
| } |
| |
| if (key.offset == 0) |
| break; |
| if (path->slots[0] > 0) { |
| path->slots[0]--; |
| goto process_slot; |
| } |
| key.offset--; |
| btrfs_release_path(path); |
| } |
| btrfs_release_path(path); |
| |
| return nlink; |
| } |
| |
| /* |
| * There are a few corners where the link count of the file can't |
| * be properly maintained during replay. So, instead of adding |
| * lots of complexity to the log code, we just scan the backrefs |
| * for any file that has been through replay. |
| * |
| * The scan will update the link count on the inode to reflect the |
| * number of back refs found. If it goes down to zero, the iput |
| * will free the inode. |
| */ |
| static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct inode *inode) |
| { |
| struct btrfs_path *path; |
| int ret; |
| u64 nlink = 0; |
| u64 ino = btrfs_ino(BTRFS_I(inode)); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| ret = count_inode_refs(root, BTRFS_I(inode), path); |
| if (ret < 0) |
| goto out; |
| |
| nlink = ret; |
| |
| ret = count_inode_extrefs(root, BTRFS_I(inode), path); |
| if (ret < 0) |
| goto out; |
| |
| nlink += ret; |
| |
| ret = 0; |
| |
| if (nlink != inode->i_nlink) { |
| set_nlink(inode, nlink); |
| btrfs_update_inode(trans, root, inode); |
| } |
| BTRFS_I(inode)->index_cnt = (u64)-1; |
| |
| if (inode->i_nlink == 0) { |
| if (S_ISDIR(inode->i_mode)) { |
| ret = replay_dir_deletes(trans, root, NULL, path, |
| ino, 1); |
| if (ret) |
| goto out; |
| } |
| ret = insert_orphan_item(trans, root, ino); |
| } |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path) |
| { |
| int ret; |
| struct btrfs_key key; |
| struct inode *inode; |
| |
| key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; |
| key.type = BTRFS_ORPHAN_ITEM_KEY; |
| key.offset = (u64)-1; |
| while (1) { |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret < 0) |
| break; |
| |
| if (ret == 1) { |
| ret = 0; |
| if (path->slots[0] == 0) |
| break; |
| path->slots[0]--; |
| } |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || |
| key.type != BTRFS_ORPHAN_ITEM_KEY) |
| break; |
| |
| ret = btrfs_del_item(trans, root, path); |
| if (ret) |
| break; |
| |
| btrfs_release_path(path); |
| inode = read_one_inode(root, key.offset); |
| if (!inode) { |
| ret = -EIO; |
| break; |
| } |
| |
| ret = fixup_inode_link_count(trans, root, inode); |
| iput(inode); |
| if (ret) |
| break; |
| |
| /* |
| * fixup on a directory may create new entries, |
| * make sure we always look for the highset possible |
| * offset |
| */ |
| key.offset = (u64)-1; |
| } |
| btrfs_release_path(path); |
| return ret; |
| } |
| |
| |
| /* |
| * record a given inode in the fixup dir so we can check its link |
| * count when replay is done. The link count is incremented here |
| * so the inode won't go away until we check it |
| */ |
| static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 objectid) |
| { |
| struct btrfs_key key; |
| int ret = 0; |
| struct inode *inode; |
| |
| inode = read_one_inode(root, objectid); |
| if (!inode) |
| return -EIO; |
| |
| key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; |
| key.type = BTRFS_ORPHAN_ITEM_KEY; |
| key.offset = objectid; |
| |
| ret = btrfs_insert_empty_item(trans, root, path, &key, 0); |
| |
| btrfs_release_path(path); |
| if (ret == 0) { |
| if (!inode->i_nlink) |
| set_nlink(inode, 1); |
| else |
| inc_nlink(inode); |
| ret = btrfs_update_inode(trans, root, inode); |
| } else if (ret == -EEXIST) { |
| ret = 0; |
| } |
| iput(inode); |
| |
| return ret; |
| } |
| |
| /* |
| * when replaying the log for a directory, we only insert names |
| * for inodes that actually exist. This means an fsync on a directory |
| * does not implicitly fsync all the new files in it |
| */ |
| static noinline int insert_one_name(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u64 dirid, u64 index, |
| char *name, int name_len, |
| struct btrfs_key *location) |
| { |
| struct inode *inode; |
| struct inode *dir; |
| int ret; |
| |
| inode = read_one_inode(root, location->objectid); |
| if (!inode) |
| return -ENOENT; |
| |
| dir = read_one_inode(root, dirid); |
| if (!dir) { |
| iput(inode); |
| return -EIO; |
| } |
| |
| ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, |
| name_len, 1, index); |
| |
| /* FIXME, put inode into FIXUP list */ |
| |
| iput(inode); |
| iput(dir); |
| return ret; |
| } |
| |
| /* |
| * Return true if an inode reference exists in the log for the given name, |
| * inode and parent inode. |
| */ |
| static bool name_in_log_ref(struct btrfs_root *log_root, |
| const char *name, const int name_len, |
| const u64 dirid, const u64 ino) |
| { |
| struct btrfs_key search_key; |
| |
| search_key.objectid = ino; |
| search_key.type = BTRFS_INODE_REF_KEY; |
| search_key.offset = dirid; |
| if (backref_in_log(log_root, &search_key, dirid, name, name_len)) |
| return true; |
| |
| search_key.type = BTRFS_INODE_EXTREF_KEY; |
| search_key.offset = btrfs_extref_hash(dirid, name, name_len); |
| if (backref_in_log(log_root, &search_key, dirid, name, name_len)) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * take a single entry in a log directory item and replay it into |
| * the subvolume. |
| * |
| * if a conflicting item exists in the subdirectory already, |
| * the inode it points to is unlinked and put into the link count |
| * fix up tree. |
| * |
| * If a name from the log points to a file or directory that does |
| * not exist in the FS, it is skipped. fsyncs on directories |
| * do not force down inodes inside that directory, just changes to the |
| * names or unlinks in a directory. |
| * |
| * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a |
| * non-existing inode) and 1 if the name was replayed. |
| */ |
| static noinline int replay_one_name(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct extent_buffer *eb, |
| struct btrfs_dir_item *di, |
| struct btrfs_key *key) |
| { |
| char *name; |
| int name_len; |
| struct btrfs_dir_item *dst_di; |
| struct btrfs_key found_key; |
| struct btrfs_key log_key; |
| struct inode *dir; |
| u8 log_type; |
| int exists; |
| int ret = 0; |
| bool update_size = (key->type == BTRFS_DIR_INDEX_KEY); |
| bool name_added = false; |
| |
| dir = read_one_inode(root, key->objectid); |
| if (!dir) |
| return -EIO; |
| |
| name_len = btrfs_dir_name_len(eb, di); |
| name = kmalloc(name_len, GFP_NOFS); |
| if (!name) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| log_type = btrfs_dir_type(eb, di); |
| read_extent_buffer(eb, name, (unsigned long)(di + 1), |
| name_len); |
| |
| btrfs_dir_item_key_to_cpu(eb, di, &log_key); |
| exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); |
| if (exists == 0) |
| exists = 1; |
| else |
| exists = 0; |
| btrfs_release_path(path); |
| |
| if (key->type == BTRFS_DIR_ITEM_KEY) { |
| dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, |
| name, name_len, 1); |
| } else if (key->type == BTRFS_DIR_INDEX_KEY) { |
| dst_di = btrfs_lookup_dir_index_item(trans, root, path, |
| key->objectid, |
| key->offset, name, |
| name_len, 1); |
| } else { |
| /* Corruption */ |
| ret = -EINVAL; |
| goto out; |
| } |
| if (IS_ERR_OR_NULL(dst_di)) { |
| /* we need a sequence number to insert, so we only |
| * do inserts for the BTRFS_DIR_INDEX_KEY types |
| */ |
| if (key->type != BTRFS_DIR_INDEX_KEY) |
| goto out; |
| goto insert; |
| } |
| |
| btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); |
| /* the existing item matches the logged item */ |
| if (found_key.objectid == log_key.objectid && |
| found_key.type == log_key.type && |
| found_key.offset == log_key.offset && |
| btrfs_dir_type(path->nodes[0], dst_di) == log_type) { |
| update_size = false; |
| goto out; |
| } |
| |
| /* |
| * don't drop the conflicting directory entry if the inode |
| * for the new entry doesn't exist |
| */ |
| if (!exists) |
| goto out; |
| |
| ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di); |
| if (ret) |
| goto out; |
| |
| if (key->type == BTRFS_DIR_INDEX_KEY) |
| goto insert; |
| out: |
| btrfs_release_path(path); |
| if (!ret && update_size) { |
| btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2); |
| ret = btrfs_update_inode(trans, root, dir); |
| } |
| kfree(name); |
| iput(dir); |
| if (!ret && name_added) |
| ret = 1; |
| return ret; |
| |
| insert: |
| if (name_in_log_ref(root->log_root, name, name_len, |
| key->objectid, log_key.objectid)) { |
| /* The dentry will be added later. */ |
| ret = 0; |
| update_size = false; |
| goto out; |
| } |
| btrfs_release_path(path); |
| ret = insert_one_name(trans, root, key->objectid, key->offset, |
| name, name_len, &log_key); |
| if (ret && ret != -ENOENT && ret != -EEXIST) |
| goto out; |
| if (!ret) |
| name_added = true; |
| update_size = false; |
| ret = 0; |
| goto out; |
| } |
| |
| /* |
| * find all the names in a directory item and reconcile them into |
| * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than |
| * one name in a directory item, but the same code gets used for |
| * both directory index types |
| */ |
| static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct extent_buffer *eb, int slot, |
| struct btrfs_key *key) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int ret = 0; |
| u32 item_size = btrfs_item_size_nr(eb, slot); |
| struct btrfs_dir_item *di; |
| int name_len; |
| unsigned long ptr; |
| unsigned long ptr_end; |
| struct btrfs_path *fixup_path = NULL; |
| |
| ptr = btrfs_item_ptr_offset(eb, slot); |
| ptr_end = ptr + item_size; |
| while (ptr < ptr_end) { |
| di = (struct btrfs_dir_item *)ptr; |
| if (verify_dir_item(fs_info, eb, slot, di)) |
| return -EIO; |
| name_len = btrfs_dir_name_len(eb, di); |
| ret = replay_one_name(trans, root, path, eb, di, key); |
| if (ret < 0) |
| break; |
| ptr = (unsigned long)(di + 1); |
| ptr += name_len; |
| |
| /* |
| * If this entry refers to a non-directory (directories can not |
| * have a link count > 1) and it was added in the transaction |
| * that was not committed, make sure we fixup the link count of |
| * the inode it the entry points to. Otherwise something like |
| * the following would result in a directory pointing to an |
| * inode with a wrong link that does not account for this dir |
| * entry: |
| * |
| * mkdir testdir |
| * touch testdir/foo |
| * touch testdir/bar |
| * sync |
| * |
| * ln testdir/bar testdir/bar_link |
| * ln testdir/foo testdir/foo_link |
| * xfs_io -c "fsync" testdir/bar |
| * |
| * <power failure> |
| * |
| * mount fs, log replay happens |
| * |
| * File foo would remain with a link count of 1 when it has two |
| * entries pointing to it in the directory testdir. This would |
| * make it impossible to ever delete the parent directory has |
| * it would result in stale dentries that can never be deleted. |
| */ |
| if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) { |
| struct btrfs_key di_key; |
| |
| if (!fixup_path) { |
| fixup_path = btrfs_alloc_path(); |
| if (!fixup_path) { |
| ret = -ENOMEM; |
| break; |
| } |
| } |
| |
| btrfs_dir_item_key_to_cpu(eb, di, &di_key); |
| ret = link_to_fixup_dir(trans, root, fixup_path, |
| di_key.objectid); |
| if (ret) |
| break; |
| } |
| ret = 0; |
| } |
| btrfs_free_path(fixup_path); |
| return ret; |
| } |
| |
| /* |
| * directory replay has two parts. There are the standard directory |
| * items in the log copied from the subvolume, and range items |
| * created in the log while the subvolume was logged. |
| * |
| * The range items tell us which parts of the key space the log |
| * is authoritative for. During replay, if a key in the subvolume |
| * directory is in a logged range item, but not actually in the log |
| * that means it was deleted from the directory before the fsync |
| * and should be removed. |
| */ |
| static noinline int find_dir_range(struct btrfs_root *root, |
| struct btrfs_path *path, |
| u64 dirid, int key_type, |
| u64 *start_ret, u64 *end_ret) |
| { |
| struct btrfs_key key; |
| u64 found_end; |
| struct btrfs_dir_log_item *item; |
| int ret; |
| int nritems; |
| |
| if (*start_ret == (u64)-1) |
| return 1; |
| |
| key.objectid = dirid; |
| key.type = key_type; |
| key.offset = *start_ret; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { |
| if (path->slots[0] == 0) |
| goto out; |
| path->slots[0]--; |
| } |
| if (ret != 0) |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| |
| if (key.type != key_type || key.objectid != dirid) { |
| ret = 1; |
| goto next; |
| } |
| item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_dir_log_item); |
| found_end = btrfs_dir_log_end(path->nodes[0], item); |
| |
| if (*start_ret >= key.offset && *start_ret <= found_end) { |
| ret = 0; |
| *start_ret = key.offset; |
| *end_ret = found_end; |
| goto out; |
| } |
| ret = 1; |
| next: |
| /* check the next slot in the tree to see if it is a valid item */ |
| nritems = btrfs_header_nritems(path->nodes[0]); |
| path->slots[0]++; |
| if (path->slots[0] >= nritems) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret) |
| goto out; |
| } |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| |
| if (key.type != key_type || key.objectid != dirid) { |
| ret = 1; |
| goto out; |
| } |
| item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_dir_log_item); |
| found_end = btrfs_dir_log_end(path->nodes[0], item); |
| *start_ret = key.offset; |
| *end_ret = found_end; |
| ret = 0; |
| out: |
| btrfs_release_path(path); |
| return ret; |
| } |
| |
| /* |
| * this looks for a given directory item in the log. If the directory |
| * item is not in the log, the item is removed and the inode it points |
| * to is unlinked |
| */ |
| static noinline int check_item_in_log(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_root *log, |
| struct btrfs_path *path, |
| struct btrfs_path *log_path, |
| struct inode *dir, |
| struct btrfs_key *dir_key) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int ret; |
| struct extent_buffer *eb; |
| int slot; |
| u32 item_size; |
| struct btrfs_dir_item *di; |
| struct btrfs_dir_item *log_di; |
| int name_len; |
| unsigned long ptr; |
| unsigned long ptr_end; |
| char *name; |
| struct inode *inode; |
| struct btrfs_key location; |
| |
| again: |
| eb = path->nodes[0]; |
| slot = path->slots[0]; |
| item_size = btrfs_item_size_nr(eb, slot); |
| ptr = btrfs_item_ptr_offset(eb, slot); |
| ptr_end = ptr + item_size; |
| while (ptr < ptr_end) { |
| di = (struct btrfs_dir_item *)ptr; |
| if (verify_dir_item(fs_info, eb, slot, di)) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| name_len = btrfs_dir_name_len(eb, di); |
| name = kmalloc(name_len, GFP_NOFS); |
| if (!name) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| read_extent_buffer(eb, name, (unsigned long)(di + 1), |
| name_len); |
| log_di = NULL; |
| if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { |
| log_di = btrfs_lookup_dir_item(trans, log, log_path, |
| dir_key->objectid, |
| name, name_len, 0); |
| } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { |
| log_di = btrfs_lookup_dir_index_item(trans, log, |
| log_path, |
| dir_key->objectid, |
| dir_key->offset, |
| name, name_len, 0); |
| } |
| if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) { |
| btrfs_dir_item_key_to_cpu(eb, di, &location); |
| btrfs_release_path(path); |
| btrfs_release_path(log_path); |
| inode = read_one_inode(root, location.objectid); |
| if (!inode) { |
| kfree(name); |
| return -EIO; |
| } |
| |
| ret = link_to_fixup_dir(trans, root, |
| path, location.objectid); |
| if (ret) { |
| kfree(name); |
| iput(inode); |
| goto out; |
| } |
| |
| inc_nlink(inode); |
| ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), |
| BTRFS_I(inode), name, name_len); |
| if (!ret) |
| ret = btrfs_run_delayed_items(trans, fs_info); |
| kfree(name); |
| iput(inode); |
| if (ret) |
| goto out; |
| |
| /* there might still be more names under this key |
| * check and repeat if required |
| */ |
| ret = btrfs_search_slot(NULL, root, dir_key, path, |
| 0, 0); |
| if (ret == 0) |
| goto again; |
| ret = 0; |
| goto out; |
| } else if (IS_ERR(log_di)) { |
| kfree(name); |
