blob: bc3f2e6842e7be13771fa4b638c9cc85f36ad359 [file] [log] [blame]
/* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
*/
/*
*
* Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#ifndef _I915_DRV_H_
#define _I915_DRV_H_
#include <uapi/drm/i915_drm.h>
#include <uapi/drm/drm_fourcc.h>
#include <linux/io-mapping.h>
#include <linux/i2c.h>
#include <linux/i2c-algo-bit.h>
#include <linux/backlight.h>
#include <linux/hashtable.h>
#include <linux/intel-iommu.h>
#include <linux/kref.h>
#include <linux/pm_qos.h>
#include <linux/shmem_fs.h>
#include <drm/drmP.h>
#include <drm/intel-gtt.h>
#include <drm/drm_legacy.h> /* for struct drm_dma_handle */
#include <drm/drm_gem.h>
#include "i915_params.h"
#include "i915_reg.h"
#include "intel_bios.h"
#include "intel_dpll_mgr.h"
#include "intel_guc.h"
#include "intel_lrc.h"
#include "intel_ringbuffer.h"
#include "i915_gem.h"
#include "i915_gem_gtt.h"
#include "i915_gem_render_state.h"
/* General customization:
*/
#define DRIVER_NAME "i915"
#define DRIVER_DESC "Intel Graphics"
#define DRIVER_DATE "20160425"
#undef WARN_ON
/* Many gcc seem to no see through this and fall over :( */
#if 0
#define WARN_ON(x) ({ \
bool __i915_warn_cond = (x); \
if (__builtin_constant_p(__i915_warn_cond)) \
BUILD_BUG_ON(__i915_warn_cond); \
WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
#else
#define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
#endif
#undef WARN_ON_ONCE
#define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
#define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
(long) (x), __func__);
/* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
* WARN_ON()) for hw state sanity checks to check for unexpected conditions
* which may not necessarily be a user visible problem. This will either
* WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
* enable distros and users to tailor their preferred amount of i915 abrt
* spam.
*/
#define I915_STATE_WARN(condition, format...) ({ \
int __ret_warn_on = !!(condition); \
if (unlikely(__ret_warn_on)) \
if (!WARN(i915.verbose_state_checks, format)) \
DRM_ERROR(format); \
unlikely(__ret_warn_on); \
})
#define I915_STATE_WARN_ON(x) \
I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
bool __i915_inject_load_failure(const char *func, int line);
#define i915_inject_load_failure() \
__i915_inject_load_failure(__func__, __LINE__)
static inline const char *yesno(bool v)
{
return v ? "yes" : "no";
}
static inline const char *onoff(bool v)
{
return v ? "on" : "off";
}
enum pipe {
INVALID_PIPE = -1,
PIPE_A = 0,
PIPE_B,
PIPE_C,
_PIPE_EDP,
I915_MAX_PIPES = _PIPE_EDP
};
#define pipe_name(p) ((p) + 'A')
enum transcoder {
TRANSCODER_A = 0,
TRANSCODER_B,
TRANSCODER_C,
TRANSCODER_EDP,
TRANSCODER_DSI_A,
TRANSCODER_DSI_C,
I915_MAX_TRANSCODERS
};
static inline const char *transcoder_name(enum transcoder transcoder)
{
switch (transcoder) {
case TRANSCODER_A:
return "A";
case TRANSCODER_B:
return "B";
case TRANSCODER_C:
return "C";
case TRANSCODER_EDP:
return "EDP";
case TRANSCODER_DSI_A:
return "DSI A";
case TRANSCODER_DSI_C:
return "DSI C";
default:
return "<invalid>";
}
}
static inline bool transcoder_is_dsi(enum transcoder transcoder)
{
return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
}
/*
* I915_MAX_PLANES in the enum below is the maximum (across all platforms)
* number of planes per CRTC. Not all platforms really have this many planes,
* which means some arrays of size I915_MAX_PLANES may have unused entries
* between the topmost sprite plane and the cursor plane.
*/
enum plane {
PLANE_A = 0,
PLANE_B,
PLANE_C,
PLANE_CURSOR,
I915_MAX_PLANES,
};
#define plane_name(p) ((p) + 'A')
#define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
enum port {
PORT_A = 0,
PORT_B,
PORT_C,
PORT_D,
PORT_E,
I915_MAX_PORTS
};
#define port_name(p) ((p) + 'A')
#define I915_NUM_PHYS_VLV 2
enum dpio_channel {
DPIO_CH0,
DPIO_CH1
};
enum dpio_phy {
DPIO_PHY0,
DPIO_PHY1
};
enum intel_display_power_domain {
POWER_DOMAIN_PIPE_A,
POWER_DOMAIN_PIPE_B,
POWER_DOMAIN_PIPE_C,
POWER_DOMAIN_PIPE_A_PANEL_FITTER,
POWER_DOMAIN_PIPE_B_PANEL_FITTER,
POWER_DOMAIN_PIPE_C_PANEL_FITTER,
POWER_DOMAIN_TRANSCODER_A,
POWER_DOMAIN_TRANSCODER_B,
POWER_DOMAIN_TRANSCODER_C,
POWER_DOMAIN_TRANSCODER_EDP,
POWER_DOMAIN_TRANSCODER_DSI_A,
POWER_DOMAIN_TRANSCODER_DSI_C,
POWER_DOMAIN_PORT_DDI_A_LANES,
POWER_DOMAIN_PORT_DDI_B_LANES,
POWER_DOMAIN_PORT_DDI_C_LANES,
POWER_DOMAIN_PORT_DDI_D_LANES,
POWER_DOMAIN_PORT_DDI_E_LANES,
POWER_DOMAIN_PORT_DSI,
POWER_DOMAIN_PORT_CRT,
POWER_DOMAIN_PORT_OTHER,
POWER_DOMAIN_VGA,
POWER_DOMAIN_AUDIO,
POWER_DOMAIN_PLLS,
POWER_DOMAIN_AUX_A,
POWER_DOMAIN_AUX_B,
POWER_DOMAIN_AUX_C,
POWER_DOMAIN_AUX_D,
POWER_DOMAIN_GMBUS,
POWER_DOMAIN_MODESET,
POWER_DOMAIN_INIT,
POWER_DOMAIN_NUM,
};
#define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
#define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
#define POWER_DOMAIN_TRANSCODER(tran) \
((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
(tran) + POWER_DOMAIN_TRANSCODER_A)
enum hpd_pin {
HPD_NONE = 0,
HPD_TV = HPD_NONE, /* TV is known to be unreliable */
HPD_CRT,
HPD_SDVO_B,
HPD_SDVO_C,
HPD_PORT_A,
HPD_PORT_B,
HPD_PORT_C,
HPD_PORT_D,
HPD_PORT_E,
HPD_NUM_PINS
};
#define for_each_hpd_pin(__pin) \
for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
struct i915_hotplug {
struct work_struct hotplug_work;
struct {
unsigned long last_jiffies;
int count;
enum {
HPD_ENABLED = 0,
HPD_DISABLED = 1,
HPD_MARK_DISABLED = 2
} state;
} stats[HPD_NUM_PINS];
u32 event_bits;
struct delayed_work reenable_work;
struct intel_digital_port *irq_port[I915_MAX_PORTS];
u32 long_port_mask;
u32 short_port_mask;
struct work_struct dig_port_work;
/*
* if we get a HPD irq from DP and a HPD irq from non-DP
* the non-DP HPD could block the workqueue on a mode config
* mutex getting, that userspace may have taken. However
* userspace is waiting on the DP workqueue to run which is
* blocked behind the non-DP one.
*/
struct workqueue_struct *dp_wq;
};
#define I915_GEM_GPU_DOMAINS \
(I915_GEM_DOMAIN_RENDER | \
I915_GEM_DOMAIN_SAMPLER | \
I915_GEM_DOMAIN_COMMAND | \
I915_GEM_DOMAIN_INSTRUCTION | \
I915_GEM_DOMAIN_VERTEX)
#define for_each_pipe(__dev_priv, __p) \
for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
#define for_each_pipe_masked(__dev_priv, __p, __mask) \
for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
for_each_if ((__mask) & (1 << (__p)))
#define for_each_plane(__dev_priv, __pipe, __p) \
for ((__p) = 0; \
(__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
(__p)++)
#define for_each_sprite(__dev_priv, __p, __s) \
for ((__s) = 0; \
(__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
(__s)++)
#define for_each_port_masked(__port, __ports_mask) \
for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
for_each_if ((__ports_mask) & (1 << (__port)))
#define for_each_crtc(dev, crtc) \
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
#define for_each_intel_plane(dev, intel_plane) \
list_for_each_entry(intel_plane, \
&dev->mode_config.plane_list, \
base.head)
#define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
list_for_each_entry(intel_plane, \
&(dev)->mode_config.plane_list, \
base.head) \
for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
#define for_each_intel_crtc(dev, intel_crtc) \
list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head)
#define for_each_intel_encoder(dev, intel_encoder) \
list_for_each_entry(intel_encoder, \
&(dev)->mode_config.encoder_list, \
base.head)
#define for_each_intel_connector(dev, intel_connector) \
list_for_each_entry(intel_connector, \
&dev->mode_config.connector_list, \
base.head)
#define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
for_each_if ((intel_encoder)->base.crtc == (__crtc))
#define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
for_each_if ((intel_connector)->base.encoder == (__encoder))
#define for_each_power_domain(domain, mask) \
for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
for_each_if ((1 << (domain)) & (mask))
struct drm_i915_private;
struct i915_mm_struct;
struct i915_mmu_object;
struct drm_i915_file_private {
struct drm_i915_private *dev_priv;
struct drm_file *file;
struct {
spinlock_t lock;
struct list_head request_list;
/* 20ms is a fairly arbitrary limit (greater than the average frame time)
* chosen to prevent the CPU getting more than a frame ahead of the GPU
* (when using lax throttling for the frontbuffer). We also use it to
* offer free GPU waitboosts for severely congested workloads.
*/
#define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
} mm;
struct idr context_idr;
struct intel_rps_client {
struct list_head link;
unsigned boosts;
} rps;
unsigned int bsd_ring;
};
/* Used by dp and fdi links */
struct intel_link_m_n {
uint32_t tu;
uint32_t gmch_m;
uint32_t gmch_n;
uint32_t link_m;
uint32_t link_n;
};
void intel_link_compute_m_n(int bpp, int nlanes,
int pixel_clock, int link_clock,
struct intel_link_m_n *m_n);
/* Interface history:
*
* 1.1: Original.
