blob: 0b93893424f5b2fe8246694e5e5e31c7b5324a0f [file] [log] [blame]
/*
* Derived from "arch/i386/kernel/process.c"
* Copyright (C) 1995 Linus Torvalds
*
* Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
* Paul Mackerras (paulus@cs.anu.edu.au)
*
* PowerPC version
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
#include <linux/export.h>
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
#include <linux/utsname.h>
#include <linux/ftrace.h>
#include <linux/kernel_stat.h>
#include <linux/personality.h>
#include <linux/random.h>
#include <linux/hw_breakpoint.h>
#include <linux/uaccess.h>
#include <linux/elf-randomize.h>
#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
#include <asm/machdep.h>
#include <asm/time.h>
#include <asm/runlatch.h>
#include <asm/syscalls.h>
#include <asm/switch_to.h>
#include <asm/tm.h>
#include <asm/debug.h>
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
#include <asm/code-patching.h>
#include <asm/exec.h>
#include <asm/livepatch.h>
#include <linux/kprobes.h>
#include <linux/kdebug.h>
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif
extern unsigned long _get_SP(void);
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static void check_if_tm_restore_required(struct task_struct *tsk)
{
/*
* If we are saving the current thread's registers, and the
* thread is in a transactional state, set the TIF_RESTORE_TM
* bit so that we know to restore the registers before
* returning to userspace.
*/
if (tsk == current && tsk->thread.regs &&
MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
!test_thread_flag(TIF_RESTORE_TM)) {
tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
set_thread_flag(TIF_RESTORE_TM);
}
}
#else
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);
static int __init enable_strict_msr_control(char *str)
{
strict_msr_control = true;
pr_info("Enabling strict facility control\n");
return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);
void msr_check_and_set(unsigned long bits)
{
unsigned long oldmsr = mfmsr();
unsigned long newmsr;
newmsr = oldmsr | bits;
#ifdef CONFIG_VSX
if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
newmsr |= MSR_VSX;
#endif
if (oldmsr != newmsr)
mtmsr_isync(newmsr);
}
void __msr_check_and_clear(unsigned long bits)
{
unsigned long oldmsr = mfmsr();
unsigned long newmsr;
newmsr = oldmsr & ~bits;
#ifdef CONFIG_VSX
if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
newmsr &= ~MSR_VSX;
#endif
if (oldmsr != newmsr)
mtmsr_isync(newmsr);
}
EXPORT_SYMBOL(__msr_check_and_clear);
#ifdef CONFIG_PPC_FPU
void __giveup_fpu(struct task_struct *tsk)
{
save_fpu(tsk);
tsk->thread.regs->msr &= ~MSR_FP;
#ifdef CONFIG_VSX
if (cpu_has_feature(CPU_FTR_VSX))
tsk->thread.regs->msr &= ~MSR_VSX;
#endif
}
void giveup_fpu(struct task_struct *tsk)
{
check_if_tm_restore_required(tsk);
msr_check_and_set(MSR_FP);
__giveup_fpu(tsk);
msr_check_and_clear(MSR_FP);
}
EXPORT_SYMBOL(giveup_fpu);
/*
* Make sure the floating-point register state in the
* the thread_struct is up to date for task tsk.
*/
void flush_fp_to_thread(struct task_struct *tsk)
{
if (tsk->thread.regs) {
/*
* We need to disable preemption here because if we didn't,
* another process could get scheduled after the regs->msr
* test but before we have finished saving the FP registers
* to the thread_struct. That process could take over the
* FPU, and then when we get scheduled again we would store
* bogus values for the remaining FP registers.
*/
preempt_disable();
if (tsk->thread.regs->msr & MSR_FP) {
/*
* This should only ever be called for current or
* for a stopped child process. Since we save away
* the FP register state on context switch,
* there is something wrong if a stopped child appears
* to still have its FP state in the CPU registers.
*/
BUG_ON(tsk != current);
giveup_fpu(tsk);
}
preempt_enable();
}
}
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
void enable_kernel_fp(void)
{
WARN_ON(preemptible());
msr_check_and_set(MSR_FP);
if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
check_if_tm_restore_required(current);
__giveup_fpu(current);
}
}
EXPORT_SYMBOL(enable_kernel_fp);
static int restore_fp(struct task_struct *tsk) {
if (tsk->thread.load_fp) {
load_fp_state(&current->thread.fp_state);
current->thread.load_fp++;
return 1;
}
return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
#endif /* CONFIG_PPC_FPU */
#ifdef CONFIG_ALTIVEC
#define loadvec(thr) ((thr).load_vec)
static void __giveup_altivec(struct task_struct *tsk)
{
save_altivec(tsk);
tsk->thread.regs->msr &= ~MSR_VEC;
#ifdef CONFIG_VSX
if (cpu_has_feature(CPU_FTR_VSX))
tsk->thread.regs->msr &= ~MSR_VSX;
#endif
}
void giveup_altivec(struct task_struct *tsk)
{
check_if_tm_restore_required(tsk);
msr_check_and_set(MSR_VEC);
__giveup_altivec(tsk);
msr_check_and_clear(MSR_VEC);
}
EXPORT_SYMBOL(giveup_altivec);
void enable_kernel_altivec(void)
{
WARN_ON(preemptible());
msr_check_and_set(MSR_VEC);
if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
check_if_tm_restore_required(current);
__giveup_altivec(current);
}
}
EXPORT_SYMBOL(enable_kernel_altivec);
/*
* Make sure the VMX/Altivec register state in the
* the thread_struct is up to date for task tsk.