| return PTR_ERR(log_di); |
| } |
| btrfs_release_path(log_path); |
| kfree(name); |
| |
| ptr = (unsigned long)(di + 1); |
| ptr += name_len; |
| } |
| ret = 0; |
| out: |
| btrfs_release_path(path); |
| btrfs_release_path(log_path); |
| return ret; |
| } |
| |
| static int replay_xattr_deletes(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_root *log, |
| struct btrfs_path *path, |
| const u64 ino) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_key search_key; |
| struct btrfs_path *log_path; |
| int i; |
| int nritems; |
| int ret; |
| |
| log_path = btrfs_alloc_path(); |
| if (!log_path) |
| return -ENOMEM; |
| |
| search_key.objectid = ino; |
| search_key.type = BTRFS_XATTR_ITEM_KEY; |
| search_key.offset = 0; |
| again: |
| ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| process_leaf: |
| nritems = btrfs_header_nritems(path->nodes[0]); |
| for (i = path->slots[0]; i < nritems; i++) { |
| struct btrfs_key key; |
| struct btrfs_dir_item *di; |
| struct btrfs_dir_item *log_di; |
| u32 total_size; |
| u32 cur; |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &key, i); |
| if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { |
| ret = 0; |
| goto out; |
| } |
| |
| di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); |
| total_size = btrfs_item_size_nr(path->nodes[0], i); |
| cur = 0; |
| while (cur < total_size) { |
| u16 name_len = btrfs_dir_name_len(path->nodes[0], di); |
| u16 data_len = btrfs_dir_data_len(path->nodes[0], di); |
| u32 this_len = sizeof(*di) + name_len + data_len; |
| char *name; |
| |
| ret = verify_dir_item(fs_info, path->nodes[0], i, di); |
| if (ret) { |
| ret = -EIO; |
| goto out; |
| } |
| name = kmalloc(name_len, GFP_NOFS); |
| if (!name) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| read_extent_buffer(path->nodes[0], name, |
| (unsigned long)(di + 1), name_len); |
| |
| log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, |
| name, name_len, 0); |
| btrfs_release_path(log_path); |
| if (!log_di) { |
| /* Doesn't exist in log tree, so delete it. */ |
| btrfs_release_path(path); |
| di = btrfs_lookup_xattr(trans, root, path, ino, |
| name, name_len, -1); |
| kfree(name); |
| if (IS_ERR(di)) { |
| ret = PTR_ERR(di); |
| goto out; |
| } |
| ASSERT(di); |
| ret = btrfs_delete_one_dir_name(trans, root, |
| path, di); |
| if (ret) |
| goto out; |
| btrfs_release_path(path); |
| search_key = key; |
| goto again; |
| } |
| kfree(name); |
| if (IS_ERR(log_di)) { |
| ret = PTR_ERR(log_di); |
| goto out; |
| } |
| cur += this_len; |
| di = (struct btrfs_dir_item *)((char *)di + this_len); |
| } |
| } |
| ret = btrfs_next_leaf(root, path); |
| if (ret > 0) |
| ret = 0; |
| else if (ret == 0) |
| goto process_leaf; |
| out: |
| btrfs_free_path(log_path); |
| btrfs_release_path(path); |
| return ret; |
| } |
| |
| |
| /* |
| * deletion replay happens before we copy any new directory items |
| * out of the log or out of backreferences from inodes. It |
| * scans the log to find ranges of keys that log is authoritative for, |
| * and then scans the directory to find items in those ranges that are |
| * not present in the log. |
| * |
| * Anything we don't find in the log is unlinked and removed from the |
| * directory. |
| */ |
| static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_root *log, |
| struct btrfs_path *path, |
| u64 dirid, int del_all) |
| { |
| u64 range_start; |
| u64 range_end; |
| int key_type = BTRFS_DIR_LOG_ITEM_KEY; |
| int ret = 0; |
| struct btrfs_key dir_key; |
| struct btrfs_key found_key; |
| struct btrfs_path *log_path; |
| struct inode *dir; |
| |
| dir_key.objectid = dirid; |
| dir_key.type = BTRFS_DIR_ITEM_KEY; |
| log_path = btrfs_alloc_path(); |
| if (!log_path) |
| return -ENOMEM; |
| |
| dir = read_one_inode(root, dirid); |
| /* it isn't an error if the inode isn't there, that can happen |
| * because we replay the deletes before we copy in the inode item |
| * from the log |
| */ |
| if (!dir) { |
| btrfs_free_path(log_path); |
| return 0; |
| } |
| again: |
| range_start = 0; |
| range_end = 0; |
| while (1) { |
| if (del_all) |
| range_end = (u64)-1; |
| else { |
| ret = find_dir_range(log, path, dirid, key_type, |
| &range_start, &range_end); |
| if (ret != 0) |
| break; |
| } |
| |
| dir_key.offset = range_start; |
| while (1) { |
| int nritems; |
| ret = btrfs_search_slot(NULL, root, &dir_key, path, |
| 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| nritems = btrfs_header_nritems(path->nodes[0]); |
| if (path->slots[0] >= nritems) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret == 1) |
| break; |
| else if (ret < 0) |
| goto out; |
| } |
| btrfs_item_key_to_cpu(path->nodes[0], &found_key, |
| path->slots[0]); |
| if (found_key.objectid != dirid || |
| found_key.type != dir_key.type) |
| goto next_type; |
| |
| if (found_key.offset > range_end) |
| break; |
| |
| ret = check_item_in_log(trans, root, log, path, |
| log_path, dir, |
| &found_key); |
| if (ret) |
| goto out; |
| if (found_key.offset == (u64)-1) |
| break; |
| dir_key.offset = found_key.offset + 1; |
| } |
| btrfs_release_path(path); |
| if (range_end == (u64)-1) |
| break; |
| range_start = range_end + 1; |
| } |
| |
| next_type: |
| ret = 0; |
| if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { |
| key_type = BTRFS_DIR_LOG_INDEX_KEY; |
| dir_key.type = BTRFS_DIR_INDEX_KEY; |
| btrfs_release_path(path); |
| goto again; |
| } |
| out: |
| btrfs_release_path(path); |
| btrfs_free_path(log_path); |
| iput(dir); |
| return ret; |
| } |
| |
| /* |
| * the process_func used to replay items from the log tree. This |
| * gets called in two different stages. The first stage just looks |
| * for inodes and makes sure they are all copied into the subvolume. |
| * |
| * The second stage copies all the other item types from the log into |
| * the subvolume. The two stage approach is slower, but gets rid of |
| * lots of complexity around inodes referencing other inodes that exist |
| * only in the log (references come from either directory items or inode |
| * back refs). |
| */ |
| static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, |
| struct walk_control *wc, u64 gen) |
| { |
| int nritems; |
| struct btrfs_path *path; |
| struct btrfs_root *root = wc->replay_dest; |
| struct btrfs_key key; |
| int level; |
| int i; |
| int ret; |
| |
| ret = btrfs_read_buffer(eb, gen); |
| if (ret) |
| return ret; |
| |
| level = btrfs_header_level(eb); |
| |
| if (level != 0) |
| return 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| nritems = btrfs_header_nritems(eb); |
| for (i = 0; i < nritems; i++) { |
| btrfs_item_key_to_cpu(eb, &key, i); |
| |
| /* inode keys are done during the first stage */ |
| if (key.type == BTRFS_INODE_ITEM_KEY && |
| wc->stage == LOG_WALK_REPLAY_INODES) { |
| struct btrfs_inode_item *inode_item; |
| u32 mode; |
| |
| inode_item = btrfs_item_ptr(eb, i, |
| struct btrfs_inode_item); |
| /* |
| * If we have a tmpfile (O_TMPFILE) that got fsync'ed |
| * and never got linked before the fsync, skip it, as |
| * replaying it is pointless since it would be deleted |
| * later. We skip logging tmpfiles, but it's always |
| * possible we are replaying a log created with a kernel |
| * that used to log tmpfiles. |
| */ |
| if (btrfs_inode_nlink(eb, inode_item) == 0) { |
| wc->ignore_cur_inode = true; |
| continue; |
| } else { |
| wc->ignore_cur_inode = false; |
| } |
| ret = replay_xattr_deletes(wc->trans, root, log, |
| path, key.objectid); |
| if (ret) |
| break; |
| mode = btrfs_inode_mode(eb, inode_item); |
| if (S_ISDIR(mode)) { |
| ret = replay_dir_deletes(wc->trans, |
| root, log, path, key.objectid, 0); |
| if (ret) |
| break; |
| } |
| ret = overwrite_item(wc->trans, root, path, |
| eb, i, &key); |
| if (ret) |
| break; |
| |
| /* |
| * Before replaying extents, truncate the inode to its |
| * size. We need to do it now and not after log replay |
| * because before an fsync we can have prealloc extents |
| * added beyond the inode's i_size. If we did it after, |
| * through orphan cleanup for example, we would drop |
| * those prealloc extents just after replaying them. |
| */ |
| if (S_ISREG(mode)) { |
| struct inode *inode; |
| u64 from; |
| |
| inode = read_one_inode(root, key.objectid); |
| if (!inode) { |
| ret = -EIO; |
| break; |
| } |
| from = ALIGN(i_size_read(inode), |
| root->fs_info->sectorsize); |
| ret = btrfs_drop_extents(wc->trans, root, inode, |
| from, (u64)-1, 1); |
| if (!ret) { |
| /* Update the inode's nbytes. */ |
| ret = btrfs_update_inode(wc->trans, |
| root, inode); |
| } |
| iput(inode); |
| if (ret) |
| break; |
| } |
| |
| ret = link_to_fixup_dir(wc->trans, root, |
| path, key.objectid); |
| if (ret) |
| break; |
| } |
| |
| if (wc->ignore_cur_inode) |
| continue; |
| |
| if (key.type == BTRFS_DIR_INDEX_KEY && |
| wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { |
| ret = replay_one_dir_item(wc->trans, root, path, |
| eb, i, &key); |
| if (ret) |
| break; |
| } |
| |
| if (wc->stage < LOG_WALK_REPLAY_ALL) |
| continue; |
| |
| /* these keys are simply copied */ |
| if (key.type == BTRFS_XATTR_ITEM_KEY) { |
| ret = overwrite_item(wc->trans, root, path, |
| eb, i, &key); |
| if (ret) |
| break; |
| } else if (key.type == BTRFS_INODE_REF_KEY || |
| key.type == BTRFS_INODE_EXTREF_KEY) { |
| ret = add_inode_ref(wc->trans, root, log, path, |
| eb, i, &key); |
| if (ret && ret != -ENOENT) |
| break; |
| ret = 0; |
| } else if (key.type == BTRFS_EXTENT_DATA_KEY) { |
| ret = replay_one_extent(wc->trans, root, path, |
| eb, i, &key); |
| if (ret) |
| break; |
| } else if (key.type == BTRFS_DIR_ITEM_KEY) { |
| ret = replay_one_dir_item(wc->trans, root, path, |
| eb, i, &key); |
| if (ret) |
| break; |
| } |
| } |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, int *level, |
| struct walk_control *wc) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| u64 root_owner; |
| u64 bytenr; |
| u64 ptr_gen; |
| struct extent_buffer *next; |
| struct extent_buffer *cur; |
| struct extent_buffer *parent; |
| u32 blocksize; |
| int ret = 0; |
| |
| WARN_ON(*level < 0); |
| WARN_ON(*level >= BTRFS_MAX_LEVEL); |
| |
| while (*level > 0) { |
| WARN_ON(*level < 0); |
| WARN_ON(*level >= BTRFS_MAX_LEVEL); |
| cur = path->nodes[*level]; |
| |
| WARN_ON(btrfs_header_level(cur) != *level); |
| |
| if (path->slots[*level] >= |
| btrfs_header_nritems(cur)) |
| break; |
| |
| bytenr = btrfs_node_blockptr(cur, path->slots[*level]); |
| ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); |
| blocksize = fs_info->nodesize; |
| |
| parent = path->nodes[*level]; |
| root_owner = btrfs_header_owner(parent); |
| |
| next = btrfs_find_create_tree_block(fs_info, bytenr); |
| if (IS_ERR(next)) |
| return PTR_ERR(next); |
| |
| if (*level == 1) { |
| ret = wc->process_func(root, next, wc, ptr_gen); |
| if (ret) { |
| free_extent_buffer(next); |
| return ret; |
| } |
| |
| path->slots[*level]++; |
| if (wc->free) { |
| ret = btrfs_read_buffer(next, ptr_gen); |
| if (ret) { |
| free_extent_buffer(next); |
| return ret; |
| } |
| |
| if (trans) { |
| btrfs_tree_lock(next); |
| btrfs_set_lock_blocking(next); |
| clean_tree_block(fs_info, next); |
| btrfs_wait_tree_block_writeback(next); |
| btrfs_tree_unlock(next); |
| } else { |
| if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) |
| clear_extent_buffer_dirty(next); |
| } |
| |
| WARN_ON(root_owner != |
| BTRFS_TREE_LOG_OBJECTID); |
| ret = btrfs_free_and_pin_reserved_extent( |
| fs_info, bytenr, |
| blocksize); |
| if (ret) { |
| free_extent_buffer(next); |
| return ret; |
| } |
| } |
| free_extent_buffer(next); |
| continue; |
| } |
| ret = btrfs_read_buffer(next, ptr_gen); |
| if (ret) { |
| free_extent_buffer(next); |
| return ret; |
| } |
| |
| WARN_ON(*level <= 0); |
| if (path->nodes[*level-1]) |
| free_extent_buffer(path->nodes[*level-1]); |
| path->nodes[*level-1] = next; |
| *level = btrfs_header_level(next); |
| path->slots[*level] = 0; |
| cond_resched(); |
| } |
| WARN_ON(*level < 0); |
| WARN_ON(*level >= BTRFS_MAX_LEVEL); |
| |
| path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); |
| |
| cond_resched(); |
| return 0; |
| } |
| |
| static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, int *level, |
| struct walk_control *wc) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| u64 root_owner; |
| int i; |
| int slot; |
| int ret; |
| |
| for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { |
| slot = path->slots[i]; |
| if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { |
| path->slots[i]++; |
| *level = i; |
| WARN_ON(*level == 0); |
| return 0; |
| } else { |
| struct extent_buffer *parent; |
| if (path->nodes[*level] == root->node) |
| parent = path->nodes[*level]; |
| else |
| parent = path->nodes[*level + 1]; |
| |
| root_owner = btrfs_header_owner(parent); |
| ret = wc->process_func(root, path->nodes[*level], wc, |
| btrfs_header_generation(path->nodes[*level])); |
| if (ret) |
| return ret; |
| |
| if (wc->free) { |
| struct extent_buffer *next; |
| |
| next = path->nodes[*level]; |
| |
| if (trans) { |
| btrfs_tree_lock(next); |
| btrfs_set_lock_blocking(next); |
| clean_tree_block(fs_info, next); |
| btrfs_wait_tree_block_writeback(next); |
| btrfs_tree_unlock(next); |
| } else { |
| if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) |
| clear_extent_buffer_dirty(next); |
| } |
| |
| WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); |
| ret = btrfs_free_and_pin_reserved_extent( |
| fs_info, |
| path->nodes[*level]->start, |
| path->nodes[*level]->len); |
| if (ret) |
| return ret; |
| } |
| free_extent_buffer(path->nodes[*level]); |
| path->nodes[*level] = NULL; |
| *level = i + 1; |
| } |
| } |
| return 1; |
| } |
| |
| /* |
| * drop the reference count on the tree rooted at 'snap'. This traverses |
| * the tree freeing any blocks that have a ref count of zero after being |
| * decremented. |
| */ |
| static int walk_log_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *log, struct walk_control *wc) |
| { |
| struct btrfs_fs_info *fs_info = log->fs_info; |
| int ret = 0; |
| int wret; |
| int level; |
| struct btrfs_path *path; |
| int orig_level; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| level = btrfs_header_level(log->node); |
| orig_level = level; |
| path->nodes[level] = log->node; |
| extent_buffer_get(log->node); |
| path->slots[level] = 0; |
| |
| while (1) { |
| wret = walk_down_log_tree(trans, log, path, &level, wc); |
| if (wret > 0) |
| break; |
| if (wret < 0) { |
| ret = wret; |
| goto out; |
| } |
| |
| wret = walk_up_log_tree(trans, log, path, &level, wc); |
| if (wret > 0) |
| break; |
| if (wret < 0) { |
| ret = wret; |
| goto out; |
| } |
| } |
| |
| /* was the root node processed? if not, catch it here */ |
| if (path->nodes[orig_level]) { |
| ret = wc->process_func(log, path->nodes[orig_level], wc, |
| btrfs_header_generation(path->nodes[orig_level])); |
| if (ret) |
| goto out; |
| if (wc->free) { |
| struct extent_buffer *next; |
| |
| next = path->nodes[orig_level]; |
| |
| if (trans) { |
| btrfs_tree_lock(next); |
| btrfs_set_lock_blocking(next); |
| clean_tree_block(fs_info, next); |
| btrfs_wait_tree_block_writeback(next); |
| btrfs_tree_unlock(next); |
| } else { |
| if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) |
| clear_extent_buffer_dirty(next); |
| } |
| |
| WARN_ON(log->root_key.objectid != |
| BTRFS_TREE_LOG_OBJECTID); |
| ret = btrfs_free_and_pin_reserved_extent(fs_info, |
| next->start, next->len); |
| if (ret) |
| goto out; |
| } |
| } |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * helper function to update the item for a given subvolumes log root |
| * in the tree of log roots |
| */ |
| static int update_log_root(struct btrfs_trans_handle *trans, |
| struct btrfs_root *log, |
| struct btrfs_root_item *root_item) |
| { |
| struct btrfs_fs_info *fs_info = log->fs_info; |
| int ret; |
| |
| if (log->log_transid == 1) { |
| /* insert root item on the first sync */ |
| ret = btrfs_insert_root(trans, fs_info->log_root_tree, |
| &log->root_key, root_item); |
| } else { |
| ret = btrfs_update_root(trans, fs_info->log_root_tree, |