* 1.2: Add Power Management
* 1.3: Add vblank support
* 1.4: Fix cmdbuffer path, add heap destroy
* 1.5: Add vblank pipe configuration
* 1.6: - New ioctl for scheduling buffer swaps on vertical blank
* - Support vertical blank on secondary display pipe
*/
#define DRIVER_MAJOR 1
#define DRIVER_MINOR 6
#define DRIVER_PATCHLEVEL 0
#define WATCH_LISTS 0
struct opregion_header;
struct opregion_acpi;
struct opregion_swsci;
struct opregion_asle;
struct intel_opregion {
struct opregion_header *header;
struct opregion_acpi *acpi;
struct opregion_swsci *swsci;
u32 swsci_gbda_sub_functions;
u32 swsci_sbcb_sub_functions;
struct opregion_asle *asle;
void *rvda;
const void *vbt;
u32 vbt_size;
u32 *lid_state;
struct work_struct asle_work;
};
#define OPREGION_SIZE (8*1024)
struct intel_overlay;
struct intel_overlay_error_state;
#define I915_FENCE_REG_NONE -1
#define I915_MAX_NUM_FENCES 32
/* 32 fences + sign bit for FENCE_REG_NONE */
#define I915_MAX_NUM_FENCE_BITS 6
struct drm_i915_fence_reg {
struct list_head lru_list;
struct drm_i915_gem_object *obj;
int pin_count;
};
struct sdvo_device_mapping {
u8 initialized;
u8 dvo_port;
u8 slave_addr;
u8 dvo_wiring;
u8 i2c_pin;
u8 ddc_pin;
};
struct intel_display_error_state;
struct drm_i915_error_state {
struct kref ref;
struct timeval time;
char error_msg[128];
int iommu;
u32 reset_count;
u32 suspend_count;
/* Generic register state */
u32 eir;
u32 pgtbl_er;
u32 ier;
u32 gtier[4];
u32 ccid;
u32 derrmr;
u32 forcewake;
u32 error; /* gen6+ */
u32 err_int; /* gen7 */
u32 fault_data0; /* gen8, gen9 */
u32 fault_data1; /* gen8, gen9 */
u32 done_reg;
u32 gac_eco;
u32 gam_ecochk;
u32 gab_ctl;
u32 gfx_mode;
u32 extra_instdone[I915_NUM_INSTDONE_REG];
u64 fence[I915_MAX_NUM_FENCES];
struct intel_overlay_error_state *overlay;
struct intel_display_error_state *display;
struct drm_i915_error_object *semaphore_obj;
struct drm_i915_error_ring {
bool valid;
/* Software tracked state */
bool waiting;
int hangcheck_score;
enum intel_ring_hangcheck_action hangcheck_action;
int num_requests;
/* our own tracking of ring head and tail */
u32 cpu_ring_head;
u32 cpu_ring_tail;
u32 last_seqno;
u32 semaphore_seqno[I915_NUM_ENGINES - 1];
/* Register state */
u32 start;
u32 tail;
u32 head;
u32 ctl;
u32 hws;
u32 ipeir;
u32 ipehr;
u32 instdone;
u32 bbstate;
u32 instpm;
u32 instps;
u32 seqno;
u64 bbaddr;
u64 acthd;
u32 fault_reg;
u64 faddr;
u32 rc_psmi; /* sleep state */
u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
struct drm_i915_error_object {
int page_count;
u64 gtt_offset;
u32 *pages[0];
} *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
struct drm_i915_error_object *wa_ctx;
struct drm_i915_error_request {
long jiffies;
u32 seqno;
u32 tail;
} *requests;
struct {
u32 gfx_mode;
union {
u64 pdp[4];
u32 pp_dir_base;
};
} vm_info;
pid_t pid;
char comm[TASK_COMM_LEN];
} ring[I915_NUM_ENGINES];
struct drm_i915_error_buffer {
u32 size;
u32 name;
u32 rseqno[I915_NUM_ENGINES], wseqno;
u64 gtt_offset;
u32 read_domains;
u32 write_domain;
s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
s32 pinned:2;
u32 tiling:2;
u32 dirty:1;
u32 purgeable:1;
u32 userptr:1;
s32 ring:4;
u32 cache_level:3;
} **active_bo, **pinned_bo;
u32 *active_bo_count, *pinned_bo_count;
u32 vm_count;
};
struct intel_connector;
struct intel_encoder;
struct intel_crtc_state;
struct intel_initial_plane_config;
struct intel_crtc;
struct intel_limit;
struct dpll;
struct drm_i915_display_funcs {
int (*get_display_clock_speed)(struct drm_device *dev);
int (*get_fifo_size)(struct drm_device *dev, int plane);
int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
int (*compute_intermediate_wm)(struct drm_device *dev,
struct intel_crtc *intel_crtc,
struct intel_crtc_state *newstate);
void (*initial_watermarks)(struct intel_crtc_state *cstate);
void (*optimize_watermarks)(struct intel_crtc_state *cstate);
void (*update_wm)(struct drm_crtc *crtc);
int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
/* Returns the active state of the crtc, and if the crtc is active,
* fills out the pipe-config with the hw state. */
bool (*get_pipe_config)(struct intel_crtc *,
struct intel_crtc_state *);
void (*get_initial_plane_config)(struct intel_crtc *,
struct intel_initial_plane_config *);
int (*crtc_compute_clock)(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state);
void (*crtc_enable)(struct drm_crtc *crtc);
void (*crtc_disable)(struct drm_crtc *crtc);
void (*audio_codec_enable)(struct drm_connector *connector,
struct intel_encoder *encoder,
const struct drm_display_mode *adjusted_mode);
void (*audio_codec_disable)(struct intel_encoder *encoder);
void (*fdi_link_train)(struct drm_crtc *crtc);
void (*init_clock_gating)(struct drm_device *dev);
int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_request *req,
uint32_t flags);
void (*hpd_irq_setup)(struct drm_device *dev);
/* clock updates for mode set */
/* cursor updates */
/* render clock increase/decrease */
/* display clock increase/decrease */
/* pll clock increase/decrease */
void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
void (*load_luts)(struct drm_crtc_state *crtc_state);
};
enum forcewake_domain_id {
FW_DOMAIN_ID_RENDER = 0,
FW_DOMAIN_ID_BLITTER,
FW_DOMAIN_ID_MEDIA,
FW_DOMAIN_ID_COUNT
};
enum forcewake_domains {
FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
FORCEWAKE_ALL = (FORCEWAKE_RENDER |
FORCEWAKE_BLITTER |
FORCEWAKE_MEDIA)
};
#define FW_REG_READ (1)
#define FW_REG_WRITE (2)
enum forcewake_domains
intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
i915_reg_t reg, unsigned int op);
struct intel_uncore_funcs {
void (*force_wake_get)(struct drm_i915_private *dev_priv,
enum forcewake_domains domains);
void (*force_wake_put)(struct drm_i915_private *dev_priv,
enum forcewake_domains domains);
uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
uint8_t val, bool trace);
void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
uint16_t val, bool trace);
void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
uint32_t val, bool trace);
void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r,
uint64_t val, bool trace);
};
struct intel_uncore {
spinlock_t lock; /** lock is also taken in irq contexts. */
struct intel_uncore_funcs funcs;
unsigned fifo_count;
enum forcewake_domains fw_domains;
struct intel_uncore_forcewake_domain {
struct drm_i915_private *i915;
enum forcewake_domain_id id;
enum forcewake_domains mask;
unsigned wake_count;
struct hrtimer timer;
i915_reg_t reg_set;
u32 val_set;
u32 val_clear;
i915_reg_t reg_ack;
i915_reg_t reg_post;
u32 val_reset;
} fw_domain[FW_DOMAIN_ID_COUNT];
int unclaimed_mmio_check;
};
/* Iterate over initialised fw domains */
#define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
(domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
(domain__)++) \
for_each_if ((mask__) & (domain__)->mask)
#define for_each_fw_domain(domain__, dev_priv__) \
for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
#define CSR_VERSION(major, minor) ((major) << 16 | (minor))
#define CSR_VERSION_MAJOR(version) ((version) >> 16)
#define CSR_VERSION_MINOR(version) ((version) & 0xffff)
struct intel_csr {
struct work_struct work;
const char *fw_path;
uint32_t *dmc_payload;
uint32_t dmc_fw_size;
uint32_t version;
uint32_t mmio_count;
i915_reg_t mmioaddr[8];
uint32_t mmiodata[8];
uint32_t dc_state;
uint32_t allowed_dc_mask;
};
#define DEV_INFO_FOR_EACH_FLAG(func, sep) \
func(is_mobile) sep \
func(is_i85x) sep \
func(is_i915g) sep \
func(is_i945gm) sep \
func(is_g33) sep \
func(need_gfx_hws) sep \
func(is_g4x) sep \
func(is_pineview) sep \
func(is_broadwater) sep \
func(is_crestline) sep \
func(is_ivybridge) sep \
func(is_valleyview) sep \
func(is_cherryview) sep \
func(is_haswell) sep \
func(is_skylake) sep \
func(is_broxton) sep \
func(is_kabylake) sep \
func(is_preliminary) sep \
func(has_fbc) sep \
func(has_pipe_cxsr) sep \
func(has_hotplug) sep \
func(cursor_needs_physical) sep \
func(has_overlay) sep \
func(overlay_needs_physical) sep \
func(supports_tv) sep \
func(has_llc) sep \
func(has_snoop) sep \
func(has_ddi) sep \
func(has_fpga_dbg)
#define DEFINE_FLAG(name) u8 name:1
#define SEP_SEMICOLON ;
struct intel_device_info {
u32 display_mmio_offset;
u16 device_id;
u8 num_pipes:3;
u8 num_sprites[I915_MAX_PIPES];
u8 gen;
u8 ring_mask; /* Rings supported by the HW */
DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
/* Register offsets for the various display pipes and transcoders */
int pipe_offsets[I915_MAX_TRANSCODERS];
int trans_offsets[I915_MAX_TRANSCODERS];
int palette_offsets[I915_MAX_PIPES];
int cursor_offsets[I915_MAX_PIPES];
/* Slice/subslice/EU info */
u8 slice_total;
u8 subslice_total;
u8 subslice_per_slice;
u8 eu_total;
u8 eu_per_subslice;
/* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
u8 subslice_7eu[3];
u8 has_slice_pg:1;
u8 has_subslice_pg:1;
u8 has_eu_pg:1;
struct color_luts {
u16 degamma_lut_size;
u16 gamma_lut_size;
} color;
};
#undef DEFINE_FLAG
#undef SEP_SEMICOLON
enum i915_cache_level {
I915_CACHE_NONE = 0,
I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
caches, eg sampler/render caches, and the
large Last-Level-Cache. LLC is coherent with
the CPU, but L3 is only visible to the GPU. */
I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
};
struct i915_ctx_hang_stats {
/* This context had batch pending when hang was declared */
unsigned batch_pending;
/* This context had batch active when hang was declared */
unsigned batch_active;
/* Time when this context was last blamed for a GPU reset */
unsigned long guilty_ts;
/* If the contexts causes a second GPU hang within this time,
* it is permanently banned from submitting any more work.
*/
unsigned long ban_period_seconds;
/* This context is banned to submit more work */
bool banned;
};
/* This must match up with the value previously used for execbuf2.rsvd1. */
#define DEFAULT_CONTEXT_HANDLE 0
#define CONTEXT_NO_ZEROMAP (1<<0)
/**
* struct intel_context - as the name implies, represents a context.
* @ref: reference count.
* @user_handle: userspace tracking identity for this context.
* @remap_slice: l3 row remapping information.
* @flags: context specific flags:
* CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
* @file_priv: filp associated with this context (NULL for global default
* context).
* @hang_stats: information about the role of this context in possible GPU
* hangs.
* @ppgtt: virtual memory space used by this context.
* @legacy_hw_ctx: render context backing object and whether it is correctly
* initialized (legacy ring submission mechanism only).
* @link: link in the global list of contexts.
*
* Contexts are memory images used by the hardware to store copies of their
* internal state.
*/
struct intel_context {
struct kref ref;
int user_handle;
uint8_t remap_slice;
struct drm_i915_private *i915;
int flags;
struct drm_i915_file_private *file_priv;
struct i915_ctx_hang_stats hang_stats;
struct i915_hw_ppgtt *ppgtt;
/* Legacy ring buffer submission */
struct {
struct drm_i915_gem_object *rcs_state;
bool initialized;
} legacy_hw_ctx;
/* Execlists */
struct {
struct drm_i915_gem_object *state;
struct intel_ringbuffer *ringbuf;
int pin_count;
struct i915_vma *lrc_vma;
u64 lrc_desc;
uint32_t *lrc_reg_state;
} engine[I915_NUM_ENGINES];
struct list_head link;
};
enum fb_op_origin {
ORIGIN_GTT,
ORIGIN_CPU,
ORIGIN_CS,
ORIGIN_FLIP,
ORIGIN_DIRTYFB,
};
struct intel_fbc {
/* This is always the inner lock when overlapping with struct_mutex and
* it's the outer lock when overlapping with stolen_lock. */
struct mutex lock;
unsigned threshold;
unsigned int possible_framebuffer_bits;
unsigned int busy_bits;
unsigned int visible_pipes_mask;
struct intel_crtc *crtc;
struct drm_mm_node compressed_fb;
struct drm_mm_node *compressed_llb;
bool false_color;
bool enabled;
bool active;
struct intel_fbc_state_cache {
struct {
unsigned int mode_flags;
uint32_t hsw_bdw_pixel_rate;
} crtc;
struct {
unsigned int rotation;
int src_w;
int src_h;
bool visible;
} plane;
struct {
u64 ilk_ggtt_offset;
uint32_t pixel_format;
unsigned int stride;
int fence_reg;
unsigned int tiling_mode;
} fb;
} state_cache;
struct intel_fbc_reg_params {
struct {
enum pipe pipe;
enum plane plane;
unsigned int fence_y_offset;
} crtc;
struct {
u64 ggtt_offset;
uint32_t pixel_format;
unsigned int stride;
int fence_reg;
} fb;
int cfb_size;
} params;
struct intel_fbc_work {
bool scheduled;
u32 scheduled_vblank;
struct work_struct work;
} work;
const char *no_fbc_reason;
};
/**
* HIGH_RR is the highest eDP panel refresh rate read from EDID
* LOW_RR is the lowest eDP panel refresh rate found from EDID
* parsing for same resolution.