*/
void flush_altivec_to_thread(struct task_struct *tsk)
{
if (tsk->thread.regs) {
preempt_disable();
if (tsk->thread.regs->msr & MSR_VEC) {
BUG_ON(tsk != current);
giveup_altivec(tsk);
}
preempt_enable();
}
}
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
static int restore_altivec(struct task_struct *tsk)
{
if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) {
load_vr_state(&tsk->thread.vr_state);
tsk->thread.used_vr = 1;
tsk->thread.load_vec++;
return 1;
}
return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_VSX
static void __giveup_vsx(struct task_struct *tsk)
{
if (tsk->thread.regs->msr & MSR_FP)
__giveup_fpu(tsk);
if (tsk->thread.regs->msr & MSR_VEC)
__giveup_altivec(tsk);
tsk->thread.regs->msr &= ~MSR_VSX;
}
static void giveup_vsx(struct task_struct *tsk)
{
check_if_tm_restore_required(tsk);
msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
__giveup_vsx(tsk);
msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
}
static void save_vsx(struct task_struct *tsk)
{
if (tsk->thread.regs->msr & MSR_FP)
save_fpu(tsk);
if (tsk->thread.regs->msr & MSR_VEC)
save_altivec(tsk);
}
void enable_kernel_vsx(void)
{
WARN_ON(preemptible());
msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
check_if_tm_restore_required(current);
if (current->thread.regs->msr & MSR_FP)
__giveup_fpu(current);
if (current->thread.regs->msr & MSR_VEC)
__giveup_altivec(current);
__giveup_vsx(current);
}
}
EXPORT_SYMBOL(enable_kernel_vsx);
void flush_vsx_to_thread(struct task_struct *tsk)
{
if (tsk->thread.regs) {
preempt_disable();
if (tsk->thread.regs->msr & MSR_VSX) {
BUG_ON(tsk != current);
giveup_vsx(tsk);
}
preempt_enable();
}
}
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
static int restore_vsx(struct task_struct *tsk)
{
if (cpu_has_feature(CPU_FTR_VSX)) {
tsk->thread.used_vsr = 1;
return 1;
}
return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
static inline void save_vsx(struct task_struct *tsk) { }
#endif /* CONFIG_VSX */
#ifdef CONFIG_SPE
void giveup_spe(struct task_struct *tsk)
{
check_if_tm_restore_required(tsk);
msr_check_and_set(MSR_SPE);
__giveup_spe(tsk);
msr_check_and_clear(MSR_SPE);
}
EXPORT_SYMBOL(giveup_spe);
void enable_kernel_spe(void)
{
WARN_ON(preemptible());
msr_check_and_set(MSR_SPE);
if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
check_if_tm_restore_required(current);
__giveup_spe(current);
}
}
EXPORT_SYMBOL(enable_kernel_spe);
void flush_spe_to_thread(struct task_struct *tsk)
{
if (tsk->thread.regs) {
preempt_disable();
if (tsk->thread.regs->msr & MSR_SPE) {
BUG_ON(tsk != current);
tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
giveup_spe(tsk);
}
preempt_enable();
}
}
#endif /* CONFIG_SPE */
static unsigned long msr_all_available;
static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
if (cpu_has_feature(CPU_FTR_ALTIVEC))
msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
if (cpu_has_feature(CPU_FTR_VSX))
msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
if (cpu_has_feature(CPU_FTR_SPE))
msr_all_available |= MSR_SPE;
#endif
return 0;
}
early_initcall(init_msr_all_available);
void giveup_all(struct task_struct *tsk)
{
unsigned long usermsr;
if (!tsk->thread.regs)
return;
usermsr = tsk->thread.regs->msr;
if ((usermsr & msr_all_available) == 0)
return;
msr_check_and_set(msr_all_available);
#ifdef CONFIG_PPC_FPU
if (usermsr & MSR_FP)
__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
if (usermsr & MSR_VEC)
__giveup_altivec(tsk);
#endif
#ifdef CONFIG_VSX
if (usermsr & MSR_VSX)
__giveup_vsx(tsk);
#endif
#ifdef CONFIG_SPE
if (usermsr & MSR_SPE)
__giveup_spe(tsk);
#endif
msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);
void restore_math(struct pt_regs *regs)
{
unsigned long msr;
if (!current->thread.load_fp && !loadvec(current->thread))
return;
msr = regs->msr;
msr_check_and_set(msr_all_available);
/*
* Only reload if the bit is not set in the user MSR, the bit BEING set
* indicates that the registers are hot
*/
if ((!(msr & MSR_FP)) && restore_fp(current))
msr |= MSR_FP | current->thread.fpexc_mode;
if ((!(msr & MSR_VEC)) && restore_altivec(current))
msr |= MSR_VEC;
if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
restore_vsx(current)) {
msr |= MSR_VSX;
}
msr_check_and_clear(msr_all_available);
regs->msr = msr;
}
void save_all(struct task_struct *tsk)
{
unsigned long usermsr;
if (!tsk->thread.regs)
return;
usermsr = tsk->thread.regs->msr;
if ((usermsr & msr_all_available) == 0)
return;
msr_check_and_set(msr_all_available);
/*
* Saving the way the register space is in hardware, save_vsx boils
* down to a save_fpu() and save_altivec()
*/
if (usermsr & MSR_VSX) {
save_vsx(tsk);
} else {
if (usermsr & MSR_FP)
save_fpu(tsk);
if (usermsr & MSR_VEC)
save_altivec(tsk);
}
if (usermsr & MSR_SPE)
__giveup_spe(tsk);
msr_check_and_clear(msr_all_available);
}
void flush_all_to_thread(struct task_struct *tsk)
{
if (tsk->thread.regs) {
preempt_disable();
BUG_ON(tsk != current);
save_all(tsk);
#ifdef CONFIG_SPE
if (tsk->thread.regs->msr & MSR_SPE)
tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif
preempt_enable();
}
}
EXPORT_SYMBOL(flush_all_to_thread);
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
unsigned long error_code, int signal_code, int breakpt)
{
siginfo_t info;
current->thread.trap_nr = signal_code;
if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
11, SIGSEGV) == NOTIFY_STOP)
return;
/* Deliver the signal to userspace */
info.si_signo = SIGTRAP;
info.si_errno = breakpt; /* breakpoint or watchpoint id */
info.si_code = signal_code;
info.si_addr = (void __user *)address;
force_sig_info(SIGTRAP, &info, current);
}
#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
void do_break (struct pt_regs *regs, unsigned long address,
unsigned long error_code)
{
siginfo_t info;
current->thread.trap_nr = TRAP_HWBKPT;
if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
11, SIGSEGV) == NOTIFY_STOP)
return;
if (debugger_break_match(regs))
return;
/* Clear the breakpoint */
hw_breakpoint_disable();
/* Deliver the signal to userspace */
info.si_signo = SIGTRAP;
info.si_errno = 0;
info.si_code = TRAP_HWBKPT;
info.si_addr = (void __user *)address;
force_sig_info(SIGTRAP, &info, current);
}
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
* Set the debug registers back to their default "safe" values.