| &log->root_key, root_item); |
| } |
| return ret; |
| } |
| |
| static void wait_log_commit(struct btrfs_root *root, int transid) |
| { |
| DEFINE_WAIT(wait); |
| int index = transid % 2; |
| |
| /* |
| * we only allow two pending log transactions at a time, |
| * so we know that if ours is more than 2 older than the |
| * current transaction, we're done |
| */ |
| do { |
| prepare_to_wait(&root->log_commit_wait[index], |
| &wait, TASK_UNINTERRUPTIBLE); |
| mutex_unlock(&root->log_mutex); |
| |
| if (root->log_transid_committed < transid && |
| atomic_read(&root->log_commit[index])) |
| schedule(); |
| |
| finish_wait(&root->log_commit_wait[index], &wait); |
| mutex_lock(&root->log_mutex); |
| } while (root->log_transid_committed < transid && |
| atomic_read(&root->log_commit[index])); |
| } |
| |
| static void wait_for_writer(struct btrfs_root *root) |
| { |
| DEFINE_WAIT(wait); |
| |
| while (atomic_read(&root->log_writers)) { |
| prepare_to_wait(&root->log_writer_wait, |
| &wait, TASK_UNINTERRUPTIBLE); |
| mutex_unlock(&root->log_mutex); |
| if (atomic_read(&root->log_writers)) |
| schedule(); |
| finish_wait(&root->log_writer_wait, &wait); |
| mutex_lock(&root->log_mutex); |
| } |
| } |
| |
| static inline void btrfs_remove_log_ctx(struct btrfs_root *root, |
| struct btrfs_log_ctx *ctx) |
| { |
| if (!ctx) |
| return; |
| |
| mutex_lock(&root->log_mutex); |
| list_del_init(&ctx->list); |
| mutex_unlock(&root->log_mutex); |
| } |
| |
| /* |
| * Invoked in log mutex context, or be sure there is no other task which |
| * can access the list. |
| */ |
| static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, |
| int index, int error) |
| { |
| struct btrfs_log_ctx *ctx; |
| struct btrfs_log_ctx *safe; |
| |
| list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { |
| list_del_init(&ctx->list); |
| ctx->log_ret = error; |
| } |
| |
| INIT_LIST_HEAD(&root->log_ctxs[index]); |
| } |
| |
| /* |
| * btrfs_sync_log does sends a given tree log down to the disk and |
| * updates the super blocks to record it. When this call is done, |
| * you know that any inodes previously logged are safely on disk only |
| * if it returns 0. |
| * |
| * Any other return value means you need to call btrfs_commit_transaction. |
| * Some of the edge cases for fsyncing directories that have had unlinks |
| * or renames done in the past mean that sometimes the only safe |
| * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, |
| * that has happened. |
| */ |
| int btrfs_sync_log(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, struct btrfs_log_ctx *ctx) |
| { |
| int index1; |
| int index2; |
| int mark; |
| int ret; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_root *log = root->log_root; |
| struct btrfs_root *log_root_tree = fs_info->log_root_tree; |
| struct btrfs_root_item new_root_item; |
| int log_transid = 0; |
| struct btrfs_log_ctx root_log_ctx; |
| struct blk_plug plug; |
| |
| mutex_lock(&root->log_mutex); |
| log_transid = ctx->log_transid; |
| if (root->log_transid_committed >= log_transid) { |
| mutex_unlock(&root->log_mutex); |
| return ctx->log_ret; |
| } |
| |
| index1 = log_transid % 2; |
| if (atomic_read(&root->log_commit[index1])) { |
| wait_log_commit(root, log_transid); |
| mutex_unlock(&root->log_mutex); |
| return ctx->log_ret; |
| } |
| ASSERT(log_transid == root->log_transid); |
| atomic_set(&root->log_commit[index1], 1); |
| |
| /* wait for previous tree log sync to complete */ |
| if (atomic_read(&root->log_commit[(index1 + 1) % 2])) |
| wait_log_commit(root, log_transid - 1); |
| |
| while (1) { |
| int batch = atomic_read(&root->log_batch); |
| /* when we're on an ssd, just kick the log commit out */ |
| if (!btrfs_test_opt(fs_info, SSD) && |
| test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { |
| mutex_unlock(&root->log_mutex); |
| schedule_timeout_uninterruptible(1); |
| mutex_lock(&root->log_mutex); |
| } |
| wait_for_writer(root); |
| if (batch == atomic_read(&root->log_batch)) |
| break; |
| } |
| |
| /* bail out if we need to do a full commit */ |
| if (btrfs_need_log_full_commit(fs_info, trans)) { |
| ret = -EAGAIN; |
| btrfs_free_logged_extents(log, log_transid); |
| mutex_unlock(&root->log_mutex); |
| goto out; |
| } |
| |
| if (log_transid % 2 == 0) |
| mark = EXTENT_DIRTY; |
| else |
| mark = EXTENT_NEW; |
| |
| /* we start IO on all the marked extents here, but we don't actually |
| * wait for them until later. |
| */ |
| blk_start_plug(&plug); |
| ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); |
| if (ret) { |
| blk_finish_plug(&plug); |
| btrfs_abort_transaction(trans, ret); |
| btrfs_free_logged_extents(log, log_transid); |
| btrfs_set_log_full_commit(fs_info, trans); |
| mutex_unlock(&root->log_mutex); |
| goto out; |
| } |
| |
| /* |
| * We _must_ update under the root->log_mutex in order to make sure we |
| * have a consistent view of the log root we are trying to commit at |
| * this moment. |
| * |
| * We _must_ copy this into a local copy, because we are not holding the |
| * log_root_tree->log_mutex yet. This is important because when we |
| * commit the log_root_tree we must have a consistent view of the |
| * log_root_tree when we update the super block to point at the |
| * log_root_tree bytenr. If we update the log_root_tree here we'll race |
| * with the commit and possibly point at the new block which we may not |
| * have written out. |
| */ |
| btrfs_set_root_node(&log->root_item, log->node); |
| memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); |
| |
| root->log_transid++; |
| log->log_transid = root->log_transid; |
| root->log_start_pid = 0; |
| /* |
| * IO has been started, blocks of the log tree have WRITTEN flag set |
| * in their headers. new modifications of the log will be written to |
| * new positions. so it's safe to allow log writers to go in. |
| */ |
| mutex_unlock(&root->log_mutex); |
| |
| btrfs_init_log_ctx(&root_log_ctx, NULL); |
| |
| mutex_lock(&log_root_tree->log_mutex); |
| atomic_inc(&log_root_tree->log_batch); |
| atomic_inc(&log_root_tree->log_writers); |
| |
| index2 = log_root_tree->log_transid % 2; |
| list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); |
| root_log_ctx.log_transid = log_root_tree->log_transid; |
| |
| mutex_unlock(&log_root_tree->log_mutex); |
| |
| mutex_lock(&log_root_tree->log_mutex); |
| |
| /* |
| * Now we are safe to update the log_root_tree because we're under the |
| * log_mutex, and we're a current writer so we're holding the commit |
| * open until we drop the log_mutex. |
| */ |
| ret = update_log_root(trans, log, &new_root_item); |
| |
| if (atomic_dec_and_test(&log_root_tree->log_writers)) { |
| /* |
| * Implicit memory barrier after atomic_dec_and_test |
| */ |
| if (waitqueue_active(&log_root_tree->log_writer_wait)) |
| wake_up(&log_root_tree->log_writer_wait); |
| } |
| |
| if (ret) { |
| if (!list_empty(&root_log_ctx.list)) |
| list_del_init(&root_log_ctx.list); |
| |
| blk_finish_plug(&plug); |
| btrfs_set_log_full_commit(fs_info, trans); |
| |
| if (ret != -ENOSPC) { |
| btrfs_abort_transaction(trans, ret); |
| mutex_unlock(&log_root_tree->log_mutex); |
| goto out; |
| } |
| btrfs_wait_tree_log_extents(log, mark); |
| btrfs_free_logged_extents(log, log_transid); |
| mutex_unlock(&log_root_tree->log_mutex); |
| ret = -EAGAIN; |
| goto out; |
| } |
| |
| if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { |
| blk_finish_plug(&plug); |
| list_del_init(&root_log_ctx.list); |
| mutex_unlock(&log_root_tree->log_mutex); |
| ret = root_log_ctx.log_ret; |
| goto out; |
| } |
| |
| index2 = root_log_ctx.log_transid % 2; |
| if (atomic_read(&log_root_tree->log_commit[index2])) { |
| blk_finish_plug(&plug); |
| ret = btrfs_wait_tree_log_extents(log, mark); |
| btrfs_wait_logged_extents(trans, log, log_transid); |
| wait_log_commit(log_root_tree, |
| root_log_ctx.log_transid); |
| mutex_unlock(&log_root_tree->log_mutex); |
| if (!ret) |
| ret = root_log_ctx.log_ret; |
| goto out; |
| } |
| ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); |
| atomic_set(&log_root_tree->log_commit[index2], 1); |
| |
| if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { |
| wait_log_commit(log_root_tree, |
| root_log_ctx.log_transid - 1); |
| } |
| |
| wait_for_writer(log_root_tree); |
| |
| /* |
| * now that we've moved on to the tree of log tree roots, |
| * check the full commit flag again |
| */ |
| if (btrfs_need_log_full_commit(fs_info, trans)) { |
| blk_finish_plug(&plug); |
| btrfs_wait_tree_log_extents(log, mark); |
| btrfs_free_logged_extents(log, log_transid); |
| mutex_unlock(&log_root_tree->log_mutex); |
| ret = -EAGAIN; |
| goto out_wake_log_root; |
| } |
| |
| ret = btrfs_write_marked_extents(fs_info, |
| &log_root_tree->dirty_log_pages, |
| EXTENT_DIRTY | EXTENT_NEW); |
| blk_finish_plug(&plug); |
| if (ret) { |
| btrfs_set_log_full_commit(fs_info, trans); |
| btrfs_abort_transaction(trans, ret); |
| btrfs_free_logged_extents(log, log_transid); |
| mutex_unlock(&log_root_tree->log_mutex); |
| goto out_wake_log_root; |
| } |
| ret = btrfs_wait_tree_log_extents(log, mark); |
| if (!ret) |
| ret = btrfs_wait_tree_log_extents(log_root_tree, |
| EXTENT_NEW | EXTENT_DIRTY); |
| if (ret) { |
| btrfs_set_log_full_commit(fs_info, trans); |
| btrfs_free_logged_extents(log, log_transid); |
| mutex_unlock(&log_root_tree->log_mutex); |
| goto out_wake_log_root; |
| } |
| btrfs_wait_logged_extents(trans, log, log_transid); |
| |
| btrfs_set_super_log_root(fs_info->super_for_commit, |
| log_root_tree->node->start); |
| btrfs_set_super_log_root_level(fs_info->super_for_commit, |
| btrfs_header_level(log_root_tree->node)); |
| |
| log_root_tree->log_transid++; |
| mutex_unlock(&log_root_tree->log_mutex); |
| |
| /* |
| * nobody else is going to jump in and write the the ctree |
| * super here because the log_commit atomic below is protecting |
| * us. We must be called with a transaction handle pinning |
| * the running transaction open, so a full commit can't hop |
| * in and cause problems either. |
| */ |
| ret = write_all_supers(fs_info, 1); |
| if (ret) { |
| btrfs_set_log_full_commit(fs_info, trans); |
| btrfs_abort_transaction(trans, ret); |
| goto out_wake_log_root; |
| } |
| |
| mutex_lock(&root->log_mutex); |
| if (root->last_log_commit < log_transid) |
| root->last_log_commit = log_transid; |
| mutex_unlock(&root->log_mutex); |
| |
| out_wake_log_root: |
| mutex_lock(&log_root_tree->log_mutex); |
| btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); |
| |
| log_root_tree->log_transid_committed++; |
| atomic_set(&log_root_tree->log_commit[index2], 0); |
| mutex_unlock(&log_root_tree->log_mutex); |
| |
| /* |
| * The barrier before waitqueue_active is needed so all the updates |
| * above are seen by the woken threads. It might not be necessary, but |
| * proving that seems to be hard. |
| */ |
| smp_mb(); |
| if (waitqueue_active(&log_root_tree->log_commit_wait[index2])) |
| wake_up(&log_root_tree->log_commit_wait[index2]); |
| out: |
| mutex_lock(&root->log_mutex); |
| btrfs_remove_all_log_ctxs(root, index1, ret); |
| root->log_transid_committed++; |
| atomic_set(&root->log_commit[index1], 0); |
| mutex_unlock(&root->log_mutex); |
| |
| /* |
| * The barrier before waitqueue_active is needed so all the updates |
| * above are seen by the woken threads. It might not be necessary, but |
| * proving that seems to be hard. |
| */ |
| smp_mb(); |
| if (waitqueue_active(&root->log_commit_wait[index1])) |
| wake_up(&root->log_commit_wait[index1]); |
| return ret; |
| } |
| |
| static void free_log_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *log) |
| { |
| int ret; |
| u64 start; |
| u64 end; |
| struct walk_control wc = { |
| .free = 1, |
| .process_func = process_one_buffer |
| }; |
| |
| ret = walk_log_tree(trans, log, &wc); |
| if (ret) { |
| if (trans) |
| btrfs_abort_transaction(trans, ret); |
| else |
| btrfs_handle_fs_error(log->fs_info, ret, NULL); |
| } |
| |
| while (1) { |
| ret = find_first_extent_bit(&log->dirty_log_pages, |
| 0, &start, &end, |
| EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT, |
| NULL); |
| if (ret) |
| break; |
| |
| clear_extent_bits(&log->dirty_log_pages, start, end, |
| EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT); |
| } |
| |
| /* |
| * We may have short-circuited the log tree with the full commit logic |
| * and left ordered extents on our list, so clear these out to keep us |
| * from leaking inodes and memory. |
| */ |
| btrfs_free_logged_extents(log, 0); |
| btrfs_free_logged_extents(log, 1); |
| |
| free_extent_buffer(log->node); |
| kfree(log); |
| } |
| |
| /* |
| * free all the extents used by the tree log. This should be called |
| * at commit time of the full transaction |
| */ |
| int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) |
| { |
| if (root->log_root) { |
| free_log_tree(trans, root->log_root); |
| root->log_root = NULL; |
| } |
| return 0; |
| } |
| |
| int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info) |
| { |
| if (fs_info->log_root_tree) { |
| free_log_tree(trans, fs_info->log_root_tree); |
| fs_info->log_root_tree = NULL; |
| } |
| return 0; |
| } |
| |
| /* |
| * Check if an inode was logged in the current transaction. We can't always rely |
| * on an inode's logged_trans value, because it's an in-memory only field and |
| * therefore not persisted. This means that its value is lost if the inode gets |
| * evicted and loaded again from disk (in which case it has a value of 0, and |
| * certainly it is smaller then any possible transaction ID), when that happens |
| * the full_sync flag is set in the inode's runtime flags, so on that case we |
| * assume eviction happened and ignore the logged_trans value, assuming the |
| * worst case, that the inode was logged before in the current transaction. |
| */ |
| static bool inode_logged(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode) |
| { |
| if (inode->logged_trans == trans->transid) |
| return true; |
| |
| if (inode->last_trans == trans->transid && |
| test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) && |
| !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags)) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * If both a file and directory are logged, and unlinks or renames are |
| * mixed in, we have a few interesting corners: |
| * |
| * create file X in dir Y |
| * link file X to X.link in dir Y |
| * fsync file X |
| * unlink file X but leave X.link |
| * fsync dir Y |
| * |
| * After a crash we would expect only X.link to exist. But file X |
| * didn't get fsync'd again so the log has back refs for X and X.link. |
| * |
| * We solve this by removing directory entries and inode backrefs from the |
| * log when a file that was logged in the current transaction is |
| * unlinked. Any later fsync will include the updated log entries, and |
| * we'll be able to reconstruct the proper directory items from backrefs. |
| * |
| * This optimizations allows us to avoid relogging the entire inode |
| * or the entire directory. |
| */ |
| int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| const char *name, int name_len, |
| struct btrfs_inode *dir, u64 index) |
| { |
| struct btrfs_root *log; |
| struct btrfs_dir_item *di; |
| struct btrfs_path *path; |
| int ret; |
| int err = 0; |
| int bytes_del = 0; |
| u64 dir_ino = btrfs_ino(dir); |
| |
| if (!inode_logged(trans, dir)) |
| return 0; |
| |
| ret = join_running_log_trans(root); |
| if (ret) |
| return 0; |
| |
| mutex_lock(&dir->log_mutex); |
| |
| log = root->log_root; |
| path = btrfs_alloc_path(); |
| if (!path) { |
| err = -ENOMEM; |
| goto out_unlock; |
| } |
| |
| di = btrfs_lookup_dir_item(trans, log, path, dir_ino, |
| name, name_len, -1); |
| if (IS_ERR(di)) { |
| err = PTR_ERR(di); |
| goto fail; |
| } |
| if (di) { |
| ret = btrfs_delete_one_dir_name(trans, log, path, di); |
| bytes_del += name_len; |
| if (ret) { |
| err = ret; |
| goto fail; |
| } |
| } |
| btrfs_release_path(path); |
| di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, |
| index, name, name_len, -1); |
| if (IS_ERR(di)) { |
