| /* |
| * Routines to indentify caches on Intel CPU. |
| * |
| * Changes: |
| * Venkatesh Pallipadi : Adding cache identification through cpuid(4) |
| * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure. |
| * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/device.h> |
| #include <linux/compiler.h> |
| #include <linux/cpu.h> |
| #include <linux/sched.h> |
| |
| #include <asm/processor.h> |
| #include <asm/smp.h> |
| |
| #define LVL_1_INST 1 |
| #define LVL_1_DATA 2 |
| #define LVL_2 3 |
| #define LVL_3 4 |
| #define LVL_TRACE 5 |
| |
| struct _cache_table |
| { |
| unsigned char descriptor; |
| char cache_type; |
| short size; |
| }; |
| |
| /* all the cache descriptor types we care about (no TLB or trace cache entries) */ |
| static struct _cache_table cache_table[] __cpuinitdata = |
| { |
| { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */ |
| { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */ |
| { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */ |
| { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */ |
| { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ |
| { 0x23, LVL_3, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */ |
| { 0x25, LVL_3, 2048 }, /* 8-way set assoc, sectored cache, 64 byte line size */ |
| { 0x29, LVL_3, 4096 }, /* 8-way set assoc, sectored cache, 64 byte line size */ |
| { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */ |
| { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */ |
| { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */ |
| { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */ |
| { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */ |
| { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */ |
| { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */ |
| { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ |
| { 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */ |
| { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */ |
| { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */ |
| { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */ |
| { 0x44, LVL_2, 1024 }, /* 4-way set assoc, 32 byte line size */ |
| { 0x45, LVL_2, 2048 }, /* 4-way set assoc, 32 byte line size */ |
| { 0x46, LVL_3, 4096 }, /* 4-way set assoc, 64 byte line size */ |
| { 0x47, LVL_3, 8192 }, /* 8-way set assoc, 64 byte line size */ |
| { 0x49, LVL_3, 4096 }, /* 16-way set assoc, 64 byte line size */ |
| { 0x4a, LVL_3, 6144 }, /* 12-way set assoc, 64 byte line size */ |
| { 0x4b, LVL_3, 8192 }, /* 16-way set assoc, 64 byte line size */ |
| { 0x4c, LVL_3, 12288 }, /* 12-way set assoc, 64 byte line size */ |
| { 0x4d, LVL_3, 16384 }, /* 16-way set assoc, 64 byte line size */ |
| { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */ |
| { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */ |
| { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */ |
| { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */ |
| { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */ |
| { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */ |
| { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */ |
| { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */ |
| { 0x78, LVL_2, 1024 }, /* 4-way set assoc, 64 byte line size */ |
| { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */ |
| { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */ |
| { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */ |
| { 0x7c, LVL_2, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */ |
| { 0x7d, LVL_2, 2048 }, /* 8-way set assoc, 64 byte line size */ |
| { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */ |
| { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */ |
| { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */ |
| { 0x84, LVL_2, 1024 }, /* 8-way set assoc, 32 byte line size */ |
| { 0x85, LVL_2, 2048 }, /* 8-way set assoc, 32 byte line size */ |
| { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */ |
| { 0x87, LVL_2, 1024 }, /* 8-way set assoc, 64 byte line size */ |
| { 0x00, 0, 0} |
| }; |
| |
| |
| enum _cache_type |
| { |
| CACHE_TYPE_NULL = 0, |
| CACHE_TYPE_DATA = 1, |
| CACHE_TYPE_INST = 2, |
| CACHE_TYPE_UNIFIED = 3 |
| }; |
| |
| union _cpuid4_leaf_eax { |
| struct { |
| enum _cache_type type:5; |
| unsigned int level:3; |
| unsigned int is_self_initializing:1; |
| unsigned int is_fully_associative:1; |
| unsigned int reserved:4; |
| unsigned int num_threads_sharing:12; |
| unsigned int num_cores_on_die:6; |
| } split; |
| u32 full; |
| }; |
| |
| union _cpuid4_leaf_ebx { |
| struct { |
| unsigned int coherency_line_size:12; |
| unsigned int physical_line_partition:10; |
| unsigned int ways_of_associativity:10; |
| } split; |
| u32 full; |
| }; |
| |
| union _cpuid4_leaf_ecx { |
| struct { |
| unsigned int number_of_sets:32; |
| } split; |
| u32 full; |
| }; |
| |
| struct _cpuid4_info { |
| union _cpuid4_leaf_eax eax; |
| union _cpuid4_leaf_ebx ebx; |
| union _cpuid4_leaf_ecx ecx; |
| unsigned long size; |
| cpumask_t shared_cpu_map; /* future?: only cpus/node is needed */ |
| }; |
| |
| unsigned short num_cache_leaves; |
| |
| /* AMD doesn't have CPUID4. Emulate it here to report the same |
| information to the user. This makes some assumptions about the machine: |
| L2 not shared, no SMT etc. that is currently true on AMD CPUs. |
| |
| In theory the TLBs could be reported as fake type (they are in "dummy"). |
| Maybe later */ |
| union l1_cache { |
| struct { |
| unsigned line_size : 8; |
| unsigned lines_per_tag : 8; |
| unsigned assoc : 8; |
| unsigned size_in_kb : 8; |
| }; |
| unsigned val; |
| }; |
| |
| union l2_cache { |
| struct { |
| unsigned line_size : 8; |
| unsigned lines_per_tag : 4; |
| unsigned assoc : 4; |
| unsigned size_in_kb : 16; |
| }; |
| unsigned val; |
| }; |
| |
| union l3_cache { |
| struct { |
| unsigned line_size : 8; |
| unsigned lines_per_tag : 4; |
| unsigned assoc : 4; |
| unsigned res : 2; |
| unsigned size_encoded : 14; |
| }; |
| unsigned val; |
| }; |
| |
| static unsigned short assocs[] __cpuinitdata = { |
| [1] = 1, [2] = 2, [4] = 4, [6] = 8, |
| [8] = 16, [0xa] = 32, [0xb] = 48, |
| [0xc] = 64, |
| [0xf] = 0xffff // ?? |
| }; |
| |
| static unsigned char levels[] __cpuinitdata = { 1, 1, 2, 3 }; |
| static unsigned char types[] __cpuinitdata = { 1, 2, 3, 3 }; |
| |
| static void __cpuinit amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax, |
| union _cpuid4_leaf_ebx *ebx, |
| union _cpuid4_leaf_ecx *ecx) |
| { |
| unsigned dummy; |
| unsigned line_size, lines_per_tag, assoc, size_in_kb; |
| union l1_cache l1i, l1d; |
| union l2_cache l2; |
| union l3_cache l3; |
| union l1_cache *l1 = &l1d; |
| |
| eax->full = 0; |
| ebx->full = 0; |
| ecx->full = 0; |
| |
| cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val); |
| cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val); |
| |
| switch (leaf) { |
| case 1: |
| l1 = &l1i; |
| case 0: |
| if (!l1->val) |
| return; |
| assoc = l1->assoc; |
| line_size = l1->line_size; |
| lines_per_tag = l1->lines_per_tag; |
| size_in_kb = l1->size_in_kb; |
| break; |
| case 2: |
| if (!l2.val) |
| return; |
| assoc = l2.assoc; |
| line_size = l2.line_size; |
| lines_per_tag = l2.lines_per_tag; |
| /* cpu_data has errata corrections for K7 applied */ |
| size_in_kb = current_cpu_data.x86_cache_size; |
| break; |
| case 3: |
| if (!l3.val) |
| return; |
| assoc = l3.assoc; |
| line_size = l3.line_size; |
| lines_per_tag = l3.lines_per_tag; |
| size_in_kb = l3.size_encoded * 512; |
| break; |
| default: |
| return; |
| } |
| |
| eax->split.is_self_initializing = 1; |
| eax->split.type = types[leaf]; |
| eax->split.level = levels[leaf]; |
| if (leaf == 3) |
| eax->split.num_threads_sharing = current_cpu_data.x86_max_cores - 1; |
| else |
| eax->split.num_threads_sharing = 0; |
| eax->split.num_cores_on_die = current_cpu_data.x86_max_cores - 1; |
| |
| |
| if (assoc == 0xf) |
| eax->split.is_fully_associative = 1; |
| ebx->split.coherency_line_size = line_size - 1; |
| ebx->split.ways_of_associativity = assocs[assoc] - 1; |
| ebx->split.physical_line_partition = lines_per_tag - 1; |
| ecx->split.number_of_sets = (size_in_kb * 1024) / line_size / |
| (ebx->split.ways_of_associativity + 1) - 1; |
| } |
| |
| static int __cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf) |
| { |
| union _cpuid4_leaf_eax eax; |
| union _cpuid4_leaf_ebx ebx; |
| union _cpuid4_leaf_ecx ecx; |
| unsigned edx; |
| |
| if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) |
| amd_cpuid4(index, &eax, &ebx, &ecx); |
| else |
| cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx); |
| if (eax.split.type == CACHE_TYPE_NULL) |
| return -EIO; /* better error ? */ |
| |
| this_leaf->eax = eax; |
| this_leaf->ebx = ebx; |
| this_leaf->ecx = ecx; |
| this_leaf->size = (ecx.split.number_of_sets + 1) * |
| (ebx.split.coherency_line_size + 1) * |
| (ebx.split.physical_line_partition + 1) * |
| (ebx.split.ways_of_associativity + 1); |
| return 0; |
| } |
| |
| static int __cpuinit find_num_cache_leaves(void) |
| { |
| unsigned int eax, ebx, ecx, edx; |
| union _cpuid4_leaf_eax cache_eax; |
| int i = -1; |
| |
| do { |
| ++i; |
| /* Do cpuid(4) loop to find out num_cache_leaves */ |
| cpuid_count(4, i, &eax, &ebx, &ecx, &edx); |
| cache_eax.full = eax; |
| } while (cache_eax.split.type != CACHE_TYPE_NULL); |
| return i; |
| } |
| |
| unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c) |
| { |
| unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; /* Cache sizes */ |
| unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */ |
| unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */ |
| unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb; |
| #ifdef CONFIG_X86_HT |
| unsigned int cpu = c->cpu_index; |
| #endif |
| |
| if (c->cpuid_level > 3) { |
| static int is_initialized; |
| |
| if (is_initialized == 0) { |
| /* Init num_cache_leaves from boot CPU */ |
| num_cache_leaves = find_num_cache_leaves(); |
| is_initialized++; |
| } |
| |
| /* |
| * Whenever possible use cpuid(4), deterministic cache |
| * parameters cpuid leaf to find the cache details |
| */ |
| for (i = 0; i < num_cache_leaves; i++) { |