*/
static void set_debug_reg_defaults(struct thread_struct *thread)
{
thread->debug.iac1 = thread->debug.iac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
thread->debug.iac3 = thread->debug.iac4 = 0;
#endif
thread->debug.dac1 = thread->debug.dac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
thread->debug.dvc1 = thread->debug.dvc2 = 0;
#endif
thread->debug.dbcr0 = 0;
#ifdef CONFIG_BOOKE
/*
* Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
*/
thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
DBCR1_IAC3US | DBCR1_IAC4US;
/*
* Force Data Address Compare User/Supervisor bits to be User-only
* (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
*/
thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
#else
thread->debug.dbcr1 = 0;
#endif
}
static void prime_debug_regs(struct debug_reg *debug)
{
/*
* We could have inherited MSR_DE from userspace, since
* it doesn't get cleared on exception entry. Make sure
* MSR_DE is clear before we enable any debug events.
*/
mtmsr(mfmsr() & ~MSR_DE);
mtspr(SPRN_IAC1, debug->iac1);
mtspr(SPRN_IAC2, debug->iac2);
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
mtspr(SPRN_IAC3, debug->iac3);
mtspr(SPRN_IAC4, debug->iac4);
#endif
mtspr(SPRN_DAC1, debug->dac1);
mtspr(SPRN_DAC2, debug->dac2);
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
mtspr(SPRN_DVC1, debug->dvc1);
mtspr(SPRN_DVC2, debug->dvc2);
#endif
mtspr(SPRN_DBCR0, debug->dbcr0);
mtspr(SPRN_DBCR1, debug->dbcr1);
#ifdef CONFIG_BOOKE
mtspr(SPRN_DBCR2, debug->dbcr2);
#endif
}
/*
* Unless neither the old or new thread are making use of the
* debug registers, set the debug registers from the values
* stored in the new thread.
*/
void switch_booke_debug_regs(struct debug_reg *new_debug)
{
if ((current->thread.debug.dbcr0 & DBCR0_IDM)
|| (new_debug->dbcr0 & DBCR0_IDM))
prime_debug_regs(new_debug);
}
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
static void set_debug_reg_defaults(struct thread_struct *thread)
{
thread->hw_brk.address = 0;
thread->hw_brk.type = 0;
set_breakpoint(&thread->hw_brk);
}
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
mtspr(SPRN_DAC1, dabr);
#ifdef CONFIG_PPC_47x
isync();
#endif
return 0;
}
#elif defined(CONFIG_PPC_BOOK3S)
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
mtspr(SPRN_DABR, dabr);
if (cpu_has_feature(CPU_FTR_DABRX))
mtspr(SPRN_DABRX, dabrx);
return 0;
}
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
return -EINVAL;
}
#endif
static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
unsigned long dabr, dabrx;
dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
dabrx = ((brk->type >> 3) & 0x7);
if (ppc_md.set_dabr)
return ppc_md.set_dabr(dabr, dabrx);
return __set_dabr(dabr, dabrx);
}
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
unsigned long dawr, dawrx, mrd;
dawr = brk->address;
dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
<< (63 - 58); //* read/write bits */
dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
<< (63 - 59); //* translate */
dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
>> 3; //* PRIM bits */
/* dawr length is stored in field MDR bits 48:53. Matches range in
doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
0b111111=64DW.
brk->len is in bytes.
This aligns up to double word size, shifts and does the bias.
*/
mrd = ((brk->len + 7) >> 3) - 1;
dawrx |= (mrd & 0x3f) << (63 - 53);
if (ppc_md.set_dawr)
return ppc_md.set_dawr(dawr, dawrx);
mtspr(SPRN_DAWR, dawr);
mtspr(SPRN_DAWRX, dawrx);
return 0;
}
void __set_breakpoint(struct arch_hw_breakpoint *brk)
{
memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
if (cpu_has_feature(CPU_FTR_DAWR))
set_dawr(brk);
else
set_dabr(brk);
}
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
preempt_disable();
__set_breakpoint(brk);
preempt_enable();
}
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
struct arch_hw_breakpoint *b)
{
if (a->address != b->address)
return false;
if (a->type != b->type)
return false;
if (a->len != b->len)
return false;
return true;
}
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static void tm_reclaim_thread(struct thread_struct *thr,
struct thread_info *ti, uint8_t cause)
{
unsigned long msr_diff = 0;
/*
* If FP/VSX registers have been already saved to the
* thread_struct, move them to the transact_fp array.
* We clear the TIF_RESTORE_TM bit since after the reclaim
* the thread will no longer be transactional.
*/
if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
if (msr_diff & MSR_FP)
memcpy(&thr->transact_fp, &thr->fp_state,
sizeof(struct thread_fp_state));
if (msr_diff & MSR_VEC)
memcpy(&thr->transact_vr, &thr->vr_state,
sizeof(struct thread_vr_state));
clear_ti_thread_flag(ti, TIF_RESTORE_TM);
msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
}
/*
* Use the current MSR TM suspended bit to track if we have
* checkpointed state outstanding.
* On signal delivery, we'd normally reclaim the checkpointed
* state to obtain stack pointer (see:get_tm_stackpointer()).