| err = PTR_ERR(di); |
| goto fail; |
| } |
| if (di) { |
| ret = btrfs_delete_one_dir_name(trans, log, path, di); |
| bytes_del += name_len; |
| if (ret) { |
| err = ret; |
| goto fail; |
| } |
| } |
| |
| /* update the directory size in the log to reflect the names |
| * we have removed |
| */ |
| if (bytes_del) { |
| struct btrfs_key key; |
| |
| key.objectid = dir_ino; |
| key.offset = 0; |
| key.type = BTRFS_INODE_ITEM_KEY; |
| btrfs_release_path(path); |
| |
| ret = btrfs_search_slot(trans, log, &key, path, 0, 1); |
| if (ret < 0) { |
| err = ret; |
| goto fail; |
| } |
| if (ret == 0) { |
| struct btrfs_inode_item *item; |
| u64 i_size; |
| |
| item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_inode_item); |
| i_size = btrfs_inode_size(path->nodes[0], item); |
| if (i_size > bytes_del) |
| i_size -= bytes_del; |
| else |
| i_size = 0; |
| btrfs_set_inode_size(path->nodes[0], item, i_size); |
| btrfs_mark_buffer_dirty(path->nodes[0]); |
| } else |
| ret = 0; |
| btrfs_release_path(path); |
| } |
| fail: |
| btrfs_free_path(path); |
| out_unlock: |
| mutex_unlock(&dir->log_mutex); |
| if (err == -ENOSPC) { |
| btrfs_set_log_full_commit(root->fs_info, trans); |
| err = 0; |
| } else if (err < 0 && err != -ENOENT) { |
| /* ENOENT can be returned if the entry hasn't been fsynced yet */ |
| btrfs_abort_transaction(trans, err); |
| } |
| |
| btrfs_end_log_trans(root); |
| |
| return err; |
| } |
| |
| /* see comments for btrfs_del_dir_entries_in_log */ |
| int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| const char *name, int name_len, |
| struct btrfs_inode *inode, u64 dirid) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_root *log; |
| u64 index; |
| int ret; |
| |
| if (!inode_logged(trans, inode)) |
| return 0; |
| |
| ret = join_running_log_trans(root); |
| if (ret) |
| return 0; |
| log = root->log_root; |
| mutex_lock(&inode->log_mutex); |
| |
| ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), |
| dirid, &index); |
| mutex_unlock(&inode->log_mutex); |
| if (ret == -ENOSPC) { |
| btrfs_set_log_full_commit(fs_info, trans); |
| ret = 0; |
| } else if (ret < 0 && ret != -ENOENT) |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_log_trans(root); |
| |
| return ret; |
| } |
| |
| /* |
| * creates a range item in the log for 'dirid'. first_offset and |
| * last_offset tell us which parts of the key space the log should |
| * be considered authoritative for. |
| */ |
| static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, |
| struct btrfs_root *log, |
| struct btrfs_path *path, |
| int key_type, u64 dirid, |
| u64 first_offset, u64 last_offset) |
| { |
| int ret; |
| struct btrfs_key key; |
| struct btrfs_dir_log_item *item; |
| |
| key.objectid = dirid; |
| key.offset = first_offset; |
| if (key_type == BTRFS_DIR_ITEM_KEY) |
| key.type = BTRFS_DIR_LOG_ITEM_KEY; |
| else |
| key.type = BTRFS_DIR_LOG_INDEX_KEY; |
| ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); |
| if (ret) |
| return ret; |
| |
| item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_dir_log_item); |
| btrfs_set_dir_log_end(path->nodes[0], item, last_offset); |
| btrfs_mark_buffer_dirty(path->nodes[0]); |
| btrfs_release_path(path); |
| return 0; |
| } |
| |
| /* |
| * log all the items included in the current transaction for a given |
| * directory. This also creates the range items in the log tree required |
| * to replay anything deleted before the fsync |
| */ |
| static noinline int log_dir_items(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, struct btrfs_inode *inode, |
| struct btrfs_path *path, |
| struct btrfs_path *dst_path, int key_type, |
| struct btrfs_log_ctx *ctx, |
| u64 min_offset, u64 *last_offset_ret) |
| { |
| struct btrfs_key min_key; |
| struct btrfs_root *log = root->log_root; |
| struct extent_buffer *src; |
| int err = 0; |
| int ret; |
| int i; |
| int nritems; |
| u64 first_offset = min_offset; |
| u64 last_offset = (u64)-1; |
| u64 ino = btrfs_ino(inode); |
| |
| log = root->log_root; |
| |
| min_key.objectid = ino; |
| min_key.type = key_type; |
| min_key.offset = min_offset; |
| |
| ret = btrfs_search_forward(root, &min_key, path, trans->transid); |
| |
| /* |
| * we didn't find anything from this transaction, see if there |
| * is anything at all |
| */ |
| if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { |
| min_key.objectid = ino; |
| min_key.type = key_type; |
| min_key.offset = (u64)-1; |
| btrfs_release_path(path); |
| ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); |
| if (ret < 0) { |
| btrfs_release_path(path); |
| return ret; |
| } |
| ret = btrfs_previous_item(root, path, ino, key_type); |
| |
| /* if ret == 0 there are items for this type, |
| * create a range to tell us the last key of this type. |
| * otherwise, there are no items in this directory after |
| * *min_offset, and we create a range to indicate that. |
| */ |
| if (ret == 0) { |
| struct btrfs_key tmp; |
| btrfs_item_key_to_cpu(path->nodes[0], &tmp, |
| path->slots[0]); |
| if (key_type == tmp.type) |
| first_offset = max(min_offset, tmp.offset) + 1; |
| } |
| goto done; |
| } |
| |
| /* go backward to find any previous key */ |
| ret = btrfs_previous_item(root, path, ino, key_type); |
| if (ret == 0) { |
| struct btrfs_key tmp; |
| btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); |
| if (key_type == tmp.type) { |
| first_offset = tmp.offset; |
| ret = overwrite_item(trans, log, dst_path, |
| path->nodes[0], path->slots[0], |
| &tmp); |
| if (ret) { |
| err = ret; |
| goto done; |
| } |
| } |
| } |
| btrfs_release_path(path); |
| |
| /* |
| * Find the first key from this transaction again. See the note for |
| * log_new_dir_dentries, if we're logging a directory recursively we |
| * won't be holding its i_mutex, which means we can modify the directory |
| * while we're logging it. If we remove an entry between our first |
| * search and this search we'll not find the key again and can just |
| * bail. |
| */ |
| search: |
| ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); |
| if (ret != 0) |
| goto done; |
| |
| /* |
| * we have a block from this transaction, log every item in it |
| * from our directory |
| */ |
| while (1) { |
| struct btrfs_key tmp; |
| src = path->nodes[0]; |
| nritems = btrfs_header_nritems(src); |
| for (i = path->slots[0]; i < nritems; i++) { |
| struct btrfs_dir_item *di; |
| |
| btrfs_item_key_to_cpu(src, &min_key, i); |
| |
| if (min_key.objectid != ino || min_key.type != key_type) |
| goto done; |
| |
| if (need_resched()) { |
| btrfs_release_path(path); |
| cond_resched(); |
| goto search; |
| } |
| |
| ret = overwrite_item(trans, log, dst_path, src, i, |
| &min_key); |
| if (ret) { |
| err = ret; |
| goto done; |
| } |
| |
| /* |
| * We must make sure that when we log a directory entry, |
| * the corresponding inode, after log replay, has a |
| * matching link count. For example: |
| * |
| * touch foo |
| * mkdir mydir |
| * sync |
| * ln foo mydir/bar |
| * xfs_io -c "fsync" mydir |
| * <crash> |
| * <mount fs and log replay> |
| * |
| * Would result in a fsync log that when replayed, our |
| * file inode would have a link count of 1, but we get |
| * two directory entries pointing to the same inode. |
| * After removing one of the names, it would not be |
| * possible to remove the other name, which resulted |
| * always in stale file handle errors, and would not |
| * be possible to rmdir the parent directory, since |
| * its i_size could never decrement to the value |
| * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors. |
| */ |
| di = btrfs_item_ptr(src, i, struct btrfs_dir_item); |
| btrfs_dir_item_key_to_cpu(src, di, &tmp); |
| if (ctx && |
| (btrfs_dir_transid(src, di) == trans->transid || |
| btrfs_dir_type(src, di) == BTRFS_FT_DIR) && |
| tmp.type != BTRFS_ROOT_ITEM_KEY) |
| ctx->log_new_dentries = true; |
| } |
| path->slots[0] = nritems; |
| |
| /* |
| * look ahead to the next item and see if it is also |
| * from this directory and from this transaction |
| */ |
| ret = btrfs_next_leaf(root, path); |
| if (ret) { |
| if (ret == 1) |
| last_offset = (u64)-1; |
| else |
| err = ret; |
| goto done; |
| } |
| btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); |
| if (tmp.objectid != ino || tmp.type != key_type) { |
| last_offset = (u64)-1; |
| goto done; |
| } |
| if (btrfs_header_generation(path->nodes[0]) != trans->transid) { |
| ret = overwrite_item(trans, log, dst_path, |
| path->nodes[0], path->slots[0], |
| &tmp); |
| if (ret) |
| err = ret; |
| else |
| last_offset = tmp.offset; |
| goto done; |
| } |
| } |
| done: |
| btrfs_release_path(path); |
| btrfs_release_path(dst_path); |
| |
| if (err == 0) { |
| *last_offset_ret = last_offset; |
| /* |
| * insert the log range keys to indicate where the log |
| * is valid |
| */ |
| ret = insert_dir_log_key(trans, log, path, key_type, |
| ino, first_offset, last_offset); |
| if (ret) |
| err = ret; |
| } |
| return err; |
| } |
| |
| /* |
| * logging directories is very similar to logging inodes, We find all the items |
| * from the current transaction and write them to the log. |
| * |
| * The recovery code scans the directory in the subvolume, and if it finds a |
| * key in the range logged that is not present in the log tree, then it means |
| * that dir entry was unlinked during the transaction. |
| * |
| * In order for that scan to work, we must include one key smaller than |
| * the smallest logged by this transaction and one key larger than the largest |
| * key logged by this transaction. |
| */ |
| static noinline int log_directory_changes(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, struct btrfs_inode *inode, |
| struct btrfs_path *path, |
| struct btrfs_path *dst_path, |
| struct btrfs_log_ctx *ctx) |
| { |
| u64 min_key; |
| u64 max_key; |
| int ret; |
| int key_type = BTRFS_DIR_ITEM_KEY; |
| |
| again: |
| min_key = 0; |
| max_key = 0; |
| while (1) { |
| ret = log_dir_items(trans, root, inode, path, dst_path, key_type, |
| ctx, min_key, &max_key); |
| if (ret) |
| return ret; |
| if (max_key == (u64)-1) |
| break; |
| min_key = max_key + 1; |
| } |
| |
| if (key_type == BTRFS_DIR_ITEM_KEY) { |
| key_type = BTRFS_DIR_INDEX_KEY; |
| goto again; |
| } |
| return 0; |
| } |
| |
| /* |
| * a helper function to drop items from the log before we relog an |
| * inode. max_key_type indicates the highest item type to remove. |
| * This cannot be run for file data extents because it does not |
| * free the extents they point to. |
| */ |
| static int drop_objectid_items(struct btrfs_trans_handle *trans, |
| struct btrfs_root *log, |
| struct btrfs_path *path, |
| u64 objectid, int max_key_type) |
| { |
| int ret; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| int start_slot; |
| |
| key.objectid = objectid; |
| key.type = max_key_type; |
| key.offset = (u64)-1; |
| |
| while (1) { |
| ret = btrfs_search_slot(trans, log, &key, path, -1, 1); |
| BUG_ON(ret == 0); /* Logic error */ |
| if (ret < 0) |
| break; |
| |
| if (path->slots[0] == 0) |
| break; |
| |
| path->slots[0]--; |
| btrfs_item_key_to_cpu(path->nodes[0], &found_key, |
| path->slots[0]); |
| |
| if (found_key.objectid != objectid) |
| break; |
| |
| found_key.offset = 0; |
| found_key.type = 0; |
| ret = btrfs_bin_search(path->nodes[0], &found_key, 0, |
| &start_slot); |
| |
| ret = btrfs_del_items(trans, log, path, start_slot, |
| path->slots[0] - start_slot + 1); |
| /* |
| * If start slot isn't 0 then we don't need to re-search, we've |
| * found the last guy with the objectid in this tree. |
| */ |
| if (ret || start_slot != 0) |
| break; |
| btrfs_release_path(path); |
| } |
| btrfs_release_path(path); |
| if (ret > 0) |
| ret = 0; |
| return ret; |
| } |
| |
| static void fill_inode_item(struct btrfs_trans_handle *trans, |
| struct extent_buffer *leaf, |
| struct btrfs_inode_item *item, |
| struct inode *inode, int log_inode_only, |
| u64 logged_isize) |
| { |
| struct btrfs_map_token token; |
| |
| btrfs_init_map_token(&token); |
| |
| if (log_inode_only) { |
| /* set the generation to zero so the recover code |
| * can tell the difference between an logging |
| * just to say 'this inode exists' and a logging |
| * to say 'update this inode with these values' |
| */ |
| btrfs_set_token_inode_generation(leaf, item, 0, &token); |
| btrfs_set_token_inode_size(leaf, item, logged_isize, &token); |
| } else { |
| btrfs_set_token_inode_generation(leaf, item, |
| BTRFS_I(inode)->generation, |
| &token); |
| btrfs_set_token_inode_size(leaf, item, inode->i_size, &token); |
| } |
| |
| btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); |
| btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); |
| btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); |
| btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); |
| |
| btrfs_set_token_timespec_sec(leaf, &item->atime, |
| inode->i_atime.tv_sec, &token); |
| btrfs_set_token_timespec_nsec(leaf, &item->atime, |
| inode->i_atime.tv_nsec, &token); |
| |
| btrfs_set_token_timespec_sec(leaf, &item->mtime, |
| inode->i_mtime.tv_sec, &token); |
| btrfs_set_token_timespec_nsec(leaf, &item->mtime, |
| inode->i_mtime.tv_nsec, &token); |
| |
| btrfs_set_token_timespec_sec(leaf, &item->ctime, |
| inode->i_ctime.tv_sec, &token); |
| btrfs_set_token_timespec_nsec(leaf, &item->ctime, |
| inode->i_ctime.tv_nsec, &token); |
| |
| btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), |
| &token); |
| |
| btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); |
| btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); |
| btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); |
| btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); |
| btrfs_set_token_inode_block_group(leaf, item, 0, &token); |
| } |
| |
| static int log_inode_item(struct btrfs_trans_handle *trans, |
| struct btrfs_root *log, struct btrfs_path *path, |
| struct btrfs_inode *inode) |
| { |
| struct btrfs_inode_item *inode_item; |
| int ret; |
| |
| ret = btrfs_insert_empty_item(trans, log, path, |
| &inode->location, sizeof(*inode_item)); |
| if (ret && ret != -EEXIST) |
| return ret; |
| inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_inode_item); |
| fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, |
| 0, 0); |
| btrfs_release_path(path); |
| return 0; |
| } |
| |
| static noinline int copy_items(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_path *dst_path, |
| struct btrfs_path *src_path, |
| int start_slot, int nr, int inode_only, |
| u64 logged_isize) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); |
| unsigned long src_offset; |
| unsigned long dst_offset; |
| struct btrfs_root *log = inode->root->log_root; |
| struct btrfs_file_extent_item *extent; |
| struct btrfs_inode_item *inode_item; |
| struct extent_buffer *src = src_path->nodes[0]; |
| int ret; |
| struct btrfs_key *ins_keys; |
| u32 *ins_sizes; |
| char *ins_data; |
| int i; |
| struct list_head ordered_sums; |
| int skip_csum = inode->flags & BTRFS_INODE_NODATASUM; |
| |
| INIT_LIST_HEAD(&ordered_sums); |
| |
| ins_data = kmalloc(nr * sizeof(struct btrfs_key) + |
| nr * sizeof(u32), GFP_NOFS); |
| if (!ins_data) |
| return -ENOMEM; |
| |
| ins_sizes = (u32 *)ins_data; |
| ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); |
| |
| for (i = 0; i < nr; i++) { |
| ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); |
| btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); |
| } |
| ret = btrfs_insert_empty_items(trans, log, dst_path, |
| ins_keys, ins_sizes, nr); |
| if (ret) { |
| kfree(ins_data); |
| return ret; |
| } |
| |
| for (i = 0; i < nr; i++, dst_path->slots[0]++) { |
| dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], |
| dst_path->slots[0]); |
| |
| src_offset = btrfs_item_ptr_offset(src, start_slot + i); |
| |
| if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { |
| inode_item = btrfs_item_ptr(dst_path->nodes[0], |
| dst_path->slots[0], |
| struct btrfs_inode_item); |
| fill_inode_item(trans, dst_path->nodes[0], inode_item, |
| &inode->vfs_inode, |
| inode_only == LOG_INODE_EXISTS, |
| logged_isize); |