| struct _cpuid4_info this_leaf; |
| |
| int retval; |
| |
| retval = cpuid4_cache_lookup(i, &this_leaf); |
| if (retval >= 0) { |
| switch(this_leaf.eax.split.level) { |
| case 1: |
| if (this_leaf.eax.split.type == |
| CACHE_TYPE_DATA) |
| new_l1d = this_leaf.size/1024; |
| else if (this_leaf.eax.split.type == |
| CACHE_TYPE_INST) |
| new_l1i = this_leaf.size/1024; |
| break; |
| case 2: |
| new_l2 = this_leaf.size/1024; |
| num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing; |
| index_msb = get_count_order(num_threads_sharing); |
| l2_id = c->apicid >> index_msb; |
| break; |
| case 3: |
| new_l3 = this_leaf.size/1024; |
| num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing; |
| index_msb = get_count_order(num_threads_sharing); |
| l3_id = c->apicid >> index_msb; |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| } |
| /* |
| * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for |
| * trace cache |
| */ |
| if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) { |
| /* supports eax=2 call */ |
| int j, n; |
| unsigned int regs[4]; |
| unsigned char *dp = (unsigned char *)regs; |
| int only_trace = 0; |
| |
| if (num_cache_leaves != 0 && c->x86 == 15) |
| only_trace = 1; |
| |
| /* Number of times to iterate */ |
| n = cpuid_eax(2) & 0xFF; |
| |
| for ( i = 0 ; i < n ; i++ ) { |
| cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]); |
| |
| /* If bit 31 is set, this is an unknown format */ |
| for ( j = 0 ; j < 3 ; j++ ) { |
| if (regs[j] & (1 << 31)) regs[j] = 0; |
| } |
| |
| /* Byte 0 is level count, not a descriptor */ |
| for ( j = 1 ; j < 16 ; j++ ) { |
| unsigned char des = dp[j]; |
| unsigned char k = 0; |
| |
| /* look up this descriptor in the table */ |
| while (cache_table[k].descriptor != 0) |
| { |
| if (cache_table[k].descriptor == des) { |
| if (only_trace && cache_table[k].cache_type != LVL_TRACE) |
| break; |
| switch (cache_table[k].cache_type) { |
| case LVL_1_INST: |
| l1i += cache_table[k].size; |
| break; |
| case LVL_1_DATA: |
| l1d += cache_table[k].size; |
| break; |
| case LVL_2: |
| l2 += cache_table[k].size; |
| break; |
| case LVL_3: |
| l3 += cache_table[k].size; |
| break; |
| case LVL_TRACE: |
| trace += cache_table[k].size; |
| break; |
| } |
| |
| break; |
| } |
| |
| k++; |
| } |
| } |
| } |
| } |
| |
| if (new_l1d) |
| l1d = new_l1d; |
| |
| if (new_l1i) |
| l1i = new_l1i; |
| |
| if (new_l2) { |
| l2 = new_l2; |
| #ifdef CONFIG_X86_HT |
| per_cpu(cpu_llc_id, cpu) = l2_id; |
| #endif |
| } |
| |
| if (new_l3) { |
| l3 = new_l3; |
| #ifdef CONFIG_X86_HT |
| per_cpu(cpu_llc_id, cpu) = l3_id; |
| #endif |
| } |
| |
| if (trace) |
| printk (KERN_INFO "CPU: Trace cache: %dK uops", trace); |
| else if ( l1i ) |
| printk (KERN_INFO "CPU: L1 I cache: %dK", l1i); |
| |
| if (l1d) |
| printk(", L1 D cache: %dK\n", l1d); |
| else |
| printk("\n"); |
| |
| if (l2) |
| printk(KERN_INFO "CPU: L2 cache: %dK\n", l2); |
| |
| if (l3) |
| printk(KERN_INFO "CPU: L3 cache: %dK\n", l3); |
| |
| c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d)); |
| |
| return l2; |
| } |
| |
| /* pointer to _cpuid4_info array (for each cache leaf) */ |
| static DEFINE_PER_CPU(struct _cpuid4_info *, cpuid4_info); |
| #define CPUID4_INFO_IDX(x, y) (&((per_cpu(cpuid4_info, x))[y])) |
| |
| #ifdef CONFIG_SMP |
| static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index) |
| { |