* This will then directly return to userspace without going
* through __switch_to(). However, if the stack frame is bad,
* we need to exit this thread which calls __switch_to() which
* will again attempt to reclaim the already saved tm state.
* Hence we need to check that we've not already reclaimed
* this state.
* We do this using the current MSR, rather tracking it in
* some specific thread_struct bit, as it has the additional
* benifit of checking for a potential TM bad thing exception.
*/
if (!MSR_TM_SUSPENDED(mfmsr()))
return;
tm_reclaim(thr, thr->regs->msr, cause);
/* Having done the reclaim, we now have the checkpointed
* FP/VSX values in the registers. These might be valid
* even if we have previously called enable_kernel_fp() or
* flush_fp_to_thread(), so update thr->regs->msr to
* indicate their current validity.
*/
thr->regs->msr |= msr_diff;
}
void tm_reclaim_current(uint8_t cause)
{
tm_enable();
tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}
static inline void tm_reclaim_task(struct task_struct *tsk)
{
/* We have to work out if we're switching from/to a task that's in the
* middle of a transaction.
*
* In switching we need to maintain a 2nd register state as
* oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
* checkpointed (tbegin) state in ckpt_regs and saves the transactional
* (current) FPRs into oldtask->thread.transact_fpr[].
*
* We also context switch (save) TFHAR/TEXASR/TFIAR in here.
*/
struct thread_struct *thr = &tsk->thread;
if (!thr->regs)
return;
if (!MSR_TM_ACTIVE(thr->regs->msr))
goto out_and_saveregs;
/* Stash the original thread MSR, as giveup_fpu et al will
* modify it. We hold onto it to see whether the task used
* FP & vector regs. If the TIF_RESTORE_TM flag is set,
* ckpt_regs.msr is already set.
*/
if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
thr->ckpt_regs.msr = thr->regs->msr;
TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
"ccr=%lx, msr=%lx, trap=%lx)\n",
tsk->pid, thr->regs->nip,
thr->regs->ccr, thr->regs->msr,
thr->regs->trap);
tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
TM_DEBUG("--- tm_reclaim on pid %d complete\n",
tsk->pid);
out_and_saveregs:
/* Always save the regs here, even if a transaction's not active.
* This context-switches a thread's TM info SPRs. We do it here to
* be consistent with the restore path (in recheckpoint) which
* cannot happen later in _switch().
*/
tm_save_sprs(thr);
}
extern void __tm_recheckpoint(struct thread_struct *thread,
unsigned long orig_msr);
void tm_recheckpoint(struct thread_struct *thread,
unsigned long orig_msr)
{
unsigned long flags;
/* We really can't be interrupted here as the TEXASR registers can't
* change and later in the trecheckpoint code, we have a userspace R1.
* So let's hard disable over this region.
*/
local_irq_save(flags);
hard_irq_disable();
/* The TM SPRs are restored here, so that TEXASR.FS can be set
* before the trecheckpoint and no explosion occurs.
*/
tm_restore_sprs(thread);
__tm_recheckpoint(thread, orig_msr);
local_irq_restore(flags);
}
static inline void tm_recheckpoint_new_task(struct task_struct *new)
{
unsigned long msr;
if (!cpu_has_feature(CPU_FTR_TM))
return;
/* Recheckpoint the registers of the thread we're about to switch to.
*
* If the task was using FP, we non-lazily reload both the original and
* the speculative FP register states. This is because the kernel
* doesn't see if/when a TM rollback occurs, so if we take an FP
* unavoidable later, we are unable to determine which set of FP regs
* need to be restored.
*/
if (!new->thread.regs)
return;
if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
tm_restore_sprs(&new->thread);
return;
}
msr = new->thread.ckpt_regs.msr;
/* Recheckpoint to restore original checkpointed register state. */
TM_DEBUG("*** tm_recheckpoint of pid %d "
"(new->msr 0x%lx, new->origmsr 0x%lx)\n",
new->pid, new->thread.regs->msr, msr);
/* This loads the checkpointed FP/VEC state, if used */
tm_recheckpoint(&new->thread, msr);
/* This loads the speculative FP/VEC state, if used */
if (msr & MSR_FP) {
do_load_up_transact_fpu(&new->thread);
new->thread.regs->msr |=
(MSR_FP | new->thread.fpexc_mode);
}
#ifdef CONFIG_ALTIVEC
if (msr & MSR_VEC) {
do_load_up_transact_altivec(&new->thread);
new->thread.regs->msr |= MSR_VEC;
}
#endif
/* We may as well turn on VSX too since all the state is restored now */
if (msr & MSR_VSX)
new->thread.regs->msr |= MSR_VSX;
TM_DEBUG("*** tm_recheckpoint of pid %d complete "
"(kernel msr 0x%lx)\n",
new->pid, mfmsr());
}
static inline void __switch_to_tm(struct task_struct *prev)
{
if (cpu_has_feature(CPU_FTR_TM)) {
tm_enable();
tm_reclaim_task(prev);
}
}
/*
* This is called if we are on the way out to userspace and the
* TIF_RESTORE_TM flag is set. It checks if we need to reload
* FP and/or vector state and does so if necessary.
* If userspace is inside a transaction (whether active or
* suspended) and FP/VMX/VSX instructions have ever been enabled
* inside that transaction, then we have to keep them enabled
* and keep the FP/VMX/VSX state loaded while ever the transaction
* continues. The reason is that if we didn't, and subsequently
* got a FP/VMX/VSX unavailable interrupt inside a transaction,
* we don't know whether it's the same transaction, and thus we
* don't know which of the checkpointed state and the transactional
* state to use.
*/
void restore_tm_state(struct pt_regs *regs)
{
unsigned long msr_diff;
clear_thread_flag(TIF_RESTORE_TM);
if (!MSR_TM_ACTIVE(regs->msr))
return;
msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
restore_math(regs);
regs->msr |= msr_diff;
}
#else
#define tm_recheckpoint_new_task(new)
#define __switch_to_tm(prev)
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
if (cpu_has_feature(CPU_FTR_ALTIVEC))
t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
if (cpu_has_feature(CPU_FTR_DSCR))
t->dscr = mfspr(SPRN_DSCR);
if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
t->bescr = mfspr(SPRN_BESCR);
t->ebbhr = mfspr(SPRN_EBBHR);
t->ebbrr = mfspr(SPRN_EBBRR);
t->fscr = mfspr(SPRN_FSCR);
/*
* Note that the TAR is not available for use in the kernel.
