| /* |
| * efi.c - EFI subsystem |
| * |
| * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com> |
| * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com> |
| * Copyright (C) 2013 Tom Gundersen <teg@jklm.no> |
| * |
| * This code registers /sys/firmware/efi{,/efivars} when EFI is supported, |
| * allowing the efivarfs to be mounted or the efivars module to be loaded. |
| * The existance of /sys/firmware/efi may also be used by userspace to |
| * determine that the system supports EFI. |
| * |
| * This file is released under the GPLv2. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kobject.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/device.h> |
| #include <linux/efi.h> |
| #include <linux/of.h> |
| #include <linux/of_fdt.h> |
| #include <linux/io.h> |
| #include <linux/platform_device.h> |
| |
| struct efi __read_mostly efi = { |
| .mps = EFI_INVALID_TABLE_ADDR, |
| .acpi = EFI_INVALID_TABLE_ADDR, |
| .acpi20 = EFI_INVALID_TABLE_ADDR, |
| .smbios = EFI_INVALID_TABLE_ADDR, |
| .smbios3 = EFI_INVALID_TABLE_ADDR, |
| .sal_systab = EFI_INVALID_TABLE_ADDR, |
| .boot_info = EFI_INVALID_TABLE_ADDR, |
| .hcdp = EFI_INVALID_TABLE_ADDR, |
| .uga = EFI_INVALID_TABLE_ADDR, |
| .uv_systab = EFI_INVALID_TABLE_ADDR, |
| .fw_vendor = EFI_INVALID_TABLE_ADDR, |
| .runtime = EFI_INVALID_TABLE_ADDR, |
| .config_table = EFI_INVALID_TABLE_ADDR, |
| .esrt = EFI_INVALID_TABLE_ADDR, |
| }; |
| EXPORT_SYMBOL(efi); |
| |
| static bool disable_runtime; |
| static int __init setup_noefi(char *arg) |
| { |
| disable_runtime = true; |
| return 0; |
| } |
| early_param("noefi", setup_noefi); |
| |
| bool efi_runtime_disabled(void) |
| { |
| return disable_runtime; |
| } |
| |
| static int __init parse_efi_cmdline(char *str) |
| { |
| if (!str) { |
| pr_warn("need at least one option\n"); |
| return -EINVAL; |
| } |
| |
| if (parse_option_str(str, "noruntime")) |
| disable_runtime = true; |
| |
| return 0; |
| } |
| early_param("efi", parse_efi_cmdline); |
| |
| struct kobject *efi_kobj; |
| |
| /* |
| * Let's not leave out systab information that snuck into |
| * the efivars driver |
| */ |
| static ssize_t systab_show(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| char *str = buf; |
| |
| if (!kobj || !buf) |
| return -EINVAL; |
| |
| if (efi.mps != EFI_INVALID_TABLE_ADDR) |
| str += sprintf(str, "MPS=0x%lx\n", efi.mps); |
| if (efi.acpi20 != EFI_INVALID_TABLE_ADDR) |
| str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20); |
| if (efi.acpi != EFI_INVALID_TABLE_ADDR) |
| str += sprintf(str, "ACPI=0x%lx\n", efi.acpi); |
| /* |
| * If both SMBIOS and SMBIOS3 entry points are implemented, the |
| * SMBIOS3 entry point shall be preferred, so we list it first to |
| * let applications stop parsing after the first match. |
| */ |
| if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) |
| str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3); |
| if (efi.smbios != EFI_INVALID_TABLE_ADDR) |
| str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios); |
| if (efi.hcdp != EFI_INVALID_TABLE_ADDR) |
| str += sprintf(str, "HCDP=0x%lx\n", efi.hcdp); |
| if (efi.boot_info != EFI_INVALID_TABLE_ADDR) |
| str += sprintf(str, "BOOTINFO=0x%lx\n", efi.boot_info); |
| if (efi.uga != EFI_INVALID_TABLE_ADDR) |
| str += sprintf(str, "UGA=0x%lx\n", efi.uga); |
| |
| return str - buf; |
| } |
| |
| static struct kobj_attribute efi_attr_systab = |
| __ATTR(systab, 0400, systab_show, NULL); |
| |
| #define EFI_FIELD(var) efi.var |
| |
| #define EFI_ATTR_SHOW(name) \ |
| static ssize_t name##_show(struct kobject *kobj, \ |
| struct kobj_attribute *attr, char *buf) \ |
| { \ |
| return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \ |
| } |
| |
| EFI_ATTR_SHOW(fw_vendor); |
| EFI_ATTR_SHOW(runtime); |
| EFI_ATTR_SHOW(config_table); |
| |
| static ssize_t fw_platform_size_show(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32); |
| } |
| |
| static struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor); |
| static struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime); |
| static struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table); |
| static struct kobj_attribute efi_attr_fw_platform_size = |
| __ATTR_RO(fw_platform_size); |
| |
| static struct attribute *efi_subsys_attrs[] = { |
| &efi_attr_systab.attr, |
| &efi_attr_fw_vendor.attr, |
| &efi_attr_runtime.attr, |
| &efi_attr_config_table.attr, |
| &efi_attr_fw_platform_size.attr, |
| NULL, |
| }; |
| |
| static umode_t efi_attr_is_visible(struct kobject *kobj, |
| struct attribute *attr, int n) |
| { |
| if (attr == &efi_attr_fw_vendor.attr) { |
| if (efi_enabled(EFI_PARAVIRT) || |
| efi.fw_vendor == EFI_INVALID_TABLE_ADDR) |
| return 0; |
| } else if (attr == &efi_attr_runtime.attr) { |
| if (efi.runtime == EFI_INVALID_TABLE_ADDR) |
| return 0; |
| } else if (attr == &efi_attr_config_table.attr) { |
| if (efi.config_table == EFI_INVALID_TABLE_ADDR) |
| return 0; |
| } |
| |
| return attr->mode; |
| } |
| |
| static struct attribute_group efi_subsys_attr_group = { |
| .attrs = efi_subsys_attrs, |
| .is_visible = efi_attr_is_visible, |
| }; |
| |
| static struct efivars generic_efivars; |
| static struct efivar_operations generic_ops; |
| |
| static int generic_ops_register(void) |
| { |
| generic_ops.get_variable = efi.get_variable; |
| generic_ops.set_variable = efi.set_variable; |
| generic_ops.get_next_variable = efi.get_next_variable; |
| generic_ops.query_variable_store = efi_query_variable_store; |
| |
| return efivars_register(&generic_efivars, &generic_ops, efi_kobj); |
| } |
| |
| static void generic_ops_unregister(void) |
| { |
| efivars_unregister(&generic_efivars); |
| } |
| |
| /* |
| * We register the efi subsystem with the firmware subsystem and the |
| * efivars subsystem with the efi subsystem, if the system was booted with |
| * EFI. |
| */ |
| static int __init efisubsys_init(void) |
| { |
| int error; |
| |
| if (!efi_enabled(EFI_BOOT)) |
| return 0; |
| |
| /* We register the efi directory at /sys/firmware/efi */ |
| efi_kobj = kobject_create_and_add("efi", firmware_kobj); |
| if (!efi_kobj) { |
| pr_err("efi: Firmware registration failed.\n"); |
| return -ENOMEM; |
| } |
| |
| error = generic_ops_register(); |
| if (error) |
| goto err_put; |
| |
| error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group); |
| if (error) { |
| pr_err("efi: Sysfs attribute export failed with error %d.\n", |
| error); |
| goto err_unregister; |
| } |
| |
| error = efi_runtime_map_init(efi_kobj); |
| if (error) |
| goto err_remove_group; |
| |
| /* and the standard mountpoint for efivarfs */ |
| error = sysfs_create_mount_point(efi_kobj, "efivars"); |
| if (error) { |
| pr_err("efivars: Subsystem registration failed.\n"); |
| goto err_remove_group; |
| } |
| |
| return 0; |
| |
| err_remove_group: |
| sysfs_remove_group(efi_kobj, &efi_subsys_attr_group); |
| err_unregister: |
| generic_ops_unregister(); |
| err_put: |
| kobject_put(efi_kobj); |
| return error; |
| } |
| |
| subsys_initcall(efisubsys_init); |
| |
| /* |
| * Find the efi memory descriptor for a given physical address. Given a |
| * physicall address, determine if it exists within an EFI Memory Map entry, |
| * and if so, populate the supplied memory descriptor with the appropriate |
| * data. |
| */ |
| int __init efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md) |
| { |