| } else { |
| copy_extent_buffer(dst_path->nodes[0], src, dst_offset, |
| src_offset, ins_sizes[i]); |
| } |
| |
| /* take a reference on file data extents so that truncates |
| * or deletes of this inode don't have to relog the inode |
| * again |
| */ |
| if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && |
| !skip_csum) { |
| int found_type; |
| extent = btrfs_item_ptr(src, start_slot + i, |
| struct btrfs_file_extent_item); |
| |
| if (btrfs_file_extent_generation(src, extent) < trans->transid) |
| continue; |
| |
| found_type = btrfs_file_extent_type(src, extent); |
| if (found_type == BTRFS_FILE_EXTENT_REG) { |
| u64 ds, dl, cs, cl; |
| ds = btrfs_file_extent_disk_bytenr(src, |
| extent); |
| /* ds == 0 is a hole */ |
| if (ds == 0) |
| continue; |
| |
| dl = btrfs_file_extent_disk_num_bytes(src, |
| extent); |
| cs = btrfs_file_extent_offset(src, extent); |
| cl = btrfs_file_extent_num_bytes(src, |
| extent); |
| if (btrfs_file_extent_compression(src, |
| extent)) { |
| cs = 0; |
| cl = dl; |
| } |
| |
| ret = btrfs_lookup_csums_range( |
| fs_info->csum_root, |
| ds + cs, ds + cs + cl - 1, |
| &ordered_sums, 0); |
| if (ret) |
| break; |
| } |
| } |
| } |
| |
| btrfs_mark_buffer_dirty(dst_path->nodes[0]); |
| btrfs_release_path(dst_path); |
| kfree(ins_data); |
| |
| /* |
| * we have to do this after the loop above to avoid changing the |
| * log tree while trying to change the log tree. |
| */ |
| while (!list_empty(&ordered_sums)) { |
| struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, |
| struct btrfs_ordered_sum, |
| list); |
| if (!ret) |
| ret = btrfs_csum_file_blocks(trans, log, sums); |
| list_del(&sums->list); |
| kfree(sums); |
| } |
| |
| return ret; |
| } |
| |
| static int extent_cmp(void *priv, struct list_head *a, struct list_head *b) |
| { |
| struct extent_map *em1, *em2; |
| |
| em1 = list_entry(a, struct extent_map, list); |
| em2 = list_entry(b, struct extent_map, list); |
| |
| if (em1->start < em2->start) |
| return -1; |
| else if (em1->start > em2->start) |
| return 1; |
| return 0; |
| } |
| |
| static int wait_ordered_extents(struct btrfs_trans_handle *trans, |
| struct inode *inode, |
| struct btrfs_root *root, |
| const struct extent_map *em, |
| const struct list_head *logged_list, |
| bool *ordered_io_error) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_ordered_extent *ordered; |
| struct btrfs_root *log = root->log_root; |
| u64 mod_start = em->mod_start; |
| u64 mod_len = em->mod_len; |
| const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; |
| u64 csum_offset; |
| u64 csum_len; |
| LIST_HEAD(ordered_sums); |
| int ret = 0; |
| |
| *ordered_io_error = false; |
| |
| if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || |
| em->block_start == EXTENT_MAP_HOLE) |
| return 0; |
| |
| /* |
| * Wait far any ordered extent that covers our extent map. If it |
| * finishes without an error, first check and see if our csums are on |
| * our outstanding ordered extents. |
| */ |
| list_for_each_entry(ordered, logged_list, log_list) { |
| struct btrfs_ordered_sum *sum; |
| |
| if (!mod_len) |
| break; |
| |
| if (ordered->file_offset + ordered->len <= mod_start || |
| mod_start + mod_len <= ordered->file_offset) |
| continue; |
| |
| if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) && |
| !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && |
| !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) { |
| const u64 start = ordered->file_offset; |
| const u64 end = ordered->file_offset + ordered->len - 1; |
| |
| WARN_ON(ordered->inode != inode); |
| filemap_fdatawrite_range(inode->i_mapping, start, end); |
| } |
| |
| wait_event(ordered->wait, |
| (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) || |
| test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))); |
| |
| if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) { |
| /* |
| * Clear the AS_EIO/AS_ENOSPC flags from the inode's |
| * i_mapping flags, so that the next fsync won't get |
| * an outdated io error too. |
| */ |
| filemap_check_errors(inode->i_mapping); |
| *ordered_io_error = true; |
| break; |
| } |
| /* |
| * We are going to copy all the csums on this ordered extent, so |
| * go ahead and adjust mod_start and mod_len in case this |
| * ordered extent has already been logged. |
| */ |
| if (ordered->file_offset > mod_start) { |
| if (ordered->file_offset + ordered->len >= |
| mod_start + mod_len) |
| mod_len = ordered->file_offset - mod_start; |
| /* |
| * If we have this case |
| * |
| * |--------- logged extent ---------| |
| * |----- ordered extent ----| |
| * |
| * Just don't mess with mod_start and mod_len, we'll |
| * just end up logging more csums than we need and it |
| * will be ok. |
| */ |
| } else { |
| if (ordered->file_offset + ordered->len < |
| mod_start + mod_len) { |
| mod_len = (mod_start + mod_len) - |
| (ordered->file_offset + ordered->len); |
| mod_start = ordered->file_offset + |
| ordered->len; |
| } else { |
| mod_len = 0; |
| } |
| } |
| |
| if (skip_csum) |
| continue; |
| |
| /* |
| * To keep us from looping for the above case of an ordered |
| * extent that falls inside of the logged extent. |
| */ |
| if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, |
| &ordered->flags)) |
| continue; |
| |
| list_for_each_entry(sum, &ordered->list, list) { |
| ret = btrfs_csum_file_blocks(trans, log, sum); |
| if (ret) |
| break; |
| } |
| } |
| |
| if (*ordered_io_error || !mod_len || ret || skip_csum) |
| return ret; |
| |
| if (em->compress_type) { |
| csum_offset = 0; |
| csum_len = max(em->block_len, em->orig_block_len); |
| } else { |
| csum_offset = mod_start - em->start; |
| csum_len = mod_len; |
| } |
| |
| /* block start is already adjusted for the file extent offset. */ |
| ret = btrfs_lookup_csums_range(fs_info->csum_root, |
| em->block_start + csum_offset, |
| em->block_start + csum_offset + |
| csum_len - 1, &ordered_sums, 0); |
| if (ret) |
| return ret; |
| |
| while (!list_empty(&ordered_sums)) { |
| struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, |
| struct btrfs_ordered_sum, |
| list); |
| if (!ret) |
| ret = btrfs_csum_file_blocks(trans, log, sums); |
| list_del(&sums->list); |
| kfree(sums); |
| } |
| |
| return ret; |
| } |
| |
| static int log_one_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, struct btrfs_root *root, |
| const struct extent_map *em, |
| struct btrfs_path *path, |
| const struct list_head *logged_list, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_root *log = root->log_root; |
| struct btrfs_file_extent_item *fi; |
| struct extent_buffer *leaf; |
| struct btrfs_map_token token; |
| struct btrfs_key key; |
| u64 extent_offset = em->start - em->orig_start; |
| u64 block_len; |
| int ret; |
| int extent_inserted = 0; |
| bool ordered_io_err = false; |
| |
| ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em, |
| logged_list, &ordered_io_err); |
| if (ret) |
| return ret; |
| |
| if (ordered_io_err) { |
| ctx->io_err = -EIO; |
| return ctx->io_err; |
| } |
| |
| btrfs_init_map_token(&token); |
| |
| ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start, |
| em->start + em->len, NULL, 0, 1, |
| sizeof(*fi), &extent_inserted); |
| if (ret) |
| return ret; |
| |
| if (!extent_inserted) { |
| key.objectid = btrfs_ino(inode); |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = em->start; |
| |
| ret = btrfs_insert_empty_item(trans, log, path, &key, |
| sizeof(*fi)); |
| if (ret) |
| return ret; |
| } |
| leaf = path->nodes[0]; |
| fi = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| |
| btrfs_set_token_file_extent_generation(leaf, fi, trans->transid, |
| &token); |
| if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) |
| btrfs_set_token_file_extent_type(leaf, fi, |
| BTRFS_FILE_EXTENT_PREALLOC, |
| &token); |
| else |
| btrfs_set_token_file_extent_type(leaf, fi, |
| BTRFS_FILE_EXTENT_REG, |
| &token); |
| |
| block_len = max(em->block_len, em->orig_block_len); |
| if (em->compress_type != BTRFS_COMPRESS_NONE) { |
| btrfs_set_token_file_extent_disk_bytenr(leaf, fi, |
| em->block_start, |
| &token); |
| btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, |
| &token); |
| } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { |
| btrfs_set_token_file_extent_disk_bytenr(leaf, fi, |
| em->block_start - |
| extent_offset, &token); |
| btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, |
| &token); |
| } else { |
| btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token); |
| btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0, |
| &token); |
| } |
| |
| btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token); |
| btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token); |
| btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token); |
| btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type, |
| &token); |
| btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token); |
| btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token); |
| btrfs_mark_buffer_dirty(leaf); |
| |
| btrfs_release_path(path); |
| |
| return ret; |
| } |
| |
| /* |
| * Log all prealloc extents beyond the inode's i_size to make sure we do not |
| * lose them after doing a fast fsync and replaying the log. We scan the |
| * subvolume's root instead of iterating the inode's extent map tree because |
| * otherwise we can log incorrect extent items based on extent map conversion. |
| * That can happen due to the fact that extent maps are merged when they |
| * are not in the extent map tree's list of modified extents. |
| */ |
| static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_path *path) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_key key; |
| const u64 i_size = i_size_read(&inode->vfs_inode); |
| const u64 ino = btrfs_ino(inode); |
| struct btrfs_path *dst_path = NULL; |
| bool dropped_extents = false; |
| u64 truncate_offset = i_size; |
| struct extent_buffer *leaf; |
| int slot; |
| int ins_nr = 0; |
| int start_slot; |
| int ret; |
| |
| if (!(inode->flags & BTRFS_INODE_PREALLOC)) |
| return 0; |
| |
| key.objectid = ino; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = i_size; |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| /* |
| * We must check if there is a prealloc extent that starts before the |
| * i_size and crosses the i_size boundary. This is to ensure later we |
| * truncate down to the end of that extent and not to the i_size, as |
| * otherwise we end up losing part of the prealloc extent after a log |
| * replay and with an implicit hole if there is another prealloc extent |
| * that starts at an offset beyond i_size. |
| */ |
| ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); |
| if (ret < 0) |
| goto out; |
| |
| if (ret == 0) { |
| struct btrfs_file_extent_item *ei; |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); |
| |
| if (btrfs_file_extent_type(leaf, ei) == |
| BTRFS_FILE_EXTENT_PREALLOC) { |
| u64 extent_end; |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| extent_end = key.offset + |
| btrfs_file_extent_num_bytes(leaf, ei); |
| |
| if (extent_end > i_size) |
| truncate_offset = extent_end; |
| } |
| } else { |
| ret = 0; |
| } |
| |
| while (true) { |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| |
| if (slot >= btrfs_header_nritems(leaf)) { |
| if (ins_nr > 0) { |
| ret = copy_items(trans, inode, dst_path, path, |
| start_slot, ins_nr, 1, 0); |
| if (ret < 0) |
| goto out; |
| ins_nr = 0; |
| } |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { |
| ret = 0; |
| break; |
| } |
| continue; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| if (key.objectid > ino) |
| break; |
| if (WARN_ON_ONCE(key.objectid < ino) || |
| key.type < BTRFS_EXTENT_DATA_KEY || |
| key.offset < i_size) { |
| path->slots[0]++; |
| continue; |
| } |
| if (!dropped_extents) { |
| /* |
| * Avoid logging extent items logged in past fsync calls |
| * and leading to duplicate keys in the log tree. |
| */ |
| do { |
| ret = btrfs_truncate_inode_items(trans, |
| root->log_root, |
| &inode->vfs_inode, |
| truncate_offset, |
| BTRFS_EXTENT_DATA_KEY); |
| } while (ret == -EAGAIN); |
| if (ret) |
| goto out; |
| dropped_extents = true; |
| } |
| if (ins_nr == 0) |
| start_slot = slot; |
| ins_nr++; |
| path->slots[0]++; |
| if (!dst_path) { |
| dst_path = btrfs_alloc_path(); |
| if (!dst_path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| } |
| } |
| if (ins_nr > 0) { |
| ret = copy_items(trans, inode, dst_path, path, |
| start_slot, ins_nr, 1, 0); |
| if (ret > 0) |
| ret = 0; |
| } |
| out: |
| btrfs_release_path(path); |
| btrfs_free_path(dst_path); |
| return ret; |
| } |
| |
| static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_inode *inode, |
| struct btrfs_path *path, |
| struct list_head *logged_list, |
| struct btrfs_log_ctx *ctx, |
| const u64 start, |
| const u64 end) |
| { |
| struct extent_map *em, *n; |
| struct list_head extents; |
| struct extent_map_tree *tree = &inode->extent_tree; |
| u64 logged_start, logged_end; |
| u64 test_gen; |
| int ret = 0; |
| int num = 0; |
| |
| INIT_LIST_HEAD(&extents); |
| |
| write_lock(&tree->lock); |
| test_gen = root->fs_info->last_trans_committed; |
| logged_start = start; |
| logged_end = end; |
| |
| list_for_each_entry_safe(em, n, &tree->modified_extents, list) { |
| list_del_init(&em->list); |
| /* |
| * Just an arbitrary number, this can be really CPU intensive |
| * once we start getting a lot of extents, and really once we |
| * have a bunch of extents we just want to commit since it will |
| * be faster. |
| */ |
| if (++num > 32768) { |
| list_del_init(&tree->modified_extents); |
| ret = -EFBIG; |
| goto process; |
| } |
| |
| if (em->generation <= test_gen) |
| continue; |
| |
| /* We log prealloc extents beyond eof later. */ |
| if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && |
| em->start >= i_size_read(&inode->vfs_inode)) |
| continue; |
| |
| if (em->start < logged_start) |
| logged_start = em->start; |
| if ((em->start + em->len - 1) > logged_end) |
| logged_end = em->start + em->len - 1; |
| |
| /* Need a ref to keep it from getting evicted from cache */ |
| refcount_inc(&em->refs); |
| set_bit(EXTENT_FLAG_LOGGING, &em->flags); |
| list_add_tail(&em->list, &extents); |
| num++; |
| } |
| |
| list_sort(NULL, &extents, extent_cmp); |
| btrfs_get_logged_extents(inode, logged_list, logged_start, logged_end); |
| /* |
| * Some ordered extents started by fsync might have completed |
| * before we could collect them into the list logged_list, which |
| * means they're gone, not in our logged_list nor in the inode's |
| * ordered tree. We want the application/user space to know an |
| * error happened while attempting to persist file data so that |
| * it can take proper action. If such error happened, we leave |
| * without writing to the log tree and the fsync must report the |
| * file data write error and not commit the current transaction. |
| */ |
| ret = filemap_check_errors(inode->vfs_inode.i_mapping); |
| if (ret) |
| ctx->io_err = ret; |
| process: |
| while (!list_empty(&extents)) { |
| em = list_entry(extents.next, struct extent_map, list); |
| |
| list_del_init(&em->list); |
| |
| /* |
| * If we had an error we just need to delete everybody from our |
| * private list. |
| */ |
| if (ret) { |
| clear_em_logging(tree, em); |
| free_extent_map(em); |
| continue; |
| } |
| |
| write_unlock(&tree->lock); |
| |
| ret = log_one_extent(trans, inode, root, em, path, logged_list, |
| ctx); |
| write_lock(&tree->lock); |
| clear_em_logging(tree, em); |
| free_extent_map(em); |
| } |
| WARN_ON(!list_empty(&extents)); |
| write_unlock(&tree->lock); |
| |
| btrfs_release_path(path); |
| if (!ret) |
| ret = btrfs_log_prealloc_extents(trans, inode, path); |
| |
| return ret; |
| } |
| |
| static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, |
| struct btrfs_path *path, u64 *size_ret) |
| { |
| struct btrfs_key key; |
| int ret; |
| |
| key.objectid = btrfs_ino(inode); |
| key.type = BTRFS_INODE_ITEM_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); |
| if (ret < 0) { |
| return ret; |