*/
enum drrs_refresh_rate_type {
DRRS_HIGH_RR,
DRRS_LOW_RR,
DRRS_MAX_RR, /* RR count */
};
enum drrs_support_type {
DRRS_NOT_SUPPORTED = 0,
STATIC_DRRS_SUPPORT = 1,
SEAMLESS_DRRS_SUPPORT = 2
};
struct intel_dp;
struct i915_drrs {
struct mutex mutex;
struct delayed_work work;
struct intel_dp *dp;
unsigned busy_frontbuffer_bits;
enum drrs_refresh_rate_type refresh_rate_type;
enum drrs_support_type type;
};
struct i915_psr {
struct mutex lock;
bool sink_support;
bool source_ok;
struct intel_dp *enabled;
bool active;
struct delayed_work work;
unsigned busy_frontbuffer_bits;
bool psr2_support;
bool aux_frame_sync;
bool link_standby;
};
enum intel_pch {
PCH_NONE = 0, /* No PCH present */
PCH_IBX, /* Ibexpeak PCH */
PCH_CPT, /* Cougarpoint PCH */
PCH_LPT, /* Lynxpoint PCH */
PCH_SPT, /* Sunrisepoint PCH */
PCH_KBP, /* Kabypoint PCH */
PCH_NOP,
};
enum intel_sbi_destination {
SBI_ICLK,
SBI_MPHY,
};
#define QUIRK_PIPEA_FORCE (1<<0)
#define QUIRK_LVDS_SSC_DISABLE (1<<1)
#define QUIRK_INVERT_BRIGHTNESS (1<<2)
#define QUIRK_BACKLIGHT_PRESENT (1<<3)
#define QUIRK_PIPEB_FORCE (1<<4)
#define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
struct intel_fbdev;
struct intel_fbc_work;
struct intel_gmbus {
struct i2c_adapter adapter;
#define GMBUS_FORCE_BIT_RETRY (1U << 31)
u32 force_bit;
u32 reg0;
i915_reg_t gpio_reg;
struct i2c_algo_bit_data bit_algo;
struct drm_i915_private *dev_priv;
};
struct i915_suspend_saved_registers {
u32 saveDSPARB;
u32 saveLVDS;
u32 savePP_ON_DELAYS;
u32 savePP_OFF_DELAYS;
u32 savePP_ON;
u32 savePP_OFF;
u32 savePP_CONTROL;
u32 savePP_DIVISOR;
u32 saveFBC_CONTROL;
u32 saveCACHE_MODE_0;
u32 saveMI_ARB_STATE;
u32 saveSWF0[16];
u32 saveSWF1[16];
u32 saveSWF3[3];
uint64_t saveFENCE[I915_MAX_NUM_FENCES];
u32 savePCH_PORT_HOTPLUG;
u16 saveGCDGMBUS;
};
struct vlv_s0ix_state {
/* GAM */
u32 wr_watermark;
u32 gfx_prio_ctrl;
u32 arb_mode;
u32 gfx_pend_tlb0;
u32 gfx_pend_tlb1;
u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
u32 media_max_req_count;
u32 gfx_max_req_count;
u32 render_hwsp;
u32 ecochk;
u32 bsd_hwsp;
u32 blt_hwsp;
u32 tlb_rd_addr;
/* MBC */
u32 g3dctl;
u32 gsckgctl;
u32 mbctl;
/* GCP */
u32 ucgctl1;
u32 ucgctl3;
u32 rcgctl1;
u32 rcgctl2;
u32 rstctl;
u32 misccpctl;
/* GPM */
u32 gfxpause;
u32 rpdeuhwtc;
u32 rpdeuc;
u32 ecobus;
u32 pwrdwnupctl;
u32 rp_down_timeout;
u32 rp_deucsw;
u32 rcubmabdtmr;
u32 rcedata;
u32 spare2gh;
/* Display 1 CZ domain */
u32 gt_imr;
u32 gt_ier;
u32 pm_imr;
u32 pm_ier;
u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
/* GT SA CZ domain */
u32 tilectl;
u32 gt_fifoctl;
u32 gtlc_wake_ctrl;
u32 gtlc_survive;
u32 pmwgicz;
/* Display 2 CZ domain */
u32 gu_ctl0;
u32 gu_ctl1;
u32 pcbr;
u32 clock_gate_dis2;
};
struct intel_rps_ei {
u32 cz_clock;
u32 render_c0;
u32 media_c0;
};
struct intel_gen6_power_mgmt {
/*
* work, interrupts_enabled and pm_iir are protected by
* dev_priv->irq_lock
*/
struct work_struct work;
bool interrupts_enabled;
u32 pm_iir;
/* Frequencies are stored in potentially platform dependent multiples.
* In other words, *_freq needs to be multiplied by X to be interesting.
* Soft limits are those which are used for the dynamic reclocking done
* by the driver (raise frequencies under heavy loads, and lower for
* lighter loads). Hard limits are those imposed by the hardware.
*
* A distinction is made for overclocking, which is never enabled by
* default, and is considered to be above the hard limit if it's
* possible at all.
*/
u8 cur_freq; /* Current frequency (cached, may not == HW) */
u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
u8 max_freq_softlimit; /* Max frequency permitted by the driver */
u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
u8 min_freq; /* AKA RPn. Minimum frequency */
u8 idle_freq; /* Frequency to request when we are idle */
u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
u8 rp1_freq; /* "less than" RP0 power/freqency */
u8 rp0_freq; /* Non-overclocked max frequency. */
u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
u8 up_threshold; /* Current %busy required to uplock */
u8 down_threshold; /* Current %busy required to downclock */
int last_adj;
enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
spinlock_t client_lock;
struct list_head clients;
bool client_boost;
bool enabled;
struct delayed_work delayed_resume_work;
unsigned boosts;
struct intel_rps_client semaphores, mmioflips;
/* manual wa residency calculations */
struct intel_rps_ei up_ei, down_ei;
/*
* Protects RPS/RC6 register access and PCU communication.
* Must be taken after struct_mutex if nested. Note that
* this lock may be held for long periods of time when
* talking to hw - so only take it when talking to hw!
*/
struct mutex hw_lock;
};
/* defined intel_pm.c */
extern spinlock_t mchdev_lock;
struct intel_ilk_power_mgmt {
u8 cur_delay;
u8 min_delay;
u8 max_delay;
u8 fmax;
u8 fstart;
u64 last_count1;
unsigned long last_time1;
unsigned long chipset_power;
u64 last_count2;
u64 last_time2;
unsigned long gfx_power;
u8 corr;
int c_m;
int r_t;
};
struct drm_i915_private;
struct i915_power_well;
struct i915_power_well_ops {
/*
* Synchronize the well's hw state to match the current sw state, for
* example enable/disable it based on the current refcount. Called
* during driver init and resume time, possibly after first calling
* the enable/disable handlers.
*/
void (*sync_hw)(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well);
/*
* Enable the well and resources that depend on it (for example
* interrupts located on the well). Called after the 0->1 refcount
* transition.
*/
void (*enable)(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well);
/*
* Disable the well and resources that depend on it. Called after
* the 1->0 refcount transition.
*/
void (*disable)(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well);
/* Returns the hw enabled state. */
bool (*is_enabled)(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well);
};
/* Power well structure for haswell */
struct i915_power_well {
const char *name;
bool always_on;
/* power well enable/disable usage count */
int count;
/* cached hw enabled state */
bool hw_enabled;
unsigned long domains;
unsigned long data;
const struct i915_power_well_ops *ops;
};
struct i915_power_domains {
/*
* Power wells needed for initialization at driver init and suspend
* time are on. They are kept on until after the first modeset.
*/
bool init_power_on;
bool initializing;
int power_well_count;
struct mutex lock;
int domain_use_count[POWER_DOMAIN_NUM];
struct i915_power_well *power_wells;
};
#define MAX_L3_SLICES 2
struct intel_l3_parity {
u32 *remap_info[MAX_L3_SLICES];
struct work_struct error_work;
int which_slice;
};
struct i915_gem_mm {
/** Memory allocator for GTT stolen memory */
struct drm_mm stolen;
/** Protects the usage of the GTT stolen memory allocator. This is
* always the inner lock when overlapping with struct_mutex. */
struct mutex stolen_lock;
/** List of all objects in gtt_space. Used to restore gtt
* mappings on resume */
struct list_head bound_list;
/**
* List of objects which are not bound to the GTT (thus
* are idle and not used by the GPU) but still have
* (presumably uncached) pages still attached.
*/
struct list_head unbound_list;
/** Usable portion of the GTT for GEM */
unsigned long stolen_base; /* limited to low memory (32-bit) */
/** PPGTT used for aliasing the PPGTT with the GTT */
struct i915_hw_ppgtt *aliasing_ppgtt;
struct notifier_block oom_notifier;
struct notifier_block vmap_notifier;
struct shrinker shrinker;
bool shrinker_no_lock_stealing;
/** LRU list of objects with fence regs on them. */
struct list_head fence_list;
/**
* We leave the user IRQ off as much as possible,
* but this means that requests will finish and never
* be retired once the system goes idle. Set a timer to
* fire periodically while the ring is running. When it
* fires, go retire requests.
*/
struct delayed_work retire_work;
/**
* When we detect an idle GPU, we want to turn on
* powersaving features. So once we see that there
* are no more requests outstanding and no more
* arrive within a small period of time, we fire
* off the idle_work.
*/
struct delayed_work idle_work;
/**
* Are we in a non-interruptible section of code like
* modesetting?
*/
bool interruptible;
/**
* Is the GPU currently considered idle, or busy executing userspace
* requests? Whilst idle, we attempt to power down the hardware and
* display clocks. In order to reduce the effect on performance, there
* is a slight delay before we do so.
*/
bool busy;
/* the indicator for dispatch video commands on two BSD rings */
unsigned int bsd_ring_dispatch_index;
/** Bit 6 swizzling required for X tiling */
uint32_t bit_6_swizzle_x;
/** Bit 6 swizzling required for Y tiling */
uint32_t bit_6_swizzle_y;
/* accounting, useful for userland debugging */
spinlock_t object_stat_lock;
size_t object_memory;
u32 object_count;
};
struct drm_i915_error_state_buf {
struct drm_i915_private *i915;
unsigned bytes;
unsigned size;
int err;
u8 *buf;
loff_t start;
loff_t pos;
};
struct i915_error_state_file_priv {
struct drm_device *dev;
struct drm_i915_error_state *error;
};
struct i915_gpu_error {
/* For hangcheck timer */
#define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
#define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
/* Hang gpu twice in this window and your context gets banned */
#define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
struct workqueue_struct *hangcheck_wq;
struct delayed_work hangcheck_work;
/* For reset and error_state handling. */
spinlock_t lock;
/* Protected by the above dev->gpu_error.lock. */
struct drm_i915_error_state *first_error;
unsigned long missed_irq_rings;
/**
* State variable controlling the reset flow and count
*
* This is a counter which gets incremented when reset is triggered,
* and again when reset has been handled. So odd values (lowest bit set)
* means that reset is in progress and even values that
* (reset_counter >> 1):th reset was successfully completed.
*
* If reset is not completed succesfully, the I915_WEDGE bit is
* set meaning that hardware is terminally sour and there is no
* recovery. All waiters on the reset_queue will be woken when
* that happens.
*
* This counter is used by the wait_seqno code to notice that reset
* event happened and it needs to restart the entire ioctl (since most
* likely the seqno it waited for won't ever signal anytime soon).
*
* This is important for lock-free wait paths, where no contended lock
* naturally enforces the correct ordering between the bail-out of the
* waiter and the gpu reset work code.
*/
atomic_t reset_counter;
#define I915_RESET_IN_PROGRESS_FLAG 1
#define I915_WEDGED (1 << 31)
/**
* Waitqueue to signal when the reset has completed. Used by clients
* that wait for dev_priv->mm.wedged to settle.