* (To provide this, the TAR should be backed up/restored on
* exception entry/exit instead, and be in pt_regs. FIXME,
* this should be in pt_regs anyway (for debug).)
*/
t->tar = mfspr(SPRN_TAR);
}
#endif
}
static inline void restore_sprs(struct thread_struct *old_thread,
struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
old_thread->vrsave != new_thread->vrsave)
mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
if (cpu_has_feature(CPU_FTR_DSCR)) {
u64 dscr = get_paca()->dscr_default;
u64 fscr = old_thread->fscr & ~FSCR_DSCR;
if (new_thread->dscr_inherit) {
dscr = new_thread->dscr;
fscr |= FSCR_DSCR;
}
if (old_thread->dscr != dscr)
mtspr(SPRN_DSCR, dscr);
if (old_thread->fscr != fscr)
mtspr(SPRN_FSCR, fscr);
}
if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
if (old_thread->bescr != new_thread->bescr)
mtspr(SPRN_BESCR, new_thread->bescr);
if (old_thread->ebbhr != new_thread->ebbhr)
mtspr(SPRN_EBBHR, new_thread->ebbhr);
if (old_thread->ebbrr != new_thread->ebbrr)
mtspr(SPRN_EBBRR, new_thread->ebbrr);
if (old_thread->tar != new_thread->tar)
mtspr(SPRN_TAR, new_thread->tar);
}
#endif
}
struct task_struct *__switch_to(struct task_struct *prev,
struct task_struct *new)
{
struct thread_struct *new_thread, *old_thread;
struct task_struct *last;
#ifdef CONFIG_PPC_BOOK3S_64
struct ppc64_tlb_batch *batch;
#endif
new_thread = &new->thread;
old_thread = &current->thread;
WARN_ON(!irqs_disabled());
#ifdef CONFIG_PPC64
/*
* Collect processor utilization data per process
*/
if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
long unsigned start_tb, current_tb;
start_tb = old_thread->start_tb;
cu->current_tb = current_tb = mfspr(SPRN_PURR);
old_thread->accum_tb += (current_tb - start_tb);
new_thread->start_tb = current_tb;
}
#endif /* CONFIG_PPC64 */
#ifdef CONFIG_PPC_STD_MMU_64
batch = this_cpu_ptr(&ppc64_tlb_batch);
if (batch->active) {
current_thread_info()->local_flags |= _TLF_LAZY_MMU;
if (batch->index)
__flush_tlb_pending(batch);
batch->active = 0;
}
#endif /* CONFIG_PPC_STD_MMU_64 */
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
switch_booke_debug_regs(&new->thread.debug);
#else
/*
* For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
* schedule DABR
*/
#ifndef CONFIG_HAVE_HW_BREAKPOINT
if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif
/*
* We need to save SPRs before treclaim/trecheckpoint as these will
* change a number of them.
*/
save_sprs(&prev->thread);
__switch_to_tm(prev);
/* Save FPU, Altivec, VSX and SPE state */
giveup_all(prev);
/*
* We can't take a PMU exception inside _switch() since there is a
* window where the kernel stack SLB and the kernel stack are out
* of sync. Hard disable here.
*/
hard_irq_disable();
tm_recheckpoint_new_task(new);
/*
* Call restore_sprs() before calling _switch(). If we move it after
* _switch() then we miss out on calling it for new tasks. The reason
* for this is we manually create a stack frame for new tasks that
* directly returns through ret_from_fork() or
* ret_from_kernel_thread(). See copy_thread() for details.
*/
restore_sprs(old_thread, new_thread);
last = _switch(old_thread, new_thread);
#ifdef CONFIG_PPC_STD_MMU_64
if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
batch = this_cpu_ptr(&ppc64_tlb_batch);
batch->active = 1;
}
if (current_thread_info()->task->thread.regs)
restore_math(current_thread_info()->task->thread.regs);
#endif /* CONFIG_PPC_STD_MMU_64 */
return last;
}
static int instructions_to_print = 16;
static void show_instructions(struct pt_regs *regs)
{
int i;
unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
sizeof(int));
printk("Instruction dump:");
for (i = 0; i < instructions_to_print; i++) {
int instr;
if (!(i % 8))
printk("\n");
#if !defined(CONFIG_BOOKE)
/* If executing with the IMMU off, adjust pc rather
* than print XXXXXXXX.
*/
if (!(regs->msr & MSR_IR))
pc = (unsigned long)phys_to_virt(pc);
#endif
if (!__kernel_text_address(pc) ||
probe_kernel_address((unsigned int __user *)pc, instr)) {
printk(KERN_CONT "XXXXXXXX ");
} else {
if (regs->nip == pc)
printk(KERN_CONT "<%08x> ", instr);
else
printk(KERN_CONT "%08x ", instr);
}
pc += sizeof(int);
}
printk("\n");
}
struct regbit {
unsigned long bit;
const char *name;
};
static struct regbit msr_bits[] = {
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
{MSR_SF, "SF"},
{MSR_HV, "HV"},
#endif
{MSR_VEC, "VEC"},
{MSR_VSX, "VSX"},
#ifdef CONFIG_BOOKE
{MSR_CE, "CE"},
#endif
{MSR_EE, "EE"},
{MSR_PR, "PR"},
{MSR_FP, "FP"},
{MSR_ME, "ME"},
#ifdef CONFIG_BOOKE
{MSR_DE, "DE"},
#else
{MSR_SE, "SE"},
{MSR_BE, "BE"},
#endif
{MSR_IR, "IR"},
{MSR_DR, "DR"},
{MSR_PMM, "PMM"},
#ifndef CONFIG_BOOKE
{MSR_RI, "RI"},
{MSR_LE, "LE"},
#endif
{0, NULL}
};
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
{
const char *s = "";
for (; bits->bit; ++bits)
if (val & bits->bit) {
printk("%s%s", s, bits->name);
s = sep;
}
}
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
{MSR_TS_T, "T"},
{MSR_TS_S, "S"},
{MSR_TM, "E"},
{0, NULL}
};
static void print_tm_bits(unsigned long val)
{
/*
* This only prints something if at least one of the TM bit is set.