| } else if (ret > 0) { |
| *size_ret = 0; |
| } else { |
| struct btrfs_inode_item *item; |
| |
| item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_inode_item); |
| *size_ret = btrfs_inode_size(path->nodes[0], item); |
| /* |
| * If the in-memory inode's i_size is smaller then the inode |
| * size stored in the btree, return the inode's i_size, so |
| * that we get a correct inode size after replaying the log |
| * when before a power failure we had a shrinking truncate |
| * followed by addition of a new name (rename / new hard link). |
| * Otherwise return the inode size from the btree, to avoid |
| * data loss when replaying a log due to previously doing a |
| * write that expands the inode's size and logging a new name |
| * immediately after. |
| */ |
| if (*size_ret > inode->vfs_inode.i_size) |
| *size_ret = inode->vfs_inode.i_size; |
| } |
| |
| btrfs_release_path(path); |
| return 0; |
| } |
| |
| /* |
| * At the moment we always log all xattrs. This is to figure out at log replay |
| * time which xattrs must have their deletion replayed. If a xattr is missing |
| * in the log tree and exists in the fs/subvol tree, we delete it. This is |
| * because if a xattr is deleted, the inode is fsynced and a power failure |
| * happens, causing the log to be replayed the next time the fs is mounted, |
| * we want the xattr to not exist anymore (same behaviour as other filesystems |
| * with a journal, ext3/4, xfs, f2fs, etc). |
| */ |
| static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_inode *inode, |
| struct btrfs_path *path, |
| struct btrfs_path *dst_path) |
| { |
| int ret; |
| struct btrfs_key key; |
| const u64 ino = btrfs_ino(inode); |
| int ins_nr = 0; |
| int start_slot = 0; |
| |
| key.objectid = ino; |
| key.type = BTRFS_XATTR_ITEM_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| return ret; |
| |
| while (true) { |
| int slot = path->slots[0]; |
| struct extent_buffer *leaf = path->nodes[0]; |
| int nritems = btrfs_header_nritems(leaf); |
| |
| if (slot >= nritems) { |
| if (ins_nr > 0) { |
| ret = copy_items(trans, inode, dst_path, path, |
| start_slot, ins_nr, 1, 0); |
| if (ret < 0) |
| return ret; |
| ins_nr = 0; |
| } |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| return ret; |
| else if (ret > 0) |
| break; |
| continue; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) |
| break; |
| |
| if (ins_nr == 0) |
| start_slot = slot; |
| ins_nr++; |
| path->slots[0]++; |
| cond_resched(); |
| } |
| if (ins_nr > 0) { |
| ret = copy_items(trans, inode, dst_path, path, |
| start_slot, ins_nr, 1, 0); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * When using the NO_HOLES feature if we punched a hole that causes the |
| * deletion of entire leafs or all the extent items of the first leaf (the one |
| * that contains the inode item and references) we may end up not processing |
| * any extents, because there are no leafs with a generation matching the |
| * current transaction that have extent items for our inode. So we need to find |
| * if any holes exist and then log them. We also need to log holes after any |
| * truncate operation that changes the inode's size. |
| */ |
| static int btrfs_log_holes(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_inode *inode, |
| struct btrfs_path *path) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_key key; |
| const u64 ino = btrfs_ino(inode); |
| const u64 i_size = i_size_read(&inode->vfs_inode); |
| u64 prev_extent_end = 0; |
| int ret; |
| |
| if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) |
| return 0; |
| |
| key.objectid = ino; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| return ret; |
| |
| while (true) { |
| struct btrfs_file_extent_item *extent; |
| struct extent_buffer *leaf = path->nodes[0]; |
| u64 len; |
| |
| if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| return ret; |
| if (ret > 0) { |
| ret = 0; |
| break; |
| } |
| leaf = path->nodes[0]; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) |
| break; |
| |
| /* We have a hole, log it. */ |
| if (prev_extent_end < key.offset) { |
| const u64 hole_len = key.offset - prev_extent_end; |
| |
| /* |
| * Release the path to avoid deadlocks with other code |
| * paths that search the root while holding locks on |
| * leafs from the log root. |
| */ |
| btrfs_release_path(path); |
| ret = btrfs_insert_file_extent(trans, root->log_root, |
| ino, prev_extent_end, 0, |
| 0, hole_len, 0, hole_len, |
| 0, 0, 0); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * Search for the same key again in the root. Since it's |
| * an extent item and we are holding the inode lock, the |
| * key must still exist. If it doesn't just emit warning |
| * and return an error to fall back to a transaction |
| * commit. |
| */ |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| return ret; |
| if (WARN_ON(ret > 0)) |
| return -ENOENT; |
| leaf = path->nodes[0]; |
| } |
| |
| extent = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| if (btrfs_file_extent_type(leaf, extent) == |
| BTRFS_FILE_EXTENT_INLINE) { |
| len = btrfs_file_extent_ram_bytes(leaf, extent); |
| prev_extent_end = ALIGN(key.offset + len, |
| fs_info->sectorsize); |
| } else { |
| len = btrfs_file_extent_num_bytes(leaf, extent); |
| prev_extent_end = key.offset + len; |
| } |
| |
| path->slots[0]++; |
| cond_resched(); |
| } |
| |
| if (prev_extent_end < i_size) { |
| u64 hole_len; |
| |
| btrfs_release_path(path); |
| hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); |
| ret = btrfs_insert_file_extent(trans, root->log_root, |
| ino, prev_extent_end, 0, 0, |
| hole_len, 0, hole_len, |
| 0, 0, 0); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * When we are logging a new inode X, check if it doesn't have a reference that |
| * matches the reference from some other inode Y created in a past transaction |
| * and that was renamed in the current transaction. If we don't do this, then at |
| * log replay time we can lose inode Y (and all its files if it's a directory): |
| * |
| * mkdir /mnt/x |
| * echo "hello world" > /mnt/x/foobar |
| * sync |
| * mv /mnt/x /mnt/y |
| * mkdir /mnt/x # or touch /mnt/x |
| * xfs_io -c fsync /mnt/x |
| * <power fail> |
| * mount fs, trigger log replay |
| * |
| * After the log replay procedure, we would lose the first directory and all its |
| * files (file foobar). |
| * For the case where inode Y is not a directory we simply end up losing it: |
| * |
| * echo "123" > /mnt/foo |
| * sync |
| * mv /mnt/foo /mnt/bar |
| * echo "abc" > /mnt/foo |
| * xfs_io -c fsync /mnt/foo |
| * <power fail> |
| * |
| * We also need this for cases where a snapshot entry is replaced by some other |
| * entry (file or directory) otherwise we end up with an unreplayable log due to |
| * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as |
| * if it were a regular entry: |
| * |
| * mkdir /mnt/x |
| * btrfs subvolume snapshot /mnt /mnt/x/snap |
| * btrfs subvolume delete /mnt/x/snap |
| * rmdir /mnt/x |
| * mkdir /mnt/x |
| * fsync /mnt/x or fsync some new file inside it |
| * <power fail> |
| * |
| * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in |
| * the same transaction. |
| */ |
| static int btrfs_check_ref_name_override(struct extent_buffer *eb, |
| const int slot, |
| const struct btrfs_key *key, |
| struct btrfs_inode *inode, |
| u64 *other_ino) |
| { |
| int ret; |
| struct btrfs_path *search_path; |
| char *name = NULL; |
| u32 name_len = 0; |
| u32 item_size = btrfs_item_size_nr(eb, slot); |
| u32 cur_offset = 0; |
| unsigned long ptr = btrfs_item_ptr_offset(eb, slot); |
| |
| search_path = btrfs_alloc_path(); |
| if (!search_path) |
| return -ENOMEM; |
| search_path->search_commit_root = 1; |
| search_path->skip_locking = 1; |
| |
| while (cur_offset < item_size) { |
| u64 parent; |
| u32 this_name_len; |
| u32 this_len; |
| unsigned long name_ptr; |
| struct btrfs_dir_item *di; |
| |
| if (key->type == BTRFS_INODE_REF_KEY) { |
| struct btrfs_inode_ref *iref; |
| |
| iref = (struct btrfs_inode_ref *)(ptr + cur_offset); |
| parent = key->offset; |
| this_name_len = btrfs_inode_ref_name_len(eb, iref); |
| name_ptr = (unsigned long)(iref + 1); |
| this_len = sizeof(*iref) + this_name_len; |
| } else { |
| struct btrfs_inode_extref *extref; |
| |
| extref = (struct btrfs_inode_extref *)(ptr + |
| cur_offset); |
| parent = btrfs_inode_extref_parent(eb, extref); |
| this_name_len = btrfs_inode_extref_name_len(eb, extref); |
| name_ptr = (unsigned long)&extref->name; |
| this_len = sizeof(*extref) + this_name_len; |
| } |
| |
| ret = btrfs_is_name_len_valid(eb, slot, name_ptr, |
| this_name_len); |
| if (!ret) { |
| ret = -EIO; |
| goto out; |
| } |
| if (this_name_len > name_len) { |
| char *new_name; |
| |
| new_name = krealloc(name, this_name_len, GFP_NOFS); |
| if (!new_name) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| name_len = this_name_len; |
| name = new_name; |
| } |
| |
| read_extent_buffer(eb, name, name_ptr, this_name_len); |
| di = btrfs_lookup_dir_item(NULL, inode->root, search_path, |
| parent, name, this_name_len, 0); |
| if (di && !IS_ERR(di)) { |
| struct btrfs_key di_key; |
| |
| btrfs_dir_item_key_to_cpu(search_path->nodes[0], |
| di, &di_key); |
| if (di_key.type == BTRFS_INODE_ITEM_KEY) { |
| ret = 1; |
| *other_ino = di_key.objectid; |
| } else { |
| ret = -EAGAIN; |
| } |
| goto out; |
| } else if (IS_ERR(di)) { |
| ret = PTR_ERR(di); |
| goto out; |
| } |
| btrfs_release_path(search_path); |
| |
| cur_offset += this_len; |
| } |
| ret = 0; |
| out: |
| btrfs_free_path(search_path); |
| kfree(name); |
| return ret; |
| } |
| |
| /* log a single inode in the tree log. |
| * At least one parent directory for this inode must exist in the tree |
| * or be logged already. |
| * |
| * Any items from this inode changed by the current transaction are copied |
| * to the log tree. An extra reference is taken on any extents in this |
| * file, allowing us to avoid a whole pile of corner cases around logging |
| * blocks that have been removed from the tree. |
| * |
| * See LOG_INODE_ALL and related defines for a description of what inode_only |
| * does. |
| * |
| * This handles both files and directories. |
| */ |
| static int btrfs_log_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, struct btrfs_inode *inode, |
| int inode_only, |
| const loff_t start, |
| const loff_t end, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_path *path; |
| struct btrfs_path *dst_path; |
| struct btrfs_key min_key; |
| struct btrfs_key max_key; |
| struct btrfs_root *log = root->log_root; |
| struct extent_buffer *src = NULL; |
| LIST_HEAD(logged_list); |
| int err = 0; |
| int ret; |
| int nritems; |
| int ins_start_slot = 0; |
| int ins_nr; |
| bool fast_search = false; |
| u64 ino = btrfs_ino(inode); |
| struct extent_map_tree *em_tree = &inode->extent_tree; |
| u64 logged_isize = 0; |
| bool need_log_inode_item = true; |
| bool xattrs_logged = false; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| dst_path = btrfs_alloc_path(); |
| if (!dst_path) { |
| btrfs_free_path(path); |
| return -ENOMEM; |
| } |
| |
| min_key.objectid = ino; |
| min_key.type = BTRFS_INODE_ITEM_KEY; |
| min_key.offset = 0; |
| |
| max_key.objectid = ino; |
| |
| |
| /* today the code can only do partial logging of directories */ |
| if (S_ISDIR(inode->vfs_inode.i_mode) || |
| (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, |
| &inode->runtime_flags) && |
| inode_only >= LOG_INODE_EXISTS)) |
| max_key.type = BTRFS_XATTR_ITEM_KEY; |
| else |
| max_key.type = (u8)-1; |
| max_key.offset = (u64)-1; |
| |
| /* |
| * Only run delayed items if we are a dir or a new file. |
| * Otherwise commit the delayed inode only, which is needed in |
| * order for the log replay code to mark inodes for link count |
| * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items). |
| */ |
| if (S_ISDIR(inode->vfs_inode.i_mode) || |
| inode->generation > fs_info->last_trans_committed) |
| ret = btrfs_commit_inode_delayed_items(trans, inode); |
| else |
| ret = btrfs_commit_inode_delayed_inode(inode); |
| |
| if (ret) { |
| btrfs_free_path(path); |
| btrfs_free_path(dst_path); |
| return ret; |
| } |
| |
| if (inode_only == LOG_OTHER_INODE) { |
| inode_only = LOG_INODE_EXISTS; |
| mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING); |
| } else { |
| mutex_lock(&inode->log_mutex); |
| } |
| |
| /* |
| * a brute force approach to making sure we get the most uptodate |
| * copies of everything. |
| */ |
| if (S_ISDIR(inode->vfs_inode.i_mode)) { |
| int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; |
| |
| if (inode_only == LOG_INODE_EXISTS) |
| max_key_type = BTRFS_XATTR_ITEM_KEY; |
| ret = drop_objectid_items(trans, log, path, ino, max_key_type); |
| } else { |
| if (inode_only == LOG_INODE_EXISTS) { |
| /* |
| * Make sure the new inode item we write to the log has |
| * the same isize as the current one (if it exists). |
| * This is necessary to prevent data loss after log |
| * replay, and also to prevent doing a wrong expanding |
| * truncate - for e.g. create file, write 4K into offset |
| * 0, fsync, write 4K into offset 4096, add hard link, |
| * fsync some other file (to sync log), power fail - if |
| * we use the inode's current i_size, after log replay |
| * we get a 8Kb file, with the last 4Kb extent as a hole |
| * (zeroes), as if an expanding truncate happened, |
| * instead of getting a file of 4Kb only. |
| */ |
| err = logged_inode_size(log, inode, path, &logged_isize); |
| if (err) |
| goto out_unlock; |
| } |
| if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, |
| &inode->runtime_flags)) { |
| if (inode_only == LOG_INODE_EXISTS) { |
| max_key.type = BTRFS_XATTR_ITEM_KEY; |
| ret = drop_objectid_items(trans, log, path, ino, |
| max_key.type); |
| } else { |
| clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, |
| &inode->runtime_flags); |
| clear_bit(BTRFS_INODE_COPY_EVERYTHING, |
| &inode->runtime_flags); |
| while(1) { |
| ret = btrfs_truncate_inode_items(trans, |
| log, &inode->vfs_inode, 0, 0); |
| if (ret != -EAGAIN) |
| break; |
| } |
| } |
| } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, |
| &inode->runtime_flags) || |
| inode_only == LOG_INODE_EXISTS) { |
| if (inode_only == LOG_INODE_ALL) |
| fast_search = true; |
| max_key.type = BTRFS_XATTR_ITEM_KEY; |
| ret = drop_objectid_items(trans, log, path, ino, |
| max_key.type); |
| } else { |
| if (inode_only == LOG_INODE_ALL) |
| fast_search = true; |
| goto log_extents; |
| } |
| |
| } |
| if (ret) { |
| err = ret; |
| goto out_unlock; |
| } |
| |
| while (1) { |
| ins_nr = 0; |
| ret = btrfs_search_forward(root, &min_key, |
| path, trans->transid); |
| if (ret < 0) { |
| err = ret; |
| goto out_unlock; |
| } |
| if (ret != 0) |
| break; |
| again: |
| /* note, ins_nr might be > 0 here, cleanup outside the loop */ |
| if (min_key.objectid != ino) |
| break; |
| if (min_key.type > max_key.type) |
| break; |
| |
| if (min_key.type == BTRFS_INODE_ITEM_KEY) |
| need_log_inode_item = false; |
| |
| if ((min_key.type == BTRFS_INODE_REF_KEY || |
| min_key.type == BTRFS_INODE_EXTREF_KEY) && |
| inode->generation == trans->transid) { |
| u64 other_ino = 0; |
| |
| ret = btrfs_check_ref_name_override(path->nodes[0], |
| path->slots[0], &min_key, inode, |
| &other_ino); |
| if (ret < 0) { |
| err = ret; |
| goto out_unlock; |
| } else if (ret > 0 && ctx && |
| other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { |
| struct btrfs_key inode_key; |
| struct inode *other_inode; |
| |
| if (ins_nr > 0) { |
| ins_nr++; |
| } else { |
| ins_nr = 1; |
| ins_start_slot = path->slots[0]; |
| } |
| ret = copy_items(trans, inode, dst_path, path, |
| ins_start_slot, |
| ins_nr, inode_only, |
| logged_isize); |
| if (ret < 0) { |
| err = ret; |
| goto out_unlock; |
| } |
| ins_nr = 0; |
| btrfs_release_path(path); |
| inode_key.objectid = other_ino; |
| inode_key.type = BTRFS_INODE_ITEM_KEY; |
| inode_key.offset = 0; |
| other_inode = btrfs_iget(fs_info->sb, |
| &inode_key, root, |
| NULL); |
| /* |
| * If the other inode that had a conflicting dir |