*/
wait_queue_head_t reset_queue;
/* Userspace knobs for gpu hang simulation;
* combines both a ring mask, and extra flags
*/
u32 stop_rings;
#define I915_STOP_RING_ALLOW_BAN (1 << 31)
#define I915_STOP_RING_ALLOW_WARN (1 << 30)
/* For missed irq/seqno simulation. */
unsigned int test_irq_rings;
};
enum modeset_restore {
MODESET_ON_LID_OPEN,
MODESET_DONE,
MODESET_SUSPENDED,
};
#define DP_AUX_A 0x40
#define DP_AUX_B 0x10
#define DP_AUX_C 0x20
#define DP_AUX_D 0x30
#define DDC_PIN_B 0x05
#define DDC_PIN_C 0x04
#define DDC_PIN_D 0x06
struct ddi_vbt_port_info {
/*
* This is an index in the HDMI/DVI DDI buffer translation table.
* The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
* populate this field.
*/
#define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
uint8_t hdmi_level_shift;
uint8_t supports_dvi:1;
uint8_t supports_hdmi:1;
uint8_t supports_dp:1;
uint8_t alternate_aux_channel;
uint8_t alternate_ddc_pin;
uint8_t dp_boost_level;
uint8_t hdmi_boost_level;
};
enum psr_lines_to_wait {
PSR_0_LINES_TO_WAIT = 0,
PSR_1_LINE_TO_WAIT,
PSR_4_LINES_TO_WAIT,
PSR_8_LINES_TO_WAIT
};
struct intel_vbt_data {
struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
/* Feature bits */
unsigned int int_tv_support:1;
unsigned int lvds_dither:1;
unsigned int lvds_vbt:1;
unsigned int int_crt_support:1;
unsigned int lvds_use_ssc:1;
unsigned int display_clock_mode:1;
unsigned int fdi_rx_polarity_inverted:1;
unsigned int panel_type:4;
int lvds_ssc_freq;
unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
enum drrs_support_type drrs_type;
struct {
int rate;
int lanes;
int preemphasis;
int vswing;
bool low_vswing;
bool initialized;
bool support;
int bpp;
struct edp_power_seq pps;
} edp;
struct {
bool full_link;
bool require_aux_wakeup;
int idle_frames;
enum psr_lines_to_wait lines_to_wait;
int tp1_wakeup_time;
int tp2_tp3_wakeup_time;
} psr;
struct {
u16 pwm_freq_hz;
bool present;
bool active_low_pwm;
u8 min_brightness; /* min_brightness/255 of max */
} backlight;
/* MIPI DSI */
struct {
u16 panel_id;
struct mipi_config *config;
struct mipi_pps_data *pps;
u8 seq_version;
u32 size;
u8 *data;
const u8 *sequence[MIPI_SEQ_MAX];
} dsi;
int crt_ddc_pin;
int child_dev_num;
union child_device_config *child_dev;
struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
struct sdvo_device_mapping sdvo_mappings[2];
};
enum intel_ddb_partitioning {
INTEL_DDB_PART_1_2,
INTEL_DDB_PART_5_6, /* IVB+ */
};
struct intel_wm_level {
bool enable;
uint32_t pri_val;
uint32_t spr_val;
uint32_t cur_val;
uint32_t fbc_val;
};
struct ilk_wm_values {
uint32_t wm_pipe[3];
uint32_t wm_lp[3];
uint32_t wm_lp_spr[3];
uint32_t wm_linetime[3];
bool enable_fbc_wm;
enum intel_ddb_partitioning partitioning;
};
struct vlv_pipe_wm {
uint16_t primary;
uint16_t sprite[2];
uint8_t cursor;
};
struct vlv_sr_wm {
uint16_t plane;
uint8_t cursor;
};
struct vlv_wm_values {
struct vlv_pipe_wm pipe[3];
struct vlv_sr_wm sr;
struct {
uint8_t cursor;
uint8_t sprite[2];
uint8_t primary;
} ddl[3];
uint8_t level;
bool cxsr;
};
struct skl_ddb_entry {
uint16_t start, end; /* in number of blocks, 'end' is exclusive */
};
static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
{
return entry->end - entry->start;
}
static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
const struct skl_ddb_entry *e2)
{
if (e1->start == e2->start && e1->end == e2->end)
return true;
return false;
}
struct skl_ddb_allocation {
struct skl_ddb_entry pipe[I915_MAX_PIPES];
struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
};
struct skl_wm_values {
bool dirty[I915_MAX_PIPES];
struct skl_ddb_allocation ddb;
uint32_t wm_linetime[I915_MAX_PIPES];
uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
};
struct skl_wm_level {
bool plane_en[I915_MAX_PLANES];
uint16_t plane_res_b[I915_MAX_PLANES];
uint8_t plane_res_l[I915_MAX_PLANES];
};
/*
* This struct helps tracking the state needed for runtime PM, which puts the
* device in PCI D3 state. Notice that when this happens, nothing on the
* graphics device works, even register access, so we don't get interrupts nor
* anything else.
*
* Every piece of our code that needs to actually touch the hardware needs to
* either call intel_runtime_pm_get or call intel_display_power_get with the
* appropriate power domain.
*
* Our driver uses the autosuspend delay feature, which means we'll only really
* suspend if we stay with zero refcount for a certain amount of time. The
* default value is currently very conservative (see intel_runtime_pm_enable), but
* it can be changed with the standard runtime PM files from sysfs.
*
* The irqs_disabled variable becomes true exactly after we disable the IRQs and
* goes back to false exactly before we reenable the IRQs. We use this variable
* to check if someone is trying to enable/disable IRQs while they're supposed
* to be disabled. This shouldn't happen and we'll print some error messages in
* case it happens.
*
* For more, read the Documentation/power/runtime_pm.txt.
*/
struct i915_runtime_pm {
atomic_t wakeref_count;
atomic_t atomic_seq;
bool suspended;
bool irqs_enabled;
};
enum intel_pipe_crc_source {
INTEL_PIPE_CRC_SOURCE_NONE,
INTEL_PIPE_CRC_SOURCE_PLANE1,
INTEL_PIPE_CRC_SOURCE_PLANE2,
INTEL_PIPE_CRC_SOURCE_PF,
INTEL_PIPE_CRC_SOURCE_PIPE,
/* TV/DP on pre-gen5/vlv can't use the pipe source. */
INTEL_PIPE_CRC_SOURCE_TV,
INTEL_PIPE_CRC_SOURCE_DP_B,
INTEL_PIPE_CRC_SOURCE_DP_C,
INTEL_PIPE_CRC_SOURCE_DP_D,
INTEL_PIPE_CRC_SOURCE_AUTO,
INTEL_PIPE_CRC_SOURCE_MAX,
};
struct intel_pipe_crc_entry {
uint32_t frame;
uint32_t crc[5];
};
#define INTEL_PIPE_CRC_ENTRIES_NR 128
struct intel_pipe_crc {
spinlock_t lock;
bool opened; /* exclusive access to the result file */
struct intel_pipe_crc_entry *entries;
enum intel_pipe_crc_source source;
int head, tail;
wait_queue_head_t wq;
};
struct i915_frontbuffer_tracking {
struct mutex lock;
/*
* Tracking bits for delayed frontbuffer flushing du to gpu activity or
* scheduled flips.
*/
unsigned busy_bits;
unsigned flip_bits;
};
struct i915_wa_reg {
i915_reg_t addr;
u32 value;
/* bitmask representing WA bits */
u32 mask;
};
/*
* RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
* allowing it for RCS as we don't foresee any requirement of having
* a whitelist for other engines. When it is really required for
* other engines then the limit need to be increased.
*/
#define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
struct i915_workarounds {
struct i915_wa_reg reg[I915_MAX_WA_REGS];
u32 count;
u32 hw_whitelist_count[I915_NUM_ENGINES];
};
struct i915_virtual_gpu {
bool active;
};
struct i915_execbuffer_params {
struct drm_device *dev;
struct drm_file *file;
uint32_t dispatch_flags;
uint32_t args_batch_start_offset;
uint64_t batch_obj_vm_offset;
struct intel_engine_cs *engine;
struct drm_i915_gem_object *batch_obj;
struct intel_context *ctx;
struct drm_i915_gem_request *request;
};
/* used in computing the new watermarks state */
struct intel_wm_config {
unsigned int num_pipes_active;
bool sprites_enabled;
bool sprites_scaled;
};
struct drm_i915_private {
struct drm_device *dev;
struct kmem_cache *objects;
struct kmem_cache *vmas;
struct kmem_cache *requests;
const struct intel_device_info info;
int relative_constants_mode;
void __iomem *regs;
struct intel_uncore uncore;
struct i915_virtual_gpu vgpu;
struct intel_guc guc;
struct intel_csr csr;
struct intel_gmbus gmbus[GMBUS_NUM_PINS];
/** gmbus_mutex protects against concurrent usage of the single hw gmbus
* controller on different i2c buses. */
struct mutex gmbus_mutex;
/**
* Base address of the gmbus and gpio block.
*/
uint32_t gpio_mmio_base;
/* MMIO base address for MIPI regs */
uint32_t mipi_mmio_base;
uint32_t psr_mmio_base;
wait_queue_head_t gmbus_wait_queue;
struct pci_dev *bridge_dev;
struct intel_engine_cs engine[I915_NUM_ENGINES];
struct drm_i915_gem_object *semaphore_obj;
uint32_t last_seqno, next_seqno;
struct drm_dma_handle *status_page_dmah;
struct resource mch_res;
/* protects the irq masks */
spinlock_t irq_lock;
/* protects the mmio flip data */
spinlock_t mmio_flip_lock;
bool display_irqs_enabled;
/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
struct pm_qos_request pm_qos;
/* Sideband mailbox protection */
struct mutex sb_lock;
/** Cached value of IMR to avoid reads in updating the bitfield */
union {
u32 irq_mask;
u32 de_irq_mask[I915_MAX_PIPES];
};
u32 gt_irq_mask;
u32 pm_irq_mask;
u32 pm_rps_events;
u32 pipestat_irq_mask[I915_MAX_PIPES];
struct i915_hotplug hotplug;
struct intel_fbc fbc;
struct i915_drrs drrs;
struct intel_opregion opregion;
struct intel_vbt_data vbt;
bool preserve_bios_swizzle;
/* overlay */
struct intel_overlay *overlay;
/* backlight registers and fields in struct intel_panel */
struct mutex backlight_lock;
/* LVDS info */
bool no_aux_handshake;
/* protects panel power sequencer state */
struct mutex pps_mutex;
struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
int num_fence_regs; /* 8 on pre-965, 16 otherwise */
unsigned int fsb_freq, mem_freq, is_ddr3;
unsigned int skl_boot_cdclk;
unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
unsigned int max_dotclk_freq;
unsigned int rawclk_freq;
unsigned int hpll_freq;
unsigned int czclk_freq;
/**
* wq - Driver workqueue for GEM.
*
* NOTE: Work items scheduled here are not allowed to grab any modeset
* locks, for otherwise the flushing done in the pageflip code will
* result in deadlocks.
*/
struct workqueue_struct *wq;
/* Display functions */
struct drm_i915_display_funcs display;
/* PCH chipset type */
enum intel_pch pch_type;
unsigned short pch_id;
unsigned long quirks;
enum modeset_restore modeset_restore;
struct mutex modeset_restore_lock;
struct drm_atomic_state *modeset_restore_state;
struct list_head vm_list; /* Global list of all address spaces */
struct i915_ggtt ggtt; /* VM representing the global address space */
struct i915_gem_mm mm;
DECLARE_HASHTABLE(mm_structs, 7);
struct mutex mm_lock;
/* Kernel Modesetting */
struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
wait_queue_head_t pending_flip_queue;
#ifdef CONFIG_DEBUG_FS
struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
#endif
/* dpll and cdclk state is protected by connection_mutex */
int num_shared_dpll;
struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
const struct intel_dpll_mgr *dpll_mgr;
/*
* dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
* Must be global rather than per dpll, because on some platforms
* plls share registers.