* Inside the TM[], the output means:
* E: Enabled (bit 32)
* S: Suspended (bit 33)
* T: Transactional (bit 34)
*/
if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
printk(",TM[");
print_bits(val, msr_tm_bits, "");
printk("]");
}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif
static void print_msr_bits(unsigned long val)
{
printk("<");
print_bits(val, msr_bits, ",");
print_tm_bits(val);
printk(">");
}
#ifdef CONFIG_PPC64
#define REG "%016lx"
#define REGS_PER_LINE 4
#define LAST_VOLATILE 13
#else
#define REG "%08lx"
#define REGS_PER_LINE 8
#define LAST_VOLATILE 12
#endif
void show_regs(struct pt_regs * regs)
{
int i, trap;
show_regs_print_info(KERN_DEFAULT);
printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
regs->nip, regs->link, regs->ctr);
printk("REGS: %p TRAP: %04lx %s (%s)\n",
regs, regs->trap, print_tainted(), init_utsname()->release);
printk("MSR: "REG" ", regs->msr);
print_msr_bits(regs->msr);
printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
trap = TRAP(regs);
if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
printk("CFAR: "REG" ", regs->orig_gpr3);
if (trap == 0x200 || trap == 0x300 || trap == 0x600)
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
#else
printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
#endif
#ifdef CONFIG_PPC64
printk("SOFTE: %ld ", regs->softe);
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
if (MSR_TM_ACTIVE(regs->msr))
printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
#endif
for (i = 0; i < 32; i++) {
if ((i % REGS_PER_LINE) == 0)
printk("\nGPR%02d: ", i);
printk(REG " ", regs->gpr[i]);
if (i == LAST_VOLATILE && !FULL_REGS(regs))
break;
}
printk("\n");
#ifdef CONFIG_KALLSYMS
/*
* Lookup NIP late so we have the best change of getting the
* above info out without failing
*/
printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
#endif
show_stack(current, (unsigned long *) regs->gpr[1]);
if (!user_mode(regs))
show_instructions(regs);
}
void flush_thread(void)
{
#ifdef CONFIG_HAVE_HW_BREAKPOINT
flush_ptrace_hw_breakpoint(current);
#else /* CONFIG_HAVE_HW_BREAKPOINT */
set_debug_reg_defaults(&current->thread);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
}
void
release_thread(struct task_struct *t)
{
}
/*
* this gets called so that we can store coprocessor state into memory and
* copy the current task into the new thread.
*/
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
flush_all_to_thread(src);
/*
* Flush TM state out so we can copy it. __switch_to_tm() does this
* flush but it removes the checkpointed state from the current CPU and
* transitions the CPU out of TM mode. Hence we need to call
* tm_recheckpoint_new_task() (on the same task) to restore the
* checkpointed state back and the TM mode.
*/
__switch_to_tm(src);
tm_recheckpoint_new_task(src);
*dst = *src;
clear_task_ebb(dst);
return 0;
}
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
unsigned long sp_vsid;
unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
if (radix_enabled())
return;
if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
<< SLB_VSID_SHIFT_1T;
else
sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
<< SLB_VSID_SHIFT;
sp_vsid |= SLB_VSID_KERNEL | llp;
p->thread.ksp_vsid = sp_vsid;
#endif
}
/*
* Copy a thread..
*/
/*
* Copy architecture-specific thread state
*/
int copy_thread(unsigned long clone_flags, unsigned long usp,
unsigned long kthread_arg, struct task_struct *p)
{
struct pt_regs *childregs, *kregs;
extern void ret_from_fork(void);
extern void ret_from_kernel_thread(void);
void (*f)(void);
unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
struct thread_info *ti = task_thread_info(p);
klp_init_thread_info(ti);
/* Copy registers */
sp -= sizeof(struct pt_regs);
childregs = (struct pt_regs *) sp;
if (unlikely(p->flags & PF_KTHREAD)) {
/* kernel thread */
memset(childregs, 0, sizeof(struct pt_regs));
childregs->gpr[1] = sp + sizeof(struct pt_regs);
/* function */
if (usp)
childregs->gpr[14] = ppc_function_entry((void *)usp);
#ifdef CONFIG_PPC64
clear_tsk_thread_flag(p, TIF_32BIT);
childregs->softe = 1;
#endif
childregs->gpr[15] = kthread_arg;
p->thread.regs = NULL; /* no user register state */
ti->flags |= _TIF_RESTOREALL;
f = ret_from_kernel_thread;
} else {
/* user thread */
struct pt_regs *regs = current_pt_regs();
CHECK_FULL_REGS(regs);
*childregs = *regs;
if (usp)
childregs->gpr[1] = usp;
p->thread.regs = childregs;
childregs->gpr[3] = 0; /* Result from fork() */
if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
if (!is_32bit_task())
childregs->gpr[13] = childregs->gpr[6];
else
#endif
childregs->gpr[2] = childregs->gpr[6];
}
f = ret_from_fork;
}
childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
sp -= STACK_FRAME_OVERHEAD;
/*
* The way this works is that at some point in the future
* some task will call _switch to switch to the new task.
* That will pop off the stack frame created below and start
* the new task running at ret_from_fork. The new task will
* do some house keeping and then return from the fork or clone
* system call, using the stack frame created above.