| * entry was deleted in the current transaction, |
| * we don't need to do more work nor fallback to |
| * a transaction commit. |
| */ |
| if (IS_ERR(other_inode) && |
| PTR_ERR(other_inode) == -ENOENT) { |
| goto next_key; |
| } else if (IS_ERR(other_inode)) { |
| err = PTR_ERR(other_inode); |
| goto out_unlock; |
| } |
| /* |
| * We are safe logging the other inode without |
| * acquiring its i_mutex as long as we log with |
| * the LOG_INODE_EXISTS mode. We're safe against |
| * concurrent renames of the other inode as well |
| * because during a rename we pin the log and |
| * update the log with the new name before we |
| * unpin it. |
| */ |
| err = btrfs_log_inode(trans, root, |
| BTRFS_I(other_inode), |
| LOG_OTHER_INODE, 0, LLONG_MAX, |
| ctx); |
| btrfs_add_delayed_iput(other_inode); |
| if (err) |
| goto out_unlock; |
| else |
| goto next_key; |
| } |
| } |
| |
| /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */ |
| if (min_key.type == BTRFS_XATTR_ITEM_KEY) { |
| if (ins_nr == 0) |
| goto next_slot; |
| ret = copy_items(trans, inode, dst_path, path, |
| ins_start_slot, |
| ins_nr, inode_only, logged_isize); |
| if (ret < 0) { |
| err = ret; |
| goto out_unlock; |
| } |
| ins_nr = 0; |
| goto next_slot; |
| } |
| |
| src = path->nodes[0]; |
| if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { |
| ins_nr++; |
| goto next_slot; |
| } else if (!ins_nr) { |
| ins_start_slot = path->slots[0]; |
| ins_nr = 1; |
| goto next_slot; |
| } |
| |
| ret = copy_items(trans, inode, dst_path, path, |
| ins_start_slot, ins_nr, inode_only, |
| logged_isize); |
| if (ret < 0) { |
| err = ret; |
| goto out_unlock; |
| } |
| ins_nr = 1; |
| ins_start_slot = path->slots[0]; |
| next_slot: |
| |
| nritems = btrfs_header_nritems(path->nodes[0]); |
| path->slots[0]++; |
| if (path->slots[0] < nritems) { |
| btrfs_item_key_to_cpu(path->nodes[0], &min_key, |
| path->slots[0]); |
| goto again; |
| } |
| if (ins_nr) { |
| ret = copy_items(trans, inode, dst_path, path, |
| ins_start_slot, |
| ins_nr, inode_only, logged_isize); |
| if (ret < 0) { |
| err = ret; |
| goto out_unlock; |
| } |
| ins_nr = 0; |
| } |
| btrfs_release_path(path); |
| next_key: |
| if (min_key.offset < (u64)-1) { |
| min_key.offset++; |
| } else if (min_key.type < max_key.type) { |
| min_key.type++; |
| min_key.offset = 0; |
| } else { |
| break; |
| } |
| } |
| if (ins_nr) { |
| ret = copy_items(trans, inode, dst_path, path, |
| ins_start_slot, ins_nr, inode_only, |
| logged_isize); |
| if (ret < 0) { |
| err = ret; |
| goto out_unlock; |
| } |
| ins_nr = 0; |
| } |
| |
| btrfs_release_path(path); |
| btrfs_release_path(dst_path); |
| err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path); |
| if (err) |
| goto out_unlock; |
| xattrs_logged = true; |
| if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { |
| btrfs_release_path(path); |
| btrfs_release_path(dst_path); |
| err = btrfs_log_holes(trans, root, inode, path); |
| if (err) |
| goto out_unlock; |
| } |
| log_extents: |
| btrfs_release_path(path); |
| btrfs_release_path(dst_path); |
| if (need_log_inode_item) { |
| err = log_inode_item(trans, log, dst_path, inode); |
| if (!err && !xattrs_logged) { |
| err = btrfs_log_all_xattrs(trans, root, inode, path, |
| dst_path); |
| btrfs_release_path(path); |
| } |
| if (err) |
| goto out_unlock; |
| } |
| if (fast_search) { |
| ret = btrfs_log_changed_extents(trans, root, inode, dst_path, |
| &logged_list, ctx, start, end); |
| if (ret) { |
| err = ret; |
| goto out_unlock; |
| } |
| } else if (inode_only == LOG_INODE_ALL) { |
| struct extent_map *em, *n; |
| |
| write_lock(&em_tree->lock); |
| /* |
| * We can't just remove every em if we're called for a ranged |
| * fsync - that is, one that doesn't cover the whole possible |
| * file range (0 to LLONG_MAX). This is because we can have |
| * em's that fall outside the range we're logging and therefore |
| * their ordered operations haven't completed yet |
| * (btrfs_finish_ordered_io() not invoked yet). This means we |
| * didn't get their respective file extent item in the fs/subvol |
| * tree yet, and need to let the next fast fsync (one which |
| * consults the list of modified extent maps) find the em so |
| * that it logs a matching file extent item and waits for the |
| * respective ordered operation to complete (if it's still |
| * running). |
| * |
| * Removing every em outside the range we're logging would make |
| * the next fast fsync not log their matching file extent items, |
| * therefore making us lose data after a log replay. |
| */ |
| list_for_each_entry_safe(em, n, &em_tree->modified_extents, |
| list) { |
| const u64 mod_end = em->mod_start + em->mod_len - 1; |
| |
| if (em->mod_start >= start && mod_end <= end) |
| list_del_init(&em->list); |
| } |
| write_unlock(&em_tree->lock); |
| } |
| |
| if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) { |
| ret = log_directory_changes(trans, root, inode, path, dst_path, |
| ctx); |
| if (ret) { |
| err = ret; |
| goto out_unlock; |
| } |
| } |
| |
| /* |
| * Don't update last_log_commit if we logged that an inode exists after |
| * it was loaded to memory (full_sync bit set). |
| * This is to prevent data loss when we do a write to the inode, then |
| * the inode gets evicted after all delalloc was flushed, then we log |
| * it exists (due to a rename for example) and then fsync it. This last |
| * fsync would do nothing (not logging the extents previously written). |
| */ |
| spin_lock(&inode->lock); |
| inode->logged_trans = trans->transid; |
| if (inode_only != LOG_INODE_EXISTS || |
| !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags)) |
| inode->last_log_commit = inode->last_sub_trans; |
| spin_unlock(&inode->lock); |
| out_unlock: |
| if (unlikely(err)) |
| btrfs_put_logged_extents(&logged_list); |
| else |
| btrfs_submit_logged_extents(&logged_list, log); |
| mutex_unlock(&inode->log_mutex); |
| |
| btrfs_free_path(path); |
| btrfs_free_path(dst_path); |
| return err; |
| } |
| |
| /* |
| * Check if we must fallback to a transaction commit when logging an inode. |
| * This must be called after logging the inode and is used only in the context |
| * when fsyncing an inode requires the need to log some other inode - in which |
| * case we can't lock the i_mutex of each other inode we need to log as that |
| * can lead to deadlocks with concurrent fsync against other inodes (as we can |
| * log inodes up or down in the hierarchy) or rename operations for example. So |
| * we take the log_mutex of the inode after we have logged it and then check for |
| * its last_unlink_trans value - this is safe because any task setting |
| * last_unlink_trans must take the log_mutex and it must do this before it does |
| * the actual unlink operation, so if we do this check before a concurrent task |
| * sets last_unlink_trans it means we've logged a consistent version/state of |
| * all the inode items, otherwise we are not sure and must do a transaction |
| * commit (the concurrent task might have only updated last_unlink_trans before |
| * we logged the inode or it might have also done the unlink). |
| */ |
| static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| bool ret = false; |
| |
| mutex_lock(&inode->log_mutex); |
| if (inode->last_unlink_trans > fs_info->last_trans_committed) { |
| /* |
| * Make sure any commits to the log are forced to be full |
| * commits. |
| */ |
| btrfs_set_log_full_commit(fs_info, trans); |
| ret = true; |
| } |
| mutex_unlock(&inode->log_mutex); |
| |
| return ret; |
| } |
| |
| /* |
| * follow the dentry parent pointers up the chain and see if any |
| * of the directories in it require a full commit before they can |
| * be logged. Returns zero if nothing special needs to be done or 1 if |
| * a full commit is required. |
| */ |
| static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct dentry *parent, |
| struct super_block *sb, |
| u64 last_committed) |
| { |
| int ret = 0; |
| struct dentry *old_parent = NULL; |
| |
| /* |
| * for regular files, if its inode is already on disk, we don't |
| * have to worry about the parents at all. This is because |
| * we can use the last_unlink_trans field to record renames |
| * and other fun in this file. |
| */ |
| if (S_ISREG(inode->vfs_inode.i_mode) && |
| inode->generation <= last_committed && |
| inode->last_unlink_trans <= last_committed) |
| goto out; |
| |
| if (!S_ISDIR(inode->vfs_inode.i_mode)) { |
| if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) |
| goto out; |
| inode = BTRFS_I(d_inode(parent)); |
| } |
| |
| while (1) { |
| if (btrfs_must_commit_transaction(trans, inode)) { |
| ret = 1; |
| break; |
| } |
| |
| if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) |
| break; |
| |
| if (IS_ROOT(parent)) { |
| inode = BTRFS_I(d_inode(parent)); |
| if (btrfs_must_commit_transaction(trans, inode)) |
| ret = 1; |
| break; |
| } |
| |
| parent = dget_parent(parent); |
| dput(old_parent); |
| old_parent = parent; |
| inode = BTRFS_I(d_inode(parent)); |
| |
| } |
| dput(old_parent); |
| out: |
| return ret; |
| } |
| |
| struct btrfs_dir_list { |
| u64 ino; |
| struct list_head list; |
| }; |
| |
| /* |
| * Log the inodes of the new dentries of a directory. See log_dir_items() for |
| * details about the why it is needed. |
| * This is a recursive operation - if an existing dentry corresponds to a |
| * directory, that directory's new entries are logged too (same behaviour as |
| * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes |
| * the dentries point to we do not lock their i_mutex, otherwise lockdep |
| * complains about the following circular lock dependency / possible deadlock: |
| * |
| * CPU0 CPU1 |
| * ---- ---- |
| * lock(&type->i_mutex_dir_key#3/2); |
| * lock(sb_internal#2); |
| * lock(&type->i_mutex_dir_key#3/2); |
| * lock(&sb->s_type->i_mutex_key#14); |
| * |
| * Where sb_internal is the lock (a counter that works as a lock) acquired by |
| * sb_start_intwrite() in btrfs_start_transaction(). |
| * Not locking i_mutex of the inodes is still safe because: |
| * |
| * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible |
| * that while logging the inode new references (names) are added or removed |
| * from the inode, leaving the logged inode item with a link count that does |
| * not match the number of logged inode reference items. This is fine because |
| * at log replay time we compute the real number of links and correct the |
| * link count in the inode item (see replay_one_buffer() and |
| * link_to_fixup_dir()); |
| * |
| * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that |
| * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and |
| * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item |
| * has a size that doesn't match the sum of the lengths of all the logged |
| * names. This does not result in a problem because if a dir_item key is |
| * logged but its matching dir_index key is not logged, at log replay time we |
| * don't use it to replay the respective name (see replay_one_name()). On the |
| * other hand if only the dir_index key ends up being logged, the respective |
| * name is added to the fs/subvol tree with both the dir_item and dir_index |
| * keys created (see replay_one_name()). |
| * The directory's inode item with a wrong i_size is not a problem as well, |
| * since we don't use it at log replay time to set the i_size in the inode |
| * item of the fs/subvol tree (see overwrite_item()). |
| */ |
| static int log_new_dir_dentries(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_inode *start_inode, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_root *log = root->log_root; |
| struct btrfs_path *path; |
| LIST_HEAD(dir_list); |
| struct btrfs_dir_list *dir_elem; |
| int ret = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); |
| if (!dir_elem) { |
| btrfs_free_path(path); |
| return -ENOMEM; |
| } |
| dir_elem->ino = btrfs_ino(start_inode); |
| list_add_tail(&dir_elem->list, &dir_list); |
| |
| while (!list_empty(&dir_list)) { |
| struct extent_buffer *leaf; |
| struct btrfs_key min_key; |
| int nritems; |
| int i; |
| |
| dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, |
| list); |
| if (ret) |
| goto next_dir_inode; |
| |
| min_key.objectid = dir_elem->ino; |
| min_key.type = BTRFS_DIR_ITEM_KEY; |
| min_key.offset = 0; |
| again: |
| btrfs_release_path(path); |
| ret = btrfs_search_forward(log, &min_key, path, trans->transid); |
| if (ret < 0) { |
| goto next_dir_inode; |
| } else if (ret > 0) { |
| ret = 0; |
| goto next_dir_inode; |
| } |
| |
| process_leaf: |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| for (i = path->slots[0]; i < nritems; i++) { |
| struct btrfs_dir_item *di; |
| struct btrfs_key di_key; |
| struct inode *di_inode; |
| struct btrfs_dir_list *new_dir_elem; |
| int log_mode = LOG_INODE_EXISTS; |
| int type; |
| |
| btrfs_item_key_to_cpu(leaf, &min_key, i); |
| if (min_key.objectid != dir_elem->ino || |
| min_key.type != BTRFS_DIR_ITEM_KEY) |
| goto next_dir_inode; |
| |
| di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item); |
| type = btrfs_dir_type(leaf, di); |
| if (btrfs_dir_transid(leaf, di) < trans->transid && |
| type != BTRFS_FT_DIR) |
| continue; |
| btrfs_dir_item_key_to_cpu(leaf, di, &di_key); |
| if (di_key.type == BTRFS_ROOT_ITEM_KEY) |
| continue; |
| |
| btrfs_release_path(path); |
| di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL); |
| if (IS_ERR(di_inode)) { |
| ret = PTR_ERR(di_inode); |
| goto next_dir_inode; |
| } |
| |
| if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) { |
| btrfs_add_delayed_iput(di_inode); |
| break; |
| } |
| |
| ctx->log_new_dentries = false; |
| if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK) |
| log_mode = LOG_INODE_ALL; |
| ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode), |
| log_mode, 0, LLONG_MAX, ctx); |
| if (!ret && |
| btrfs_must_commit_transaction(trans, BTRFS_I(di_inode))) |
| ret = 1; |
| btrfs_add_delayed_iput(di_inode); |
| if (ret) |
| goto next_dir_inode; |
| if (ctx->log_new_dentries) { |
| new_dir_elem = kmalloc(sizeof(*new_dir_elem), |
| GFP_NOFS); |
| if (!new_dir_elem) { |
| ret = -ENOMEM; |
| goto next_dir_inode; |
| } |
| new_dir_elem->ino = di_key.objectid; |
| list_add_tail(&new_dir_elem->list, &dir_list); |
| } |
| break; |
| } |
| if (i == nritems) { |
| ret = btrfs_next_leaf(log, path); |
| if (ret < 0) { |
| goto next_dir_inode; |
| } else if (ret > 0) { |
| ret = 0; |
| goto next_dir_inode; |
| } |
| goto process_leaf; |
| } |
| if (min_key.offset < (u64)-1) { |
| min_key.offset++; |
| goto again; |
| } |
| next_dir_inode: |
| list_del(&dir_elem->list); |
| kfree(dir_elem); |
| } |
| |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct btrfs_root *root = inode->root; |
| const u64 ino = btrfs_ino(inode); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| path->skip_locking = 1; |
| path->search_commit_root = 1; |
| |
| key.objectid = ino; |
| key.type = BTRFS_INODE_REF_KEY; |
| key.offset = 0; |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| while (true) { |
| struct extent_buffer *leaf = path->nodes[0]; |
| int slot = path->slots[0]; |
| u32 cur_offset = 0; |
| u32 item_size; |
| unsigned long ptr; |
| |
| if (slot >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| goto out; |
| else if (ret > 0) |
| break; |
| continue; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ |
| if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) |
| break; |
| |
| item_size = btrfs_item_size_nr(leaf, slot); |
| ptr = btrfs_item_ptr_offset(leaf, slot); |
| while (cur_offset < item_size) { |
| struct btrfs_key inode_key; |
| struct inode *dir_inode; |
| |
| inode_key.type = BTRFS_INODE_ITEM_KEY; |
| inode_key.offset = 0; |
| |
| if (key.type == BTRFS_INODE_EXTREF_KEY) { |
| struct btrfs_inode_extref *extref; |
| |
| extref = (struct btrfs_inode_extref *) |
| (ptr + cur_offset); |
| inode_key.objectid = btrfs_inode_extref_parent( |
| leaf, extref); |
| cur_offset += sizeof(*extref); |
| cur_offset += btrfs_inode_extref_name_len(leaf, |
| extref); |
| } else { |