*/
struct mutex dpll_lock;
unsigned int active_crtcs;
unsigned int min_pixclk[I915_MAX_PIPES];
int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
struct i915_workarounds workarounds;
struct i915_frontbuffer_tracking fb_tracking;
u16 orig_clock;
bool mchbar_need_disable;
struct intel_l3_parity l3_parity;
/* Cannot be determined by PCIID. You must always read a register. */
u32 edram_cap;
/* gen6+ rps state */
struct intel_gen6_power_mgmt rps;
/* ilk-only ips/rps state. Everything in here is protected by the global
* mchdev_lock in intel_pm.c */
struct intel_ilk_power_mgmt ips;
struct i915_power_domains power_domains;
struct i915_psr psr;
struct i915_gpu_error gpu_error;
struct drm_i915_gem_object *vlv_pctx;
#ifdef CONFIG_DRM_FBDEV_EMULATION
/* list of fbdev register on this device */
struct intel_fbdev *fbdev;
struct work_struct fbdev_suspend_work;
#endif
struct drm_property *broadcast_rgb_property;
struct drm_property *force_audio_property;
/* hda/i915 audio component */
struct i915_audio_component *audio_component;
bool audio_component_registered;
/**
* av_mutex - mutex for audio/video sync
*
*/
struct mutex av_mutex;
uint32_t hw_context_size;
struct list_head context_list;
u32 fdi_rx_config;
/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
u32 chv_phy_control;
/*
* Shadows for CHV DPLL_MD regs to keep the state
* checker somewhat working in the presence hardware
* crappiness (can't read out DPLL_MD for pipes B & C).
*/
u32 chv_dpll_md[I915_MAX_PIPES];
u32 bxt_phy_grc;
u32 suspend_count;
bool suspended_to_idle;
struct i915_suspend_saved_registers regfile;
struct vlv_s0ix_state vlv_s0ix_state;
struct {
/*
* Raw watermark latency values:
* in 0.1us units for WM0,
* in 0.5us units for WM1+.
*/
/* primary */
uint16_t pri_latency[5];
/* sprite */
uint16_t spr_latency[5];
/* cursor */
uint16_t cur_latency[5];
/*
* Raw watermark memory latency values
* for SKL for all 8 levels
* in 1us units.
*/
uint16_t skl_latency[8];
/* Committed wm config */
struct intel_wm_config config;
/*
* The skl_wm_values structure is a bit too big for stack
* allocation, so we keep the staging struct where we store
* intermediate results here instead.
*/
struct skl_wm_values skl_results;
/* current hardware state */
union {
struct ilk_wm_values hw;
struct skl_wm_values skl_hw;
struct vlv_wm_values vlv;
};
uint8_t max_level;
/*
* Should be held around atomic WM register writing; also
* protects * intel_crtc->wm.active and
* cstate->wm.need_postvbl_update.
*/
struct mutex wm_mutex;
} wm;
struct i915_runtime_pm pm;
/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
struct {
int (*execbuf_submit)(struct i915_execbuffer_params *params,
struct drm_i915_gem_execbuffer2 *args,
struct list_head *vmas);
int (*init_engines)(struct drm_device *dev);
void (*cleanup_engine)(struct intel_engine_cs *engine);
void (*stop_engine)(struct intel_engine_cs *engine);
} gt;
struct intel_context *kernel_context;
/* perform PHY state sanity checks? */
bool chv_phy_assert[2];
struct intel_encoder *dig_port_map[I915_MAX_PORTS];
/*
* NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
* will be rejected. Instead look for a better place.
*/
};
static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
{
return dev->dev_private;
}
static inline struct drm_i915_private *dev_to_i915(struct device *dev)
{
return to_i915(dev_get_drvdata(dev));
}
static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
{
return container_of(guc, struct drm_i915_private, guc);
}
/* Simple iterator over all initialised engines */
#define for_each_engine(engine__, dev_priv__) \
for ((engine__) = &(dev_priv__)->engine[0]; \
(engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
(engine__)++) \
for_each_if (intel_engine_initialized(engine__))
/* Iterator with engine_id */
#define for_each_engine_id(engine__, dev_priv__, id__) \
for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \
(engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
(engine__)++) \
for_each_if (((id__) = (engine__)->id, \
intel_engine_initialized(engine__)))
/* Iterator over subset of engines selected by mask */
#define for_each_engine_masked(engine__, dev_priv__, mask__) \
for ((engine__) = &(dev_priv__)->engine[0]; \
(engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
(engine__)++) \
for_each_if (((mask__) & intel_engine_flag(engine__)) && \
intel_engine_initialized(engine__))
enum hdmi_force_audio {
HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
HDMI_AUDIO_OFF, /* force turn off HDMI audio */
HDMI_AUDIO_AUTO, /* trust EDID */
HDMI_AUDIO_ON, /* force turn on HDMI audio */
};
#define I915_GTT_OFFSET_NONE ((u32)-1)
struct drm_i915_gem_object_ops {
unsigned int flags;
#define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1
/* Interface between the GEM object and its backing storage.
* get_pages() is called once prior to the use of the associated set
* of pages before to binding them into the GTT, and put_pages() is
* called after we no longer need them. As we expect there to be
* associated cost with migrating pages between the backing storage
* and making them available for the GPU (e.g. clflush), we may hold
* onto the pages after they are no longer referenced by the GPU
* in case they may be used again shortly (for example migrating the
* pages to a different memory domain within the GTT). put_pages()
* will therefore most likely be called when the object itself is
* being released or under memory pressure (where we attempt to
* reap pages for the shrinker).
*/
int (*get_pages)(struct drm_i915_gem_object *);
void (*put_pages)(struct drm_i915_gem_object *);
int (*dmabuf_export)(struct drm_i915_gem_object *);
void (*release)(struct drm_i915_gem_object *);
};
/*
* Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
* considered to be the frontbuffer for the given plane interface-wise. This
* doesn't mean that the hw necessarily already scans it out, but that any
* rendering (by the cpu or gpu) will land in the frontbuffer eventually.
*
* We have one bit per pipe and per scanout plane type.
*/
#define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
#define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
#define INTEL_FRONTBUFFER_BITS \
(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES)
#define INTEL_FRONTBUFFER_PRIMARY(pipe) \
(1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
#define INTEL_FRONTBUFFER_CURSOR(pipe) \
(1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
#define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
(1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
#define INTEL_FRONTBUFFER_OVERLAY(pipe) \
(1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
#define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
(0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
struct drm_i915_gem_object {
struct drm_gem_object base;
const struct drm_i915_gem_object_ops *ops;
/** List of VMAs backed by this object */
struct list_head vma_list;
/** Stolen memory for this object, instead of being backed by shmem. */
struct drm_mm_node *stolen;
struct list_head global_list;
struct list_head engine_list[I915_NUM_ENGINES];
/** Used in execbuf to temporarily hold a ref */
struct list_head obj_exec_link;
struct list_head batch_pool_link;
/**
* This is set if the object is on the active lists (has pending
* rendering and so a non-zero seqno), and is not set if it i s on
* inactive (ready to be unbound) list.
*/
unsigned int active:I915_NUM_ENGINES;
/**
* This is set if the object has been written to since last bound
* to the GTT
*/
unsigned int dirty:1;
/**
* Fence register bits (if any) for this object. Will be set
* as needed when mapped into the GTT.
* Protected by dev->struct_mutex.
*/
signed int fence_reg:I915_MAX_NUM_FENCE_BITS;
/**
* Advice: are the backing pages purgeable?
*/
unsigned int madv:2;
/**
* Current tiling mode for the object.
*/
unsigned int tiling_mode:2;
/**
* Whether the tiling parameters for the currently associated fence
* register have changed. Note that for the purposes of tracking
* tiling changes we also treat the unfenced register, the register
* slot that the object occupies whilst it executes a fenced
* command (such as BLT on gen2/3), as a "fence".
*/
unsigned int fence_dirty:1;
/**
* Is the object at the current location in the gtt mappable and
* fenceable? Used to avoid costly recalculations.
*/
unsigned int map_and_fenceable:1;
/**
* Whether the current gtt mapping needs to be mappable (and isn't just
* mappable by accident). Track pin and fault separate for a more
* accurate mappable working set.
*/
unsigned int fault_mappable:1;
/*
* Is the object to be mapped as read-only to the GPU
* Only honoured if hardware has relevant pte bit
*/
unsigned long gt_ro:1;
unsigned int cache_level:3;
unsigned int cache_dirty:1;
unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS;
unsigned int pin_display;
struct sg_table *pages;
int pages_pin_count;
struct get_page {
struct scatterlist *sg;
int last;
} get_page;
void *mapping;
/** Breadcrumb of last rendering to the buffer.
* There can only be one writer, but we allow for multiple readers.
* If there is a writer that necessarily implies that all other
* read requests are complete - but we may only be lazily clearing
* the read requests. A read request is naturally the most recent
* request on a ring, so we may have two different write and read
* requests on one ring where the write request is older than the
* read request. This allows for the CPU to read from an active
* buffer by only waiting for the write to complete.
* */
struct drm_i915_gem_request *last_read_req[I915_NUM_ENGINES];
struct drm_i915_gem_request *last_write_req;
/** Breadcrumb of last fenced GPU access to the buffer. */
struct drm_i915_gem_request *last_fenced_req;
/** Current tiling stride for the object, if it's tiled. */
uint32_t stride;
/** References from framebuffers, locks out tiling changes. */
unsigned long framebuffer_references;
/** Record of address bit 17 of each page at last unbind. */
unsigned long *bit_17;
union {
/** for phy allocated objects */
struct drm_dma_handle *phys_handle;
struct i915_gem_userptr {
uintptr_t ptr;
unsigned read_only :1;
unsigned workers :4;
#define I915_GEM_USERPTR_MAX_WORKERS 15
struct i915_mm_struct *mm;
struct i915_mmu_object *mmu_object;
struct work_struct *work;
} userptr;
};
};
#define to_intel_bo(x) container_of(x, struct drm_i915_gem_object, base)
void i915_gem_track_fb(struct drm_i915_gem_object *old,
struct drm_i915_gem_object *new,
unsigned frontbuffer_bits);
/**
* Request queue structure.
*
* The request queue allows us to note sequence numbers that have been emitted
* and may be associated with active buffers to be retired.
*
* By keeping this list, we can avoid having to do questionable sequence
* number comparisons on buffer last_read|write_seqno. It also allows an
* emission time to be associated with the request for tracking how far ahead
* of the GPU the submission is.
*
* The requests are reference counted, so upon creation they should have an
* initial reference taken using kref_init
*/
struct drm_i915_gem_request {
struct kref ref;
/** On Which ring this request was generated */
struct drm_i915_private *i915;
struct intel_engine_cs *engine;
unsigned reset_counter;
/** GEM sequence number associated with the previous request,
* when the HWS breadcrumb is equal to this the GPU is processing
* this request.
*/
u32 previous_seqno;
/** GEM sequence number associated with this request,
* when the HWS breadcrumb is equal or greater than this the GPU
* has finished processing this request.
*/
u32 seqno;
/** Position in the ringbuffer of the start of the request */
u32 head;
/**
* Position in the ringbuffer of the start of the postfix.
* This is required to calculate the maximum available ringbuffer
* space without overwriting the postfix.
*/
u32 postfix;
/** Position in the ringbuffer of the end of the whole request */
u32 tail;
/**
* Context and ring buffer related to this request
* Contexts are refcounted, so when this request is associated with a
* context, we must increment the context's refcount, to guarantee that
* it persists while any request is linked to it. Requests themselves
* are also refcounted, so the request will only be freed when the last
* reference to it is dismissed, and the code in
* i915_gem_request_free() will then decrement the refcount on the
* context.
*/
struct intel_context *ctx;
struct intel_ringbuffer *ringbuf;
/** Batch buffer related to this request if any (used for
error state dump only) */
struct drm_i915_gem_object *batch_obj;
/** Time at which this request was emitted, in jiffies. */
unsigned long emitted_jiffies;
/** global list entry for this request */
struct list_head list;
struct drm_i915_file_private *file_priv;
/** file_priv list entry for this request */
struct list_head client_list;
/** process identifier submitting this request */
struct pid *pid;
/**
* The ELSP only accepts two elements at a time, so we queue
* context/tail pairs on a given queue (ring->execlist_queue) until the
* hardware is available. The queue serves a double purpose: we also use
* it to keep track of the up to 2 contexts currently in the hardware
* (usually one in execution and the other queued up by the GPU): We
* only remove elements from the head of the queue when the hardware
* informs us that an element has been completed.