*/
((unsigned long *)sp)[0] = 0;
sp -= sizeof(struct pt_regs);
kregs = (struct pt_regs *) sp;
sp -= STACK_FRAME_OVERHEAD;
p->thread.ksp = sp;
#ifdef CONFIG_PPC32
p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
_ALIGN_UP(sizeof(struct thread_info), 16);
#endif
#ifdef CONFIG_HAVE_HW_BREAKPOINT
p->thread.ptrace_bps[0] = NULL;
#endif
p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
p->thread.vr_save_area = NULL;
#endif
setup_ksp_vsid(p, sp);
#ifdef CONFIG_PPC64
if (cpu_has_feature(CPU_FTR_DSCR)) {
p->thread.dscr_inherit = current->thread.dscr_inherit;
p->thread.dscr = mfspr(SPRN_DSCR);
}
if (cpu_has_feature(CPU_FTR_HAS_PPR))
p->thread.ppr = INIT_PPR;
#endif
kregs->nip = ppc_function_entry(f);
return 0;
}
/*
* Set up a thread for executing a new program
*/
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
{
#ifdef CONFIG_PPC64
unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
#endif
/*
* If we exec out of a kernel thread then thread.regs will not be
* set. Do it now.
*/
if (!current->thread.regs) {
struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
current->thread.regs = regs - 1;
}
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
/*
* Clear any transactional state, we're exec()ing. The cause is
* not important as there will never be a recheckpoint so it's not
* user visible.
*/
if (MSR_TM_SUSPENDED(mfmsr()))
tm_reclaim_current(0);
#endif
memset(regs->gpr, 0, sizeof(regs->gpr));
regs->ctr = 0;
regs->link = 0;
regs->xer = 0;
regs->ccr = 0;
regs->gpr[1] = sp;
/*
* We have just cleared all the nonvolatile GPRs, so make
* FULL_REGS(regs) return true. This is necessary to allow
* ptrace to examine the thread immediately after exec.
*/
regs->trap &= ~1UL;
#ifdef CONFIG_PPC32
regs->mq = 0;
regs->nip = start;
regs->msr = MSR_USER;
#else
if (!is_32bit_task()) {
unsigned long entry;
if (is_elf2_task()) {
/* Look ma, no function descriptors! */
entry = start;
/*
* Ulrich says:
* The latest iteration of the ABI requires that when
* calling a function (at its global entry point),
* the caller must ensure r12 holds the entry point
* address (so that the function can quickly
* establish addressability).
*/
regs->gpr[12] = start;
/* Make sure that's restored on entry to userspace. */
set_thread_flag(TIF_RESTOREALL);
} else {
unsigned long toc;
/* start is a relocated pointer to the function
* descriptor for the elf _start routine. The first
* entry in the function descriptor is the entry
* address of _start and the second entry is the TOC
* value we need to use.
*/
__get_user(entry, (unsigned long __user *)start);
__get_user(toc, (unsigned long __user *)start+1);
/* Check whether the e_entry function descriptor entries
* need to be relocated before we can use them.
*/
if (load_addr != 0) {
entry += load_addr;
toc += load_addr;
}
regs->gpr[2] = toc;
}
regs->nip = entry;
regs->msr = MSR_USER64;
} else {
regs->nip = start;
regs->gpr[2] = 0;
regs->msr = MSR_USER32;
}
#endif
#ifdef CONFIG_VSX
current->thread.used_vsr = 0;
#endif
memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
current->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
current->thread.vr_save_area = NULL;
current->thread.vrsave = 0;
current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
memset(current->thread.evr, 0, sizeof(current->thread.evr));
current->thread.acc = 0;
current->thread.spefscr = 0;
current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
if (cpu_has_feature(CPU_FTR_TM))
regs->msr |= MSR_TM;
current->thread.tm_tfhar = 0;
current->thread.tm_texasr = 0;
current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
}
EXPORT_SYMBOL(start_thread);
#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
| PR_FP_EXC_RES | PR_FP_EXC_INV)
int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
struct pt_regs *regs = tsk->thread.regs;
/* This is a bit hairy. If we are an SPE enabled processor
* (have embedded fp) we store the IEEE exception enable flags in
* fpexc_mode. fpexc_mode is also used for setting FP exception
* mode (asyn, precise, disabled) for 'Classic' FP. */
if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
if (cpu_has_feature(CPU_FTR_SPE)) {
/*
* When the sticky exception bits are set
* directly by userspace, it must call prctl
* with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
* in the existing prctl settings) or
* PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
* the bits being set). <fenv.h> functions
* saving and restoring the whole
* floating-point environment need to do so
* anyway to restore the prctl settings from
* the saved environment.
*/
tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
tsk->thread.fpexc_mode = val &
(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
return 0;
} else {
return -EINVAL;
}
#else
return -EINVAL;
#endif
}
/* on a CONFIG_SPE this does not hurt us. The bits that
* __pack_fe01 use do not overlap with bits used for
* PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
* on CONFIG_SPE implementations are reserved so writing to
* them does not change anything */
if (val > PR_FP_EXC_PRECISE)
return -EINVAL;
tsk->thread.fpexc_mode = __pack_fe01(val);
if (regs != NULL && (regs->msr & MSR_FP) != 0)
regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
| tsk->thread.fpexc_mode;
return 0;
}
int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
unsigned int val;
if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
if (cpu_has_feature(CPU_FTR_SPE)) {
/*
* When the sticky exception bits are set
* directly by userspace, it must call prctl
* with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
* in the existing prctl settings) or
* PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
* the bits being set). <fenv.h> functions
* saving and restoring the whole
* floating-point environment need to do so
* anyway to restore the prctl settings from
* the saved environment.