| inode_key.objectid = key.offset; |
| cur_offset = item_size; |
| } |
| |
| dir_inode = btrfs_iget(fs_info->sb, &inode_key, |
| root, NULL); |
| /* |
| * If the parent inode was deleted, return an error to |
| * fallback to a transaction commit. This is to prevent |
| * getting an inode that was moved from one parent A to |
| * a parent B, got its former parent A deleted and then |
| * it got fsync'ed, from existing at both parents after |
| * a log replay (and the old parent still existing). |
| * Example: |
| * |
| * mkdir /mnt/A |
| * mkdir /mnt/B |
| * touch /mnt/B/bar |
| * sync |
| * mv /mnt/B/bar /mnt/A/bar |
| * mv -T /mnt/A /mnt/B |
| * fsync /mnt/B/bar |
| * <power fail> |
| * |
| * If we ignore the old parent B which got deleted, |
| * after a log replay we would have file bar linked |
| * at both parents and the old parent B would still |
| * exist. |
| */ |
| if (IS_ERR(dir_inode)) { |
| ret = PTR_ERR(dir_inode); |
| goto out; |
| } |
| |
| if (ctx) |
| ctx->log_new_dentries = false; |
| ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode), |
| LOG_INODE_ALL, 0, LLONG_MAX, ctx); |
| if (!ret && |
| btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode))) |
| ret = 1; |
| if (!ret && ctx && ctx->log_new_dentries) |
| ret = log_new_dir_dentries(trans, root, |
| BTRFS_I(dir_inode), ctx); |
| btrfs_add_delayed_iput(dir_inode); |
| if (ret) |
| goto out; |
| } |
| path->slots[0]++; |
| } |
| ret = 0; |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * helper function around btrfs_log_inode to make sure newly created |
| * parent directories also end up in the log. A minimal inode and backref |
| * only logging is done of any parent directories that are older than |
| * the last committed transaction |
| */ |
| static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_inode *inode, |
| struct dentry *parent, |
| const loff_t start, |
| const loff_t end, |
| int exists_only, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL; |
| struct super_block *sb; |
| struct dentry *old_parent = NULL; |
| int ret = 0; |
| u64 last_committed = fs_info->last_trans_committed; |
| bool log_dentries = false; |
| struct btrfs_inode *orig_inode = inode; |
| |
| sb = inode->vfs_inode.i_sb; |
| |
| if (btrfs_test_opt(fs_info, NOTREELOG)) { |
| ret = 1; |
| goto end_no_trans; |
| } |
| |
| /* |
| * The prev transaction commit doesn't complete, we need do |
| * full commit by ourselves. |
| */ |
| if (fs_info->last_trans_log_full_commit > |
| fs_info->last_trans_committed) { |
| ret = 1; |
| goto end_no_trans; |
| } |
| |
| if (root != inode->root || btrfs_root_refs(&root->root_item) == 0) { |
| ret = 1; |
| goto end_no_trans; |
| } |
| |
| ret = check_parent_dirs_for_sync(trans, inode, parent, sb, |
| last_committed); |
| if (ret) |
| goto end_no_trans; |
| |
| /* |
| * Skip already logged inodes or inodes corresponding to tmpfiles |
| * (since logging them is pointless, a link count of 0 means they |
| * will never be accessible). |
| */ |
| if (btrfs_inode_in_log(inode, trans->transid) || |
| inode->vfs_inode.i_nlink == 0) { |
| ret = BTRFS_NO_LOG_SYNC; |
| goto end_no_trans; |
| } |
| |
| ret = start_log_trans(trans, root, ctx); |
| if (ret) |
| goto end_no_trans; |
| |
| ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx); |
| if (ret) |
| goto end_trans; |
| |
| /* |
| * for regular files, if its inode is already on disk, we don't |
| * have to worry about the parents at all. This is because |
| * we can use the last_unlink_trans field to record renames |
| * and other fun in this file. |
| */ |
| if (S_ISREG(inode->vfs_inode.i_mode) && |
| inode->generation <= last_committed && |
| inode->last_unlink_trans <= last_committed) { |
| ret = 0; |
| goto end_trans; |
| } |
| |
| if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries) |
| log_dentries = true; |
| |
| /* |
| * On unlink we must make sure all our current and old parent directory |
| * inodes are fully logged. This is to prevent leaving dangling |
| * directory index entries in directories that were our parents but are |
| * not anymore. Not doing this results in old parent directory being |
| * impossible to delete after log replay (rmdir will always fail with |
| * error -ENOTEMPTY). |
| * |
| * Example 1: |
| * |
| * mkdir testdir |
| * touch testdir/foo |
| * ln testdir/foo testdir/bar |
| * sync |
| * unlink testdir/bar |
| * xfs_io -c fsync testdir/foo |
| * <power failure> |
| * mount fs, triggers log replay |
| * |
| * If we don't log the parent directory (testdir), after log replay the |
| * directory still has an entry pointing to the file inode using the bar |
| * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and |
| * the file inode has a link count of 1. |
| * |
| * Example 2: |
| * |
| * mkdir testdir |
| * touch foo |
| * ln foo testdir/foo2 |
| * ln foo testdir/foo3 |
| * sync |
| * unlink testdir/foo3 |
| * xfs_io -c fsync foo |
| * <power failure> |
| * mount fs, triggers log replay |
| * |
| * Similar as the first example, after log replay the parent directory |
| * testdir still has an entry pointing to the inode file with name foo3 |
| * but the file inode does not have a matching BTRFS_INODE_REF_KEY item |
| * and has a link count of 2. |
| */ |
| if (inode->last_unlink_trans > last_committed) { |
| ret = btrfs_log_all_parents(trans, orig_inode, ctx); |
| if (ret) |
| goto end_trans; |
| } |
| |
| /* |
| * If a new hard link was added to the inode in the current transaction |
| * and its link count is now greater than 1, we need to fallback to a |
| * transaction commit, otherwise we can end up not logging all its new |
| * parents for all the hard links. Here just from the dentry used to |
| * fsync, we can not visit the ancestor inodes for all the other hard |
| * links to figure out if any is new, so we fallback to a transaction |
| * commit (instead of adding a lot of complexity of scanning a btree, |
| * since this scenario is not a common use case). |
| */ |
| if (inode->vfs_inode.i_nlink > 1 && |
| inode->last_link_trans > last_committed) { |
| ret = -EMLINK; |
| goto end_trans; |
| } |
| |
| while (1) { |
| if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) |
| break; |
| |
| inode = BTRFS_I(d_inode(parent)); |
| if (root != inode->root) |
| break; |
| |
| if (inode->generation > last_committed) { |
| ret = btrfs_log_inode(trans, root, inode, |
| LOG_INODE_EXISTS, 0, LLONG_MAX, ctx); |
| if (ret) |
| goto end_trans; |
| } |
| if (IS_ROOT(parent)) |
| break; |
| |
| parent = dget_parent(parent); |
| dput(old_parent); |
| old_parent = parent; |
| } |
| if (log_dentries) |
| ret = log_new_dir_dentries(trans, root, orig_inode, ctx); |
| else |
| ret = 0; |
| end_trans: |
| dput(old_parent); |
| if (ret < 0) { |
| btrfs_set_log_full_commit(fs_info, trans); |
| ret = 1; |
| } |
| |
| if (ret) |
| btrfs_remove_log_ctx(root, ctx); |
| btrfs_end_log_trans(root); |
| end_no_trans: |
| return ret; |
| } |
| |
| /* |
| * it is not safe to log dentry if the chunk root has added new |
| * chunks. This returns 0 if the dentry was logged, and 1 otherwise. |
| * If this returns 1, you must commit the transaction to safely get your |
| * data on disk. |
| */ |
| int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, struct dentry *dentry, |
| const loff_t start, |
| const loff_t end, |
| struct btrfs_log_ctx *ctx) |
| { |
| struct dentry *parent = dget_parent(dentry); |
| int ret; |
| |
| ret = btrfs_log_inode_parent(trans, root, BTRFS_I(d_inode(dentry)), |
| parent, start, end, 0, ctx); |
| dput(parent); |
| |
| return ret; |
| } |
| |
| /* |
| * should be called during mount to recover any replay any log trees |
| * from the FS |
| */ |
| int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct btrfs_key tmp_key; |
| struct btrfs_root *log; |
| struct btrfs_fs_info *fs_info = log_root_tree->fs_info; |
| struct walk_control wc = { |
| .process_func = process_one_buffer, |
| .stage = 0, |
| }; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); |
| |
| trans = btrfs_start_transaction(fs_info->tree_root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto error; |
| } |
| |
| wc.trans = trans; |
| wc.pin = 1; |
| |
| ret = walk_log_tree(trans, log_root_tree, &wc); |
| if (ret) { |
| btrfs_handle_fs_error(fs_info, ret, |
| "Failed to pin buffers while recovering log root tree."); |
| goto error; |
| } |
| |
| again: |
| key.objectid = BTRFS_TREE_LOG_OBJECTID; |
| key.offset = (u64)-1; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| |
| while (1) { |
| ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); |
| |
| if (ret < 0) { |
| btrfs_handle_fs_error(fs_info, ret, |
| "Couldn't find tree log root."); |
| goto error; |
| } |
| if (ret > 0) { |
| if (path->slots[0] == 0) |
| break; |
| path->slots[0]--; |
| } |
| btrfs_item_key_to_cpu(path->nodes[0], &found_key, |
| path->slots[0]); |
| btrfs_release_path(path); |
| if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) |
| break; |
| |
| log = btrfs_read_fs_root(log_root_tree, &found_key); |
| if (IS_ERR(log)) { |
| ret = PTR_ERR(log); |
| btrfs_handle_fs_error(fs_info, ret, |
| "Couldn't read tree log root."); |
| goto error; |
| } |
| |
| tmp_key.objectid = found_key.offset; |
| tmp_key.type = BTRFS_ROOT_ITEM_KEY; |
| tmp_key.offset = (u64)-1; |
| |
| wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); |
| if (IS_ERR(wc.replay_dest)) { |
| ret = PTR_ERR(wc.replay_dest); |
| |
| /* |
| * We didn't find the subvol, likely because it was |
| * deleted. This is ok, simply skip this log and go to |
| * the next one. |
| * |
| * We need to exclude the root because we can't have |
| * other log replays overwriting this log as we'll read |
| * it back in a few more times. This will keep our |
| * block from being modified, and we'll just bail for |
| * each subsequent pass. |
| */ |
| if (ret == -ENOENT) |
| ret = btrfs_pin_extent_for_log_replay(fs_info, |
| log->node->start, |
| log->node->len); |
| free_extent_buffer(log->node); |
| free_extent_buffer(log->commit_root); |
| kfree(log); |
| |
| if (!ret) |
| goto next; |
| btrfs_handle_fs_error(fs_info, ret, |
| "Couldn't read target root for tree log recovery."); |
| goto error; |
| } |
| |
| wc.replay_dest->log_root = log; |
| btrfs_record_root_in_trans(trans, wc.replay_dest); |
| ret = walk_log_tree(trans, log, &wc); |
| |
| if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { |
| ret = fixup_inode_link_counts(trans, wc.replay_dest, |
| path); |
| } |
| |
| if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { |
| struct btrfs_root *root = wc.replay_dest; |
| |
| btrfs_release_path(path); |
| |
| /* |
| * We have just replayed everything, and the highest |
| * objectid of fs roots probably has changed in case |
| * some inode_item's got replayed. |
| * |
| * root->objectid_mutex is not acquired as log replay |
| * could only happen during mount. |
| */ |
| ret = btrfs_find_highest_objectid(root, |
| &root->highest_objectid); |
| } |
| |
| wc.replay_dest->log_root = NULL; |
| free_extent_buffer(log->node); |
| free_extent_buffer(log->commit_root); |
| kfree(log); |
| |
| if (ret) |
| goto error; |
| next: |
| if (found_key.offset == 0) |
| break; |
| key.offset = found_key.offset - 1; |
| } |
| btrfs_release_path(path); |
| |
| /* step one is to pin it all, step two is to replay just inodes */ |
| if (wc.pin) { |
| wc.pin = 0; |
| wc.process_func = replay_one_buffer; |
| wc.stage = LOG_WALK_REPLAY_INODES; |
| goto again; |
| } |
| /* step three is to replay everything */ |
| if (wc.stage < LOG_WALK_REPLAY_ALL) { |
| wc.stage++; |
| goto again; |
| } |
| |
| btrfs_free_path(path); |
| |
| /* step 4: commit the transaction, which also unpins the blocks */ |
| ret = btrfs_commit_transaction(trans); |
| if (ret) |
| return ret; |
| |
| free_extent_buffer(log_root_tree->node); |
| log_root_tree->log_root = NULL; |
| clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); |
| kfree(log_root_tree); |
| |
| return 0; |
| error: |
| if (wc.trans) |
| btrfs_end_transaction(wc.trans); |
| clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * there are some corner cases where we want to force a full |
| * commit instead of allowing a directory to be logged. |
| * |
| * They revolve around files there were unlinked from the directory, and |
| * this function updates the parent directory so that a full commit is |
| * properly done if it is fsync'd later after the unlinks are done. |
| * |
| * Must be called before the unlink operations (updates to the subvolume tree, |
| * inodes, etc) are done. |
| */ |
| void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *dir, struct btrfs_inode *inode, |
| int for_rename) |
| { |
| /* |
| * when we're logging a file, if it hasn't been renamed |
| * or unlinked, and its inode is fully committed on disk, |
| * we don't have to worry about walking up the directory chain |
| * to log its parents. |
| * |
| * So, we use the last_unlink_trans field to put this transid |
| * into the file. When the file is logged we check it and |
| * don't log the parents if the file is fully on disk. |
| */ |
| mutex_lock(&inode->log_mutex); |
| inode->last_unlink_trans = trans->transid; |
| mutex_unlock(&inode->log_mutex); |
| |
| /* |
| * if this directory was already logged any new |
| * names for this file/dir will get recorded |
| */ |
| if (dir->logged_trans == trans->transid) |
| return; |
| |
| /* |
| * if the inode we're about to unlink was logged, |
| * the log will be properly updated for any new names |
| */ |
| if (inode->logged_trans == trans->transid) |
| return; |
| |
| /* |
| * when renaming files across directories, if the directory |
| * there we're unlinking from gets fsync'd later on, there's |
| * no way to find the destination directory later and fsync it |
| * properly. So, we have to be conservative and force commits |
| * so the new name gets discovered. |
| */ |
| if (for_rename) |
| goto record; |
| |
| /* we can safely do the unlink without any special recording */ |
| return; |
| |
| record: |
| mutex_lock(&dir->log_mutex); |
| dir->last_unlink_trans = trans->transid; |
| mutex_unlock(&dir->log_mutex); |
| } |
| |
| /* |
| * Make sure that if someone attempts to fsync the parent directory of a deleted |
| * snapshot, it ends up triggering a transaction commit. This is to guarantee |
| * that after replaying the log tree of the parent directory's root we will not |
| * see the snapshot anymore and at log replay time we will not see any log tree |
| * corresponding to the deleted snapshot's root, which could lead to replaying |
| * it after replaying the log tree of the parent directory (which would replay |
| * the snapshot delete operation). |
| * |
| * Must be called before the actual snapshot destroy operation (updates to the |
| * parent root and tree of tree roots trees, etc) are done. |
| */ |
| void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *dir) |
| { |
| mutex_lock(&dir->log_mutex); |
| dir->last_unlink_trans = trans->transid; |
| mutex_unlock(&dir->log_mutex); |
| } |
| |
| /* |
| * Call this after adding a new name for a file and it will properly |
| * update the log to reflect the new name. |
| * |
| * It will return zero if all goes well, and it will return 1 if a |
| * full transaction commit is required. |
| */ |
| int btrfs_log_new_name(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, struct btrfs_inode *old_dir, |
| struct dentry *parent) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); |
| struct btrfs_root *root = inode->root; |
| |
| /* |
| * this will force the logging code to walk the dentry chain |
| * up for the file |
| */ |
| if (!S_ISDIR(inode->vfs_inode.i_mode)) |
| inode->last_unlink_trans = trans->transid; |
| |
| /* |
| * if this inode hasn't been logged and directory we're renaming it |
| * from hasn't been logged, we don't need to log it |
| */ |
| if (inode->logged_trans <= fs_info->last_trans_committed && |
| (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed)) |
| return 0; |
| |
| return btrfs_log_inode_parent(trans, root, inode, parent, 0, |
| LLONG_MAX, 1, NULL); |
| } |
| |