| struct _cpuid4_info *this_leaf, *sibling_leaf; |
| unsigned long num_threads_sharing; |
| int index_msb, i; |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| |
| this_leaf = CPUID4_INFO_IDX(cpu, index); |
| num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing; |
| |
| if (num_threads_sharing == 1) |
| cpu_set(cpu, this_leaf->shared_cpu_map); |
| else { |
| index_msb = get_count_order(num_threads_sharing); |
| |
| for_each_online_cpu(i) { |
| if (cpu_data(i).apicid >> index_msb == |
| c->apicid >> index_msb) { |
| cpu_set(i, this_leaf->shared_cpu_map); |
| if (i != cpu && per_cpu(cpuid4_info, i)) { |
| sibling_leaf = CPUID4_INFO_IDX(i, index); |
| cpu_set(cpu, sibling_leaf->shared_cpu_map); |
| } |
| } |
| } |
| } |
| } |
| static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index) |
| { |
| struct _cpuid4_info *this_leaf, *sibling_leaf; |
| int sibling; |
| |
| this_leaf = CPUID4_INFO_IDX(cpu, index); |
| for_each_cpu_mask(sibling, this_leaf->shared_cpu_map) { |
| sibling_leaf = CPUID4_INFO_IDX(sibling, index); |
| cpu_clear(cpu, sibling_leaf->shared_cpu_map); |
| } |
| } |
| #else |
| static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index) {} |
| static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index) {} |
| #endif |
| |
| static void __cpuinit free_cache_attributes(unsigned int cpu) |
| { |
| int i; |
| |
| for (i = 0; i < num_cache_leaves; i++) |
| cache_remove_shared_cpu_map(cpu, i); |
| |
| kfree(per_cpu(cpuid4_info, cpu)); |
| per_cpu(cpuid4_info, cpu) = NULL; |
| } |
| |
| static int __cpuinit detect_cache_attributes(unsigned int cpu) |
| { |
| struct _cpuid4_info *this_leaf; |
| unsigned long j; |
| int retval; |
| cpumask_t oldmask; |
| |
| if (num_cache_leaves == 0) |
| return -ENOENT; |
| |
| per_cpu(cpuid4_info, cpu) = kzalloc( |
| sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL); |
| if (per_cpu(cpuid4_info, cpu) == NULL) |
| return -ENOMEM; |
| |
| oldmask = current->cpus_allowed; |
| retval = set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu)); |
| if (retval) |
| goto out; |
| |
| /* Do cpuid and store the results */ |
| for (j = 0; j < num_cache_leaves; j++) { |
| this_leaf = CPUID4_INFO_IDX(cpu, j); |
| retval = cpuid4_cache_lookup(j, this_leaf); |
| if (unlikely(retval < 0)) { |
| int i; |
| |
| for (i = 0; i < j; i++) |
| cache_remove_shared_cpu_map(cpu, i); |
| break; |
| } |
| cache_shared_cpu_map_setup(cpu, j); |
| } |
| set_cpus_allowed_ptr(current, &oldmask); |
| |
| out: |
| if (retval) { |
| kfree(per_cpu(cpuid4_info, cpu)); |
| per_cpu(cpuid4_info, cpu) = NULL; |
| } |
| |
| return retval; |
| } |
| |
| #ifdef CONFIG_SYSFS |
| |
| #include <linux/kobject.h> |
| #include <linux/sysfs.h> |
| |
| extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */ |
| |
| /* pointer to kobject for cpuX/cache */ |
| static DEFINE_PER_CPU(struct kobject *, cache_kobject); |
| |
| struct _index_kobject { |
| struct kobject kobj; |
| unsigned int cpu; |
| unsigned short index; |
| }; |
| |
| /* pointer to array of kobjects for cpuX/cache/indexY */ |
| static DEFINE_PER_CPU(struct _index_kobject *, index_kobject); |
| #define INDEX_KOBJECT_PTR(x, y) (&((per_cpu(index_kobject, x))[y])) |
| |
| #define show_one_plus(file_name, object, val) \ |
| static ssize_t show_##file_name \ |
| (struct _cpuid4_info *this_leaf, char *buf) \ |
| { \ |
| return sprintf (buf, "%lu\n", (unsigned long)this_leaf->object + val); \ |