*/
tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
val = tsk->thread.fpexc_mode;
} else
return -EINVAL;
#else
return -EINVAL;
#endif
else
val = __unpack_fe01(tsk->thread.fpexc_mode);
return put_user(val, (unsigned int __user *) adr);
}
int set_endian(struct task_struct *tsk, unsigned int val)
{
struct pt_regs *regs = tsk->thread.regs;
if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
(val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
return -EINVAL;
if (regs == NULL)
return -EINVAL;
if (val == PR_ENDIAN_BIG)
regs->msr &= ~MSR_LE;
else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
regs->msr |= MSR_LE;
else
return -EINVAL;
return 0;
}
int get_endian(struct task_struct *tsk, unsigned long adr)
{
struct pt_regs *regs = tsk->thread.regs;
unsigned int val;
if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
!cpu_has_feature(CPU_FTR_REAL_LE))
return -EINVAL;
if (regs == NULL)
return -EINVAL;
if (regs->msr & MSR_LE) {
if (cpu_has_feature(CPU_FTR_REAL_LE))
val = PR_ENDIAN_LITTLE;
else
val = PR_ENDIAN_PPC_LITTLE;
} else
val = PR_ENDIAN_BIG;
return put_user(val, (unsigned int __user *)adr);
}
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
tsk->thread.align_ctl = val;
return 0;
}
int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
unsigned long nbytes)
{
unsigned long stack_page;
unsigned long cpu = task_cpu(p);
/*
* Avoid crashing if the stack has overflowed and corrupted
* task_cpu(p), which is in the thread_info struct.
*/
if (cpu < NR_CPUS && cpu_possible(cpu)) {
stack_page = (unsigned long) hardirq_ctx[cpu];
if (sp >= stack_page + sizeof(struct thread_struct)
&& sp <= stack_page + THREAD_SIZE - nbytes)
return 1;
stack_page = (unsigned long) softirq_ctx[cpu];
if (sp >= stack_page + sizeof(struct thread_struct)
&& sp <= stack_page + THREAD_SIZE - nbytes)
return 1;
}
return 0;
}
int validate_sp(unsigned long sp, struct task_struct *p,
unsigned long nbytes)
{
unsigned long stack_page = (unsigned long)task_stack_page(p);
if (sp >= stack_page + sizeof(struct thread_struct)
&& sp <= stack_page + THREAD_SIZE - nbytes)
return 1;
return valid_irq_stack(sp, p, nbytes);
}
EXPORT_SYMBOL(validate_sp);
unsigned long get_wchan(struct task_struct *p)
{
unsigned long ip, sp;
int count = 0;
if (!p || p == current || p->state == TASK_RUNNING)
return 0;
sp = p->thread.ksp;
if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
return 0;
do {
sp = *(unsigned long *)sp;
if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
return 0;
if (count > 0) {
ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
if (!in_sched_functions(ip))
return ip;
}
} while (count++ < 16);
return 0;
}
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
void show_stack(struct task_struct *tsk, unsigned long *stack)
{
unsigned long sp, ip, lr, newsp;
int count = 0;
int firstframe = 1;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
int curr_frame = current->curr_ret_stack;
extern void return_to_handler(void);
unsigned long rth = (unsigned long)return_to_handler;
#endif
sp = (unsigned long) stack;
if (tsk == NULL)
tsk = current;
if (sp == 0) {
if (tsk == current)
sp = current_stack_pointer();
else
sp = tsk->thread.ksp;
}
lr = 0;
printk("Call Trace:\n");
do {
if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
return;
stack = (unsigned long *) sp;
newsp = stack[0];
ip = stack[STACK_FRAME_LR_SAVE];
if (!firstframe || ip != lr) {
printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
if ((ip == rth) && curr_frame >= 0) {
printk(" (%pS)",
(void *)current->ret_stack[curr_frame].ret);
curr_frame--;
}
#endif
if (firstframe)
printk(" (unreliable)");
printk("\n");
}
firstframe = 0;
/*
* See if this is an exception frame.
* We look for the "regshere" marker in the current frame.
*/
if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
&& stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
struct pt_regs *regs = (struct pt_regs *)
(sp + STACK_FRAME_OVERHEAD);
lr = regs->link;
printk("--- interrupt: %lx at %pS\n LR = %pS\n",
regs->trap, (void *)regs->nip, (void *)lr);
firstframe = 1;
}
sp = newsp;
} while (count++ < kstack_depth_to_print);
}
#ifdef CONFIG_PPC64
/* Called with hard IRQs off */
void notrace __ppc64_runlatch_on(void)
{
struct thread_info *ti = current_thread_info();
unsigned long ctrl;
ctrl = mfspr(SPRN_CTRLF);
ctrl |= CTRL_RUNLATCH;
mtspr(SPRN_CTRLT, ctrl);
ti->local_flags |= _TLF_RUNLATCH;
}
/* Called with hard IRQs off */
void notrace __ppc64_runlatch_off(void)
{
struct thread_info *ti = current_thread_info();
unsigned long ctrl;
ti->local_flags &= ~_TLF_RUNLATCH;
ctrl = mfspr(SPRN_CTRLF);
ctrl &= ~CTRL_RUNLATCH;
mtspr(SPRN_CTRLT, ctrl);
}
#endif /* CONFIG_PPC64 */
unsigned long arch_align_stack(unsigned long sp)
{
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
sp -= get_random_int() & ~PAGE_MASK;
return sp & ~0xf;
}
static inline unsigned long brk_rnd(void)
{
unsigned long rnd = 0;
/* 8MB for 32bit, 1GB for 64bit */
if (is_32bit_task())
rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
else
rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
return rnd << PAGE_SHIFT;
}
unsigned long arch_randomize_brk(struct mm_struct *mm)
{
unsigned long base = mm->brk;
unsigned long ret;
#ifdef CONFIG_PPC_STD_MMU_64
/*
* If we are using 1TB segments and we are allowed to randomise
* the heap, we can put it above 1TB so it is backed by a 1TB
* segment. Otherwise the heap will be in the bottom 1TB
* which always uses 256MB segments and this may result in a
* performance penalty. We don't need to worry about radix. For
* radix, mmu_highuser_ssize remains unchanged from 256MB.
*/
if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif
ret = PAGE_ALIGN(base + brk_rnd());
if (ret < mm->brk)
return mm->brk;
return ret;
}