*
* All accesses to the queue are mediated by a spinlock
* (ring->execlist_lock).
*/
/** Execlist link in the submission queue.*/
struct list_head execlist_link;
/** Execlists no. of times this request has been sent to the ELSP */
int elsp_submitted;
};
struct drm_i915_gem_request * __must_check
i915_gem_request_alloc(struct intel_engine_cs *engine,
struct intel_context *ctx);
void i915_gem_request_free(struct kref *req_ref);
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
struct drm_file *file);
static inline uint32_t
i915_gem_request_get_seqno(struct drm_i915_gem_request *req)
{
return req ? req->seqno : 0;
}
static inline struct intel_engine_cs *
i915_gem_request_get_engine(struct drm_i915_gem_request *req)
{
return req ? req->engine : NULL;
}
static inline struct drm_i915_gem_request *
i915_gem_request_reference(struct drm_i915_gem_request *req)
{
if (req)
kref_get(&req->ref);
return req;
}
static inline void
i915_gem_request_unreference(struct drm_i915_gem_request *req)
{
WARN_ON(!mutex_is_locked(&req->engine->dev->struct_mutex));
kref_put(&req->ref, i915_gem_request_free);
}
static inline void
i915_gem_request_unreference__unlocked(struct drm_i915_gem_request *req)
{
struct drm_device *dev;
if (!req)
return;
dev = req->engine->dev;
if (kref_put_mutex(&req->ref, i915_gem_request_free, &dev->struct_mutex))
mutex_unlock(&dev->struct_mutex);
}
static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst,
struct drm_i915_gem_request *src)
{
if (src)
i915_gem_request_reference(src);
if (*pdst)
i915_gem_request_unreference(*pdst);
*pdst = src;
}
/*
* XXX: i915_gem_request_completed should be here but currently needs the
* definition of i915_seqno_passed() which is below. It will be moved in
* a later patch when the call to i915_seqno_passed() is obsoleted...
*/
/*
* A command that requires special handling by the command parser.
*/
struct drm_i915_cmd_descriptor {
/*
* Flags describing how the command parser processes the command.
*
* CMD_DESC_FIXED: The command has a fixed length if this is set,
* a length mask if not set
* CMD_DESC_SKIP: The command is allowed but does not follow the
* standard length encoding for the opcode range in
* which it falls
* CMD_DESC_REJECT: The command is never allowed
* CMD_DESC_REGISTER: The command should be checked against the
* register whitelist for the appropriate ring
* CMD_DESC_MASTER: The command is allowed if the submitting process
* is the DRM master
*/
u32 flags;
#define CMD_DESC_FIXED (1<<0)
#define CMD_DESC_SKIP (1<<1)
#define CMD_DESC_REJECT (1<<2)
#define CMD_DESC_REGISTER (1<<3)
#define CMD_DESC_BITMASK (1<<4)
#define CMD_DESC_MASTER (1<<5)
/*
* The command's unique identification bits and the bitmask to get them.
* This isn't strictly the opcode field as defined in the spec and may
* also include type, subtype, and/or subop fields.
*/
struct {
u32 value;
u32 mask;
} cmd;
/*
* The command's length. The command is either fixed length (i.e. does
* not include a length field) or has a length field mask. The flag
* CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
* a length mask. All command entries in a command table must include
* length information.
*/
union {
u32 fixed;
u32 mask;
} length;
/*
* Describes where to find a register address in the command to check
* against the ring's register whitelist. Only valid if flags has the
* CMD_DESC_REGISTER bit set.
*
* A non-zero step value implies that the command may access multiple
* registers in sequence (e.g. LRI), in that case step gives the
* distance in dwords between individual offset fields.
*/
struct {
u32 offset;
u32 mask;
u32 step;
} reg;
#define MAX_CMD_DESC_BITMASKS 3
/*
* Describes command checks where a particular dword is masked and
* compared against an expected value. If the command does not match
* the expected value, the parser rejects it. Only valid if flags has
* the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
* are valid.
*
* If the check specifies a non-zero condition_mask then the parser
* only performs the check when the bits specified by condition_mask
* are non-zero.
*/
struct {
u32 offset;
u32 mask;
u32 expected;
u32 condition_offset;
u32 condition_mask;
} bits[MAX_CMD_DESC_BITMASKS];
};
/*
* A table of commands requiring special handling by the command parser.
*
* Each ring has an array of tables. Each table consists of an array of command
* descriptors, which must be sorted with command opcodes in ascending order.
*/
struct drm_i915_cmd_table {
const struct drm_i915_cmd_descriptor *table;
int count;
};
/* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
#define __I915__(p) ({ \
struct drm_i915_private *__p; \
if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
__p = (struct drm_i915_private *)p; \
else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
__p = to_i915((struct drm_device *)p); \
else \
BUILD_BUG(); \
__p; \
})
#define INTEL_INFO(p) (&__I915__(p)->info)
#define INTEL_GEN(p) (INTEL_INFO(p)->gen)
#define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
#define INTEL_REVID(p) (__I915__(p)->dev->pdev->revision)
#define REVID_FOREVER 0xff
/*
* Return true if revision is in range [since,until] inclusive.
*
* Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
*/
#define IS_REVID(p, since, until) \
(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
#define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
#define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
#define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
#define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
#define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
#define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
#define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
#define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
#define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
#define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
#define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
#define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
#define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
#define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
#define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
#define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
#define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
#define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
#define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
INTEL_DEVID(dev) == 0x0152 || \
INTEL_DEVID(dev) == 0x015a)
#define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
#define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview)
#define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
#define IS_BROADWELL(dev) (!INTEL_INFO(dev)->is_cherryview && IS_GEN8(dev))
#define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
#define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton)
#define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake)
#define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
#define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
(INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
#define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
((INTEL_DEVID(dev) & 0xf) == 0x6 || \
(INTEL_DEVID(dev) & 0xf) == 0xb || \
(INTEL_DEVID(dev) & 0xf) == 0xe))
/* ULX machines are also considered ULT. */
#define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \
(INTEL_DEVID(dev) & 0xf) == 0xe)
#define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
(INTEL_DEVID(dev) & 0x00F0) == 0x0020)
#define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
(INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
#define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
(INTEL_DEVID(dev) & 0x00F0) == 0x0020)
/* ULX machines are also considered ULT. */
#define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
INTEL_DEVID(dev) == 0x0A1E)
#define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \
INTEL_DEVID(dev) == 0x1913 || \
INTEL_DEVID(dev) == 0x1916 || \
INTEL_DEVID(dev) == 0x1921 || \
INTEL_DEVID(dev) == 0x1926)
#define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \
INTEL_DEVID(dev) == 0x1915 || \
INTEL_DEVID(dev) == 0x191E)
#define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \
INTEL_DEVID(dev) == 0x5913 || \
INTEL_DEVID(dev) == 0x5916 || \
INTEL_DEVID(dev) == 0x5921 || \
INTEL_DEVID(dev) == 0x5926)
#define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \
INTEL_DEVID(dev) == 0x5915 || \
INTEL_DEVID(dev) == 0x591E)
#define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \
(INTEL_DEVID(dev) & 0x00F0) == 0x0020)
#define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \
(INTEL_DEVID(dev) & 0x00F0) == 0x0030)
#define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
#define SKL_REVID_A0 0x0
#define SKL_REVID_B0 0x1
#define SKL_REVID_C0 0x2
#define SKL_REVID_D0 0x3
#define SKL_REVID_E0 0x4
#define SKL_REVID_F0 0x5
#define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
#define BXT_REVID_A0 0x0
#define BXT_REVID_A1 0x1
#define BXT_REVID_B0 0x3
#define BXT_REVID_C0 0x9
#define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until))
#define KBL_REVID_A0 0x0
#define KBL_REVID_B0 0x1
#define KBL_REVID_C0 0x2
#define KBL_REVID_D0 0x3
#define KBL_REVID_E0 0x4
#define IS_KBL_REVID(p, since, until) \
(IS_KABYLAKE(p) && IS_REVID(p, since, until))
/*
* The genX designation typically refers to the render engine, so render
* capability related checks should use IS_GEN, while display and other checks
* have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
* chips, etc.).
*/
#define IS_GEN2(dev) (INTEL_INFO(dev)->gen == 2)
#define IS_GEN3(dev) (INTEL_INFO(dev)->gen == 3)
#define IS_GEN4(dev) (INTEL_INFO(dev)->gen == 4)
#define IS_GEN5(dev) (INTEL_INFO(dev)->gen == 5)
#define IS_GEN6(dev) (INTEL_INFO(dev)->gen == 6)
#define IS_GEN7(dev) (INTEL_INFO(dev)->gen == 7)
#define IS_GEN8(dev) (INTEL_INFO(dev)->gen == 8)
#define IS_GEN9(dev) (INTEL_INFO(dev)->gen == 9)
#define RENDER_RING (1<<RCS)
#define BSD_RING (1<<VCS)
#define BLT_RING (1<<BCS)
#define VEBOX_RING (1<<VECS)
#define BSD2_RING (1<<VCS2)
#define ALL_ENGINES (~0)
#define HAS_BSD(dev) (INTEL_INFO(dev)->ring_mask & BSD_RING)
#define HAS_BSD2(dev) (INTEL_INFO(dev)->ring_mask & BSD2_RING)
#define HAS_BLT(dev) (INTEL_INFO(dev)->ring_mask & BLT_RING)
#define HAS_VEBOX(dev) (INTEL_INFO(dev)->ring_mask & VEBOX_RING)
#define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
#define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop)
#define HAS_EDRAM(dev) (__I915__(dev)->edram_cap & EDRAM_ENABLED)
#define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
HAS_EDRAM(dev))
#define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws)
#define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6)
#define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8)
#define USES_PPGTT(dev) (i915.enable_ppgtt)
#define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2)
#define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3)
#define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
#define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
/* Early gen2 have a totally busted CS tlb and require pinned batches. */
#define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
/* WaRsDisableCoarsePowerGating:skl,bxt */
#define NEEDS_WaRsDisableCoarsePowerGating(dev) (IS_BXT_REVID(dev, 0, BXT_REVID_A1) || \
IS_SKL_GT3(dev) || \
IS_SKL_GT4(dev))
/*
* dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
* even when in MSI mode. This results in spurious interrupt warnings if the
* legacy irq no. is shared with another device. The kernel then disables that
* interrupt source and so prevents the other device from working properly.
*/
#define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
#define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
/* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
* rows, which changed the alignment requirements and fence programming.