| } |
| |
| show_one_plus(level, eax.split.level, 0); |
| show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1); |
| show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1); |
| show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1); |
| show_one_plus(number_of_sets, ecx.split.number_of_sets, 1); |
| |
| static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf) |
| { |
| return sprintf (buf, "%luK\n", this_leaf->size / 1024); |
| } |
| |
| static ssize_t show_shared_cpu_map(struct _cpuid4_info *this_leaf, char *buf) |
| { |
| int n = 0; |
| int len = cpumask_scnprintf_len(nr_cpu_ids); |
| char *mask_str = kmalloc(len, GFP_KERNEL); |
| |
| if (mask_str) { |
| cpumask_scnprintf(mask_str, len, this_leaf->shared_cpu_map); |
| n = sprintf(buf, "%s\n", mask_str); |
| kfree(mask_str); |
| } |
| return n; |
| } |
| |
| static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf) { |
| switch(this_leaf->eax.split.type) { |
| case CACHE_TYPE_DATA: |
| return sprintf(buf, "Data\n"); |
| break; |
| case CACHE_TYPE_INST: |
| return sprintf(buf, "Instruction\n"); |
| break; |
| case CACHE_TYPE_UNIFIED: |
| return sprintf(buf, "Unified\n"); |
| break; |
| default: |
| return sprintf(buf, "Unknown\n"); |
| break; |
| } |
| } |
| |
| struct _cache_attr { |
| struct attribute attr; |
| ssize_t (*show)(struct _cpuid4_info *, char *); |
| ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count); |
| }; |
| |
| #define define_one_ro(_name) \ |
| static struct _cache_attr _name = \ |
| __ATTR(_name, 0444, show_##_name, NULL) |
| |
| define_one_ro(level); |
| define_one_ro(type); |
| define_one_ro(coherency_line_size); |
| define_one_ro(physical_line_partition); |
| define_one_ro(ways_of_associativity); |
| define_one_ro(number_of_sets); |
| define_one_ro(size); |
| define_one_ro(shared_cpu_map); |
| |
| static struct attribute * default_attrs[] = { |
| &type.attr, |
| &level.attr, |
| &coherency_line_size.attr, |
| &physical_line_partition.attr, |
| &ways_of_associativity.attr, |
| &number_of_sets.attr, |
| &size.attr, |
| &shared_cpu_map.attr, |
| NULL |
| }; |
| |
| #define to_object(k) container_of(k, struct _index_kobject, kobj) |
| #define to_attr(a) container_of(a, struct _cache_attr, attr) |
| |
| static ssize_t show(struct kobject * kobj, struct attribute * attr, char * buf) |
| { |
| struct _cache_attr *fattr = to_attr(attr); |
| struct _index_kobject *this_leaf = to_object(kobj); |
| ssize_t ret; |
| |
| ret = fattr->show ? |
| fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index), |
| buf) : |
| 0; |
| return ret; |
| } |
| |
| static ssize_t store(struct kobject * kobj, struct attribute * attr, |
| const char * buf, size_t count) |
| { |
| return 0; |
| } |
| |
| static struct sysfs_ops sysfs_ops = { |
| .show = show, |
| .store = store, |
| }; |
| |
| static struct kobj_type ktype_cache = { |
| .sysfs_ops = &sysfs_ops, |
| .default_attrs = default_attrs, |
| }; |
| |
| static struct kobj_type ktype_percpu_entry = { |
| .sysfs_ops = &sysfs_ops, |
| }; |
| |
| static void __cpuinit cpuid4_cache_sysfs_exit(unsigned int cpu) |
| { |
| kfree(per_cpu(cache_kobject, cpu)); |
| kfree(per_cpu(index_kobject, cpu)); |
| per_cpu(cache_kobject, cpu) = NULL; |
| per_cpu(index_kobject, cpu) = NULL; |
| free_cache_attributes(cpu); |
| } |
| |
| static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu) |
| { |
| int err; |
| |
| if (num_cache_leaves == 0) |
| return -ENOENT; |
| |
| err = detect_cache_attributes(cpu); |
| if (err) |
| return err; |
| |
| /* Allocate all required memory */ |
| per_cpu(cache_kobject, cpu) = |
| kzalloc(sizeof(struct kobject), GFP_KERNEL); |
| if (unlikely(per_cpu(cache_kobject, cpu) == NULL)) |
| goto err_out; |
| |
| per_cpu(index_kobject, cpu) = kzalloc( |
| sizeof(struct _index_kobject ) * num_cache_leaves, GFP_KERNEL); |
| if (unlikely(per_cpu(index_kobject, cpu) == NULL)) |
| goto err_out; |
| |
| return 0; |
| |
| err_out: |
| cpuid4_cache_sysfs_exit(cpu); |
| return -ENOMEM; |
| } |
| |
| static cpumask_t cache_dev_map = CPU_MASK_NONE; |
| |
| /* Add/Remove cache interface for CPU device */ |
| static int __cpuinit cache_add_dev(struct sys_device * sys_dev) |
| { |
| unsigned int cpu = sys_dev->id; |
| unsigned long i, j; |
| struct _index_kobject *this_object; |
| int retval; |
| |
| retval = cpuid4_cache_sysfs_init(cpu); |
| if (unlikely(retval < 0)) |
| return retval; |
| |
| retval = kobject_init_and_add(per_cpu(cache_kobject, cpu), |
| &ktype_percpu_entry, |
| &sys_dev->kobj, "%s", "cache"); |
| if (retval < 0) { |
| cpuid4_cache_sysfs_exit(cpu); |
| return retval; |
| } |
| |
| for (i = 0; i < num_cache_leaves; i++) { |
| this_object = INDEX_KOBJECT_PTR(cpu,i); |
| this_object->cpu = cpu; |
| this_object->index = i; |
| retval = kobject_init_and_add(&(this_object->kobj), |
| &ktype_cache, |
| per_cpu(cache_kobject, cpu), |
| "index%1lu", i); |
| if (unlikely(retval)) { |
| for (j = 0; j < i; j++) { |
| kobject_put(&(INDEX_KOBJECT_PTR(cpu,j)->kobj)); |
| } |
| kobject_put(per_cpu(cache_kobject, cpu)); |
| cpuid4_cache_sysfs_exit(cpu); |
| break; |
| } |
| kobject_uevent(&(this_object->kobj), KOBJ_ADD); |
| } |
| if (!retval) |
| cpu_set(cpu, cache_dev_map); |
| |
| kobject_uevent(per_cpu(cache_kobject, cpu), KOBJ_ADD); |
| return retval; |
| } |
| |
| static void __cpuinit cache_remove_dev(struct sys_device * sys_dev) |
| { |
| unsigned int cpu = sys_dev->id; |
| unsigned long i; |
| |
| if (per_cpu(cpuid4_info, cpu) == NULL) |
| return; |
| if (!cpu_isset(cpu, cache_dev_map)) |
| return; |
| cpu_clear(cpu, cache_dev_map); |
| |
| for (i = 0; i < num_cache_leaves; i++) |
| kobject_put(&(INDEX_KOBJECT_PTR(cpu,i)->kobj)); |
| kobject_put(per_cpu(cache_kobject, cpu)); |
| cpuid4_cache_sysfs_exit(cpu); |
| } |
| |
| static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb, |
| unsigned long action, void *hcpu) |
| { |
| unsigned int cpu = (unsigned long)hcpu; |
| struct sys_device *sys_dev; |
| |
| sys_dev = get_cpu_sysdev(cpu); |
| switch (action) { |
| case CPU_ONLINE: |
| case CPU_ONLINE_FROZEN: |
| cache_add_dev(sys_dev); |
| break; |
| case CPU_DEAD: |
| case CPU_DEAD_FROZEN: |
| cache_remove_dev(sys_dev); |
| break; |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block __cpuinitdata cacheinfo_cpu_notifier = |
| { |
| .notifier_call = cacheinfo_cpu_callback, |
| }; |
| |
| static int __cpuinit cache_sysfs_init(void) |
| { |
| int i; |
| |
| if (num_cache_leaves == 0) |
| return 0; |
| |
| for_each_online_cpu(i) { |
| int err; |
| struct sys_device *sys_dev = get_cpu_sysdev(i); |
| |
| err = cache_add_dev(sys_dev); |
| if (err) |
| return err; |
| } |
| register_hotcpu_notifier(&cacheinfo_cpu_notifier); |
| return 0; |
| } |
| |
| device_initcall(cache_sysfs_init); |
| |
| #endif |