*/
#define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
IS_I915GM(dev)))
#define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
#define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
#define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
#define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
#define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
#define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
#define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
INTEL_INFO(dev)->gen >= 9)
#define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
#define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
#define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \
IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
#define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \
IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \
IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \
IS_KABYLAKE(dev) || IS_BROXTON(dev))
#define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6)
#define HAS_RC6p(dev) (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
#define HAS_CSR(dev) (IS_GEN9(dev))
#define HAS_GUC_UCODE(dev) (IS_GEN9(dev) && !IS_KABYLAKE(dev))
#define HAS_GUC_SCHED(dev) (IS_GEN9(dev) && !IS_KABYLAKE(dev))
#define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \
INTEL_INFO(dev)->gen >= 8)
#define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \
!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \
!IS_BROXTON(dev))
#define INTEL_PCH_DEVICE_ID_MASK 0xff00
#define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
#define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
#define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
#define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
#define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
#define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
#define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
#define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200
#define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
#define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
#define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
#define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
#define HAS_PCH_KBP(dev) (INTEL_PCH_TYPE(dev) == PCH_KBP)
#define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
#define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
#define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
#define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
#define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
#define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
#define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
#define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
#define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \
IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
/* DPF == dynamic parity feature */
#define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
#define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
#define GT_FREQUENCY_MULTIPLIER 50
#define GEN9_FREQ_SCALER 3
#include "i915_trace.h"
extern const struct drm_ioctl_desc i915_ioctls[];
extern int i915_max_ioctl;
extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
extern int i915_resume_switcheroo(struct drm_device *dev);
/* i915_dma.c */
void __printf(3, 4)
__i915_printk(struct drm_i915_private *dev_priv, const char *level,
const char *fmt, ...);
#define i915_report_error(dev_priv, fmt, ...) \
__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
extern int i915_driver_load(struct drm_device *, unsigned long flags);
extern int i915_driver_unload(struct drm_device *);
extern int i915_driver_open(struct drm_device *dev, struct drm_file *file);
extern void i915_driver_lastclose(struct drm_device * dev);
extern void i915_driver_preclose(struct drm_device *dev,
struct drm_file *file);
extern void i915_driver_postclose(struct drm_device *dev,
struct drm_file *file);
#ifdef CONFIG_COMPAT
extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg);
#endif
extern int intel_gpu_reset(struct drm_device *dev, u32 engine_mask);
extern bool intel_has_gpu_reset(struct drm_device *dev);
extern int i915_reset(struct drm_device *dev);
extern int intel_guc_reset(struct drm_i915_private *dev_priv);
extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
/* intel_hotplug.c */
void intel_hpd_irq_handler(struct drm_device *dev, u32 pin_mask, u32 long_mask);
void intel_hpd_init(struct drm_i915_private *dev_priv);
void intel_hpd_init_work(struct drm_i915_private *dev_priv);
void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
/* i915_irq.c */
void i915_queue_hangcheck(struct drm_device *dev);
__printf(3, 4)
void i915_handle_error(struct drm_device *dev, u32 engine_mask,
const char *fmt, ...);
extern void intel_irq_init(struct drm_i915_private *dev_priv);
int intel_irq_install(struct drm_i915_private *dev_priv);
void intel_irq_uninstall(struct drm_i915_private *dev_priv);
extern void intel_uncore_sanitize(struct drm_device *dev);
extern void intel_uncore_early_sanitize(struct drm_device *dev,
bool restore_forcewake);
extern void intel_uncore_init(struct drm_device *dev);
extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
extern void intel_uncore_fini(struct drm_device *dev);
extern void intel_uncore_forcewake_reset(struct drm_device *dev, bool restore);
const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
enum forcewake_domains domains);
void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
enum forcewake_domains domains);
/* Like above but the caller must manage the uncore.lock itself.
* Must be used with I915_READ_FW and friends.
*/
void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
enum forcewake_domains domains);
void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
enum forcewake_domains domains);
u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
static inline bool intel_vgpu_active(struct drm_device *dev)
{
return to_i915(dev)->vgpu.active;
}
void
i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
u32 status_mask);
void
i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
u32 status_mask);
void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
uint32_t mask,
uint32_t bits);
void ilk_update_display_irq(struct drm_i915_private *dev_priv,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask);
static inline void
ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
{
ilk_update_display_irq(dev_priv, bits, bits);
}
static inline void
ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
{
ilk_update_display_irq(dev_priv, bits, 0);
}
void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
enum pipe pipe,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask);
static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
enum pipe pipe, uint32_t bits)
{
bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
}
static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
enum pipe pipe, uint32_t bits)
{
bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
}
void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
uint32_t interrupt_mask,
uint32_t enabled_irq_mask);
static inline void
ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
{
ibx_display_interrupt_update(dev_priv, bits, bits);
}
static inline void
ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
{
ibx_display_interrupt_update(dev_priv, bits, 0);
}
/* i915_gem.c */
int i915_gem_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
void i915_gem_execbuffer_move_to_active(struct list_head *vmas,
struct drm_i915_gem_request *req);
int i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
struct drm_i915_gem_execbuffer2 *args,
struct list_head *vmas);
int i915_gem_execbuffer(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int i915_gem_execbuffer2(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
struct drm_file *file);
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
struct drm_file *file);
int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int i915_gem_set_tiling(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int i915_gem_get_tiling(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int i915_gem_init_userptr(struct drm_device *dev);
int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
struct drm_file *file);
int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
void i915_gem_load_init(struct drm_device *dev);
void i915_gem_load_cleanup(struct drm_device *dev);
void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
void *i915_gem_object_alloc(struct drm_device *dev);
void i915_gem_object_free(struct drm_i915_gem_object *obj);
void i915_gem_object_init(struct drm_i915_gem_object *obj,
const struct drm_i915_gem_object_ops *ops);
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
size_t size);
struct drm_i915_gem_object *i915_gem_object_create_from_data(
struct drm_device *dev, const void *data, size_t size);
void i915_gem_free_object(struct drm_gem_object *obj);
void i915_gem_vma_destroy(struct i915_vma *vma);
/* Flags used by pin/bind&friends. */
#define PIN_MAPPABLE (1<<0)
#define PIN_NONBLOCK (1<<1)
#define PIN_GLOBAL (1<<2)
#define PIN_OFFSET_BIAS (1<<3)
#define PIN_USER (1<<4)
#define PIN_UPDATE (1<<5)
#define PIN_ZONE_4G (1<<6)
#define PIN_HIGH (1<<7)
#define PIN_OFFSET_FIXED (1<<8)
#define PIN_OFFSET_MASK (~4095)
int __must_check
i915_gem_object_pin(struct drm_i915_gem_object *obj,
struct i915_address_space *vm,
uint32_t alignment,
uint64_t flags);
int __must_check
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
const struct i915_ggtt_view *view,
uint32_t alignment,
uint64_t flags);
int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
u32 flags);
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
int __must_check i915_vma_unbind(struct i915_vma *vma);
/*
* BEWARE: Do not use the function below unless you can _absolutely_
* _guarantee_ VMA in question is _not in use_ anywhere.
*/
int __must_check __i915_vma_unbind_no_wait(struct i915_vma *vma);
int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
int *needs_clflush);
int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
static inline int __sg_page_count(struct scatterlist *sg)
{
return sg->length >> PAGE_SHIFT;
}
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n);
static inline struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
{
if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
return NULL;
if (n < obj->get_page.last) {
obj->get_page.sg = obj->pages->sgl;
obj->get_page.last = 0;
}
while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
obj->get_page.last += __sg_page_count(obj->get_page.sg++);
if (unlikely(sg_is_chain(obj->get_page.sg)))
obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
}
return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
}
static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
{
BUG_ON(obj->pages == NULL);
obj->pages_pin_count++;
}
static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
{
BUG_ON(obj->pages_pin_count == 0);
obj->pages_pin_count--;
}
/**
* i915_gem_object_pin_map - return a contiguous mapping of the entire object
* @obj - the object to map into kernel address space
*
* Calls i915_gem_object_pin_pages() to prevent reaping of the object's
* pages and then returns a contiguous mapping of the backing storage into
* the kernel address space.
*
* The caller must hold the struct_mutex, and is responsible for calling
* i915_gem_object_unpin_map() when the mapping is no longer required.
*
* Returns the pointer through which to access the mapped object, or an
* ERR_PTR() on error.
*/
void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj);
/**
* i915_gem_object_unpin_map - releases an earlier mapping
* @obj - the object to unmap
*
* After pinning the object and mapping its pages, once you are finished
* with your access, call i915_gem_object_unpin_map() to release the pin
* upon the mapping. Once the pin count reaches zero, that mapping may be
* removed.
*
* The caller must hold the struct_mutex.
*/
static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
{
lockdep_assert_held(&obj->base.dev->struct_mutex);
i915_gem_object_unpin_pages(obj);
}
int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
int i915_gem_object_sync(struct drm_i915_gem_object *obj,
struct intel_engine_cs *to,
struct drm_i915_gem_request **to_req);
void i915_vma_move_to_active(struct i915_vma *vma,
struct drm_i915_gem_request *req);
int i915_gem_dumb_create(struct drm_file *file_priv,
struct drm_device *dev,
struct drm_mode_create_dumb *args);
int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
uint32_t handle, uint64_t *offset);
/**
* Returns true if seq1 is later than seq2.
*/
static inline bool
i915_seqno_passed(uint32_t seq1, uint32_t seq2)
{
return (int32_t)(seq1 - seq2) >= 0;
}
static inline bool i915_gem_request_started(struct drm_i915_gem_request *req,
bool lazy_coherency)
{
if (!lazy_coherency && req->engine->irq_seqno_barrier)
req->engine->irq_seqno_barrier(req->engine);
return i915_seqno_passed(req->engine->get_seqno(req->engine),
req->previous_seqno);
}
static inline bool i915_gem_request_completed(struct drm_i915_gem_request *req,
bool lazy_coherency)
{
if (!lazy_coherency && req->engine->irq_seqno_barrier)
req->engine->irq_seqno_barrier(req->engine);
return i915_seqno_passed(req->engine->get_seqno(req->engine),
req->seqno);
}
int __must_check i915_gem_get_seqno(struct drm_device *dev, u32 *seqno);
int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
struct drm_i915_gem_request *
i915_gem_find_active_request(struct intel_engine_cs *engine);
bool i915_gem_retire_requests(struct drm_device *dev);
void i915_gem_retire_requests_ring(struct intel_engine_cs *engine);
static inline u32 i915_reset_counter(struct i915_gpu_error *error)
{
return atomic_read(&error->reset_counter);
}
static inline bool __i915_reset_in_progress(u32 reset)
{
return unlikely(reset & I915_RESET_IN_PROGRESS_FLAG);
}
static inline bool __i915_reset_in_progress_or_wedged(u32 reset)
{
return unlikely(reset & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED));
}
static inline bool __i915_terminally_wedged(u32 reset)
{
return unlikely(reset & I915_WEDGED);
}
static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
{
return __i915_reset_in_progress(i915_reset_counter(error));
}
static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
{
return __i915_reset_in_progress_or_wedged(i915_reset_counter(error));
}
static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
{
return __i915_terminally_wedged(i915_reset_counter(error));
}
static inline u32 i915_reset_count(struct i915_gpu_error *error)
{
return ((i915_reset_counter(error) & ~I915_WEDGED) + 1) / 2;
}
static inline bool i915_stop_ring_allow_ban(struct drm_i915_private *dev_priv)
{
return dev_priv->gpu_error.stop_rings == 0 ||
dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_BAN;
}
static inline bool i915_stop_ring_allow_warn(struct drm_i915_private *dev_priv)
{
return dev_priv->gpu_error.stop_rings == 0 ||
dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_WARN;
}
void i915_gem_reset(struct drm_device *dev);
bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
int __must_check i915_gem_init(struct drm_device *dev);
int i915_gem_init_engines(struct drm_device *dev);
int __must_check i915_gem_init_hw(struct drm_device *dev);
int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice);
void i915_gem_init_swizzling(struct drm_device *dev);
void i915_gem_cleanup_engines(struct drm_device *dev);
int __must_check i915_gpu_idle(struct drm_device *dev);
int __must_check i915_gem_suspend(struct drm_device *dev);
void __i915_add_request(struct drm_i915_gem_request *req,
struct drm_i915_gem_object *batch_obj,
bool flush_caches);
#define i915_add_request(req) \
__i915_add_request(req, NULL, true)
#define i915_add_request_no_flush(req) \
__i915_add_request(req, NULL, false)
int __i915_wait_request(struct drm_i915_gem_request *req,
bool interruptible,
s64 *timeout,
struct intel_rps_client *rps);
int __must_check i915_wait_request(struct drm_i915_gem_request *req);
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
int __must_check
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
bool readonly);
int __must_check
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
bool write);
int __must_check
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
int __must_check
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
u32 alignment,
const struct i915_ggtt_view *view);
void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
const struct i915_ggtt_view *view);
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
int align);
int i915_gem_open(struct drm_device *dev, struct drm_file *file);
void i915_gem_release(struct drm_device *dev, struct drm_file *file);
uint32_t
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode);
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
int tiling_mode, bool fenced);
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
enum i915_cache_level cache_level);
struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
struct dma_buf *dma_buf);
struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
struct drm_gem_object *gem_obj, int flags);
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
const struct i915_ggtt_view *view);
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
struct i915_address_space *vm);
static inline u64
i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o)
{
return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal);
}
bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o);
bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
const struct i915_ggtt_view *view);
bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
struct i915_address_space *vm);
unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
struct i915_address_space *vm);
struct i915_vma *
i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
struct i915_address_space *vm);
struct i915_vma *
i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
const struct i915_ggtt_view *view);
struct i915_vma *
i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
struct i915_address_space *vm);
struct i915_vma *
i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
const struct i915_ggtt_view *view);
static inline struct i915_vma *
i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
{
return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal);
}
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj);
/* Some GGTT VM helpers */
static inline struct i915_hw_ppgtt *
i915_vm_to_ppgtt(struct i915_address_space *vm)
{
return container_of(vm, struct i915_hw_ppgtt, base);
}
static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj)
{
return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal);
}
static inline unsigned long
i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
struct i915_ggtt *ggtt = &dev_priv->ggtt;
return i915_gem_obj_size(obj, &ggtt->base);
}
static inline int __must_check
i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj,
uint32_t alignment,
unsigned flags)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
struct i915_ggtt *ggtt = &dev_priv->ggtt;
return i915_gem_object_pin(obj, &ggtt->base,
alignment, flags | PIN_GLOBAL);
}
static inline int
i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
{
return i915_vma_unbind(i915_gem_obj_to_ggtt(obj));
}
void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
const struct i915_ggtt_view *view);
static inline void
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
{
i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal);
}
/* i915_gem_fence.c */
int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
void i915_gem_restore_fences(struct drm_device *dev);
void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
/* i915_gem_context.c */
int __must_check i915_gem_context_init(struct drm_device *dev);
void i915_gem_context_fini(struct drm_device *dev);
void i915_gem_context_reset(struct drm_device *dev);
int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
int i915_gem_context_enable(struct drm_i915_gem_request *req);
void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
int i915_switch_context(struct drm_i915_gem_request *req);
struct intel_context *
i915_gem_context_get(struct drm_i915_file_private *file_priv, u32 id);
void i915_gem_context_free(struct kref *ctx_ref);
struct drm_i915_gem_object *
i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
static inline void i915_gem_context_reference(struct intel_context *ctx)
{
kref_get(&ctx->ref);
}
static inline void i915_gem_context_unreference(struct intel_context *ctx)
{
kref_put(&ctx->ref, i915_gem_context_free);
}
static inline bool i915_gem_context_is_default(const struct intel_context *c)
{
return c->user_handle == DEFAULT_CONTEXT_HANDLE;
}
int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file);
int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file);
int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
/* i915_gem_evict.c */
int __must_check i915_gem_evict_something(struct drm_device *dev,
struct i915_address_space *vm,
int min_size,
unsigned alignment,
unsigned cache_level,
unsigned long start,
unsigned long end,
unsigned flags);
int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
/* belongs in i915_gem_gtt.h */
static inline void i915_gem_chipset_flush(struct drm_device *dev)
{
if (INTEL_INFO(dev)->gen < 6)
intel_gtt_chipset_flush();
}
/* i915_gem_stolen.c */
int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
struct drm_mm_node *node, u64 size,
unsigned alignment);
int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
struct drm_mm_node *node, u64 size,
unsigned alignment, u64 start,
u64 end);
void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
struct drm_mm_node *node);
int i915_gem_init_stolen(struct drm_device *dev);
void i915_gem_cleanup_stolen(struct drm_device *dev);
struct drm_i915_gem_object *
i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
struct drm_i915_gem_object *
i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
u32 stolen_offset,
u32 gtt_offset,
u32 size);
/* i915_gem_shrinker.c */
unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
unsigned long target,
unsigned flags);
#define I915_SHRINK_PURGEABLE 0x1
#define I915_SHRINK_UNBOUND 0x2
#define I915_SHRINK_BOUND 0x4
#define I915_SHRINK_ACTIVE 0x8
#define I915_SHRINK_VMAPS 0x10
unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
/* i915_gem_tiling.c */
static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
obj->tiling_mode != I915_TILING_NONE;
}
/* i915_gem_debug.c */
#if WATCH_LISTS
int i915_verify_lists(struct drm_device *dev);
#else
#define i915_verify_lists(dev) 0
#endif
/* i915_debugfs.c */
int i915_debugfs_init(struct drm_minor *minor);
void i915_debugfs_cleanup(struct drm_minor *minor);
#ifdef CONFIG_DEBUG_FS
int i915_debugfs_connector_add(struct drm_connector *connector);
void intel_display_crc_init(struct drm_device *dev);
#else
static inline int i915_debugfs_connector_add(struct drm_connector *connector)
{ return 0; }
static inline void intel_display_crc_init(struct drm_device *dev) {}
#endif
/* i915_gpu_error.c */
__printf(2, 3)
void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
const struct i915_error_state_file_priv *error);
int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
struct drm_i915_private *i915,
size_t count, loff_t pos);
static inline void i915_error_state_buf_release(
struct drm_i915_error_state_buf *eb)
{
kfree(eb->buf);
}
void i915_capture_error_state(struct drm_device *dev, u32 engine_mask,
const char *error_msg);
void i915_error_state_get(struct drm_device *dev,
struct i915_error_state_file_priv *error_priv);
void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
void i915_destroy_error_state(struct drm_device *dev);
void i915_get_extra_instdone(struct drm_device *dev, uint32_t *instdone);
const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
/* i915_cmd_parser.c */
int i915_cmd_parser_get_version(void);
int i915_cmd_parser_init_ring(struct intel_engine_cs *engine);
void i915_cmd_parser_fini_ring(struct intel_engine_cs *engine);
bool i915_needs_cmd_parser(struct intel_engine_cs *engine);
int i915_parse_cmds(struct intel_engine_cs *engine,
struct drm_i915_gem_object *batch_obj,
struct drm_i915_gem_object *shadow_batch_obj,
u32 batch_start_offset,
u32 batch_len,
bool is_master);
/* i915_suspend.c */
extern int i915_save_state(struct drm_device *dev);
extern int i915_restore_state(struct drm_device *dev);
/* i915_sysfs.c */
void i915_setup_sysfs(struct drm_device *dev_priv);
void i915_teardown_sysfs(struct drm_device *dev_priv);
/* intel_i2c.c */
extern int intel_setup_gmbus(struct drm_device *dev);
extern void intel_teardown_gmbus(struct drm_device *dev);
extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
unsigned int pin);
extern struct i2c_adapter *
intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
{
return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
}
extern void intel_i2c_reset(struct drm_device *dev);
/* intel_bios.c */
int intel_bios_init(struct drm_i915_private *dev_priv);
bool intel_bios_is_valid_vbt(const void *buf, size_t size);
bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
enum port port);
/* intel_opregion.c */
#ifdef CONFIG_ACPI
extern int intel_opregion_setup(struct drm_device *dev);
extern void intel_opregion_init(struct drm_device *dev);
extern void intel_opregion_fini(struct drm_device *dev);
extern void intel_opregion_asle_intr(struct drm_device *dev);
extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
bool enable);
extern int intel_opregion_notify_adapter(struct drm_device *dev,
pci_power_t state);
extern int intel_opregion_get_panel_type(struct drm_device *dev);
#else
static inline int intel_opregion_setup(struct drm_device *dev) { return 0; }
static inline void intel_opregion_init(struct drm_device *dev) { return; }
static inline void intel_opregion_fini(struct drm_device *dev) { return; }
static inline void intel_opregion_asle_intr(struct drm_device *dev) { return; }
static inline int
intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
{
return 0;
}
static inline int
intel_opregion_notify_adapter(struct drm_device *dev, pci_power_t state)
{
return 0;
}
static inline int intel_opregion_get_panel_type(struct drm_device *dev)
{
return -ENODEV;
}
#endif
/* intel_acpi.c */
#ifdef CONFIG_ACPI
extern void intel_register_dsm_handler(void);
extern void intel_unregister_dsm_handler(void);
#else
static inline void intel_register_dsm_handler(void) { return; }
static inline void intel_unregister_dsm_handler(void) { return; }
#endif /* CONFIG_ACPI */
/* modesetting */
extern void intel_modeset_init_hw(struct drm_device *dev);
extern void intel_modeset_init(struct drm_device *dev);
extern void intel_modeset_gem_init(struct drm_device *dev);
extern void intel_modeset_cleanup(struct drm_device *dev);
extern void intel_connector_unregister(struct intel_connector *);
extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
extern void intel_display_resume(struct drm_device *dev);
extern void i915_redisable_vga(struct drm_device *dev);
extern void i915_redisable_vga_power_on(struct drm_device *dev);
extern bool ironlake_set_drps(struct drm_device *dev, u8 val);
extern void intel_init_pch_refclk(struct drm_device *dev);
extern void intel_set_rps(struct drm_device *dev, u8 val);
extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
bool enable);
extern void intel_detect_pch(struct drm_device *dev);
extern int intel_enable_rc6(const struct drm_device *dev);
extern bool i915_semaphore_is_enabled(struct drm_device *dev);
int i915_reg_read_ioctl(struct drm_device *dev, void *data,
struct drm_file *file);
int i915_get_reset_stats_ioctl(struct drm_device *dev, void *data,
struct drm_file *file);
/* overlay */
extern struct intel_overlay_error_state *intel_overlay_capture_error_state(struct drm_device *dev);
extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
struct intel_overlay_error_state *error);
extern struct intel_display_error_state *intel_display_capture_error_state(struct drm_device *dev);
extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
struct drm_device *dev,
struct intel_display_error_state *error);
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
/* intel_sideband.c */
u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
enum intel_sbi_destination destination);
void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
enum intel_sbi_destination destination);
u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
#define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
#define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
#define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
#define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
#define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
#define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
#define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
#define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
#define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
#define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
/* Be very careful with read/write 64-bit values. On 32-bit machines, they
* will be implemented using 2 32-bit writes in an arbitrary order with
* an arbitrary delay between them. This can cause the hardware to
* act upon the intermediate value, possibly leading to corruption and
* machine death. You have been warned.
*/
#define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true)
#define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
#define I915_READ64_2x32(lower_reg, upper_reg) ({ \
u32 upper, lower, old_upper, loop = 0; \
upper = I915_READ(upper_reg); \
do { \
old_upper = upper; \
lower = I915_READ(lower_reg); \
upper = I915_READ(upper_reg); \
} while (upper != old_upper && loop++ < 2); \
(u64)upper << 32 | lower; })
#define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
#define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
#define __raw_read(x, s) \
static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
i915_reg_t reg) \
{ \
return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
}
#define __raw_write(x, s) \
static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
i915_reg_t reg, uint##x##_t val) \
{ \
write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
}
__raw_read(8, b)
__raw_read(16, w)
__raw_read(32, l)
__raw_read(64, q)
__raw_write(8, b)
__raw_write(16, w)
__raw_write(32, l)
__raw_write(64, q)
#undef __raw_read
#undef __raw_write
/* These are untraced mmio-accessors that are only valid to be used inside
* criticial sections inside IRQ handlers where forcewake is explicitly
* controlled.
* Think twice, and think again, before using these.
* Note: Should only be used between intel_uncore_forcewake_irqlock() and
* intel_uncore_forcewake_irqunlock().
*/
#define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
#define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
#define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
/* "Broadcast RGB" property */
#define INTEL_BROADCAST_RGB_AUTO 0
#define INTEL_BROADCAST_RGB_FULL 1
#define INTEL_BROADCAST_RGB_LIMITED 2
static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev)
{
if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
return VLV_VGACNTRL;
else if (INTEL_INFO(dev)->gen >= 5)
return CPU_VGACNTRL;
else
return VGACNTRL;
}
static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
{
unsigned long j = msecs_to_jiffies(m);
return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
}
static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
{
return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
}
static inline unsigned long
timespec_to_jiffies_timeout(const struct timespec *value)
{
unsigned long j = timespec_to_jiffies(value);
return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
}
/*
* If you need to wait X milliseconds between events A and B, but event B
* doesn't happen exactly after event A, you record the timestamp (jiffies) of
* when event A happened, then just before event B you call this function and
* pass the timestamp as the first argument, and X as the second argument.
*/
static inline void
wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
{
unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
/*
* Don't re-read the value of "jiffies" every time since it may change
* behind our back and break the math.
*/
tmp_jiffies = jiffies;
target_jiffies = timestamp_jiffies +
msecs_to_jiffies_timeout(to_wait_ms);
if (time_after(target_jiffies, tmp_jiffies)) {
remaining_jiffies = target_jiffies - tmp_jiffies;
while (remaining_jiffies)
remaining_jiffies =
schedule_timeout_uninterruptible(remaining_jiffies);
}
}
static inline void i915_trace_irq_get(struct intel_engine_cs *engine,
struct drm_i915_gem_request *req)
{
if (engine->trace_irq_req == NULL && engine->irq_get(engine))
i915_gem_request_assign(&engine->trace_irq_req, req);
}
#endif