| struct efi_memory_map *map = efi.memmap; |
| void *p, *e; |
| |
| if (!efi_enabled(EFI_MEMMAP)) { |
| pr_err_once("EFI_MEMMAP is not enabled.\n"); |
| return -EINVAL; |
| } |
| |
| if (!map) { |
| pr_err_once("efi.memmap is not set.\n"); |
| return -EINVAL; |
| } |
| if (!out_md) { |
| pr_err_once("out_md is null.\n"); |
| return -EINVAL; |
| } |
| if (WARN_ON_ONCE(!map->phys_map)) |
| return -EINVAL; |
| if (WARN_ON_ONCE(map->nr_map == 0) || WARN_ON_ONCE(map->desc_size == 0)) |
| return -EINVAL; |
| |
| e = map->phys_map + map->nr_map * map->desc_size; |
| for (p = map->phys_map; p < e; p += map->desc_size) { |
| efi_memory_desc_t *md; |
| u64 size; |
| u64 end; |
| |
| /* |
| * If a driver calls this after efi_free_boot_services, |
| * ->map will be NULL, and the target may also not be mapped. |
| * So just always get our own virtual map on the CPU. |
| * |
| */ |
| md = early_memremap((phys_addr_t)p, sizeof (*md)); |
| if (!md) { |
| pr_err_once("early_memremap(%p, %zu) failed.\n", |
| p, sizeof (*md)); |
| return -ENOMEM; |
| } |
| |
| if (!(md->attribute & EFI_MEMORY_RUNTIME) && |
| md->type != EFI_BOOT_SERVICES_DATA && |
| md->type != EFI_RUNTIME_SERVICES_DATA) { |
| early_memunmap(md, sizeof (*md)); |
| continue; |
| } |
| |
| size = md->num_pages << EFI_PAGE_SHIFT; |
| end = md->phys_addr + size; |
| if (phys_addr >= md->phys_addr && phys_addr < end) { |
| memcpy(out_md, md, sizeof(*out_md)); |
| early_memunmap(md, sizeof (*md)); |
| return 0; |
| } |
| |
| early_memunmap(md, sizeof (*md)); |
| } |
| pr_err_once("requested map not found.\n"); |
| return -ENOENT; |
| } |
| |
| /* |
| * Calculate the highest address of an efi memory descriptor. |
| */ |
| u64 __init efi_mem_desc_end(efi_memory_desc_t *md) |
| { |
| u64 size = md->num_pages << EFI_PAGE_SHIFT; |
| u64 end = md->phys_addr + size; |
| return end; |
| } |
| |
| /* |
| * We can't ioremap data in EFI boot services RAM, because we've already mapped |
| * it as RAM. So, look it up in the existing EFI memory map instead. Only |
| * callable after efi_enter_virtual_mode and before efi_free_boot_services. |
| */ |
| void __iomem *efi_lookup_mapped_addr(u64 phys_addr) |
| { |
| struct efi_memory_map *map; |
| void *p; |
| map = efi.memmap; |
| if (!map) |
| return NULL; |
| if (WARN_ON(!map->map)) |
| return NULL; |
| for (p = map->map; p < map->map_end; p += map->desc_size) { |
| efi_memory_desc_t *md = p; |
| u64 size = md->num_pages << EFI_PAGE_SHIFT; |
| u64 end = md->phys_addr + size; |
| if (!(md->attribute & EFI_MEMORY_RUNTIME) && |
| md->type != EFI_BOOT_SERVICES_CODE && |
| md->type != EFI_BOOT_SERVICES_DATA) |
| continue; |
| if (!md->virt_addr) |
| continue; |
| if (phys_addr >= md->phys_addr && phys_addr < end) { |
| phys_addr += md->virt_addr - md->phys_addr; |
| return (__force void __iomem *)(unsigned long)phys_addr; |
| } |
| } |
| return NULL; |
| } |
| |
| static __initdata efi_config_table_type_t common_tables[] = { |
| {ACPI_20_TABLE_GUID, "ACPI 2.0", &efi.acpi20}, |
| {ACPI_TABLE_GUID, "ACPI", &efi.acpi}, |
| {HCDP_TABLE_GUID, "HCDP", &efi.hcdp}, |
| {MPS_TABLE_GUID, "MPS", &efi.mps}, |
| {SAL_SYSTEM_TABLE_GUID, "SALsystab", &efi.sal_systab}, |
| {SMBIOS_TABLE_GUID, "SMBIOS", &efi.smbios}, |
| {SMBIOS3_TABLE_GUID, "SMBIOS 3.0", &efi.smbios3}, |
| {UGA_IO_PROTOCOL_GUID, "UGA", &efi.uga}, |
| {EFI_SYSTEM_RESOURCE_TABLE_GUID, "ESRT", &efi.esrt}, |
| {NULL_GUID, NULL, NULL}, |
| }; |
| |
| static __init int match_config_table(efi_guid_t *guid, |
| unsigned long table, |
| efi_config_table_type_t *table_types) |
| { |
| int i; |
| |
| if (table_types) { |
| for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) { |
| if (!efi_guidcmp(*guid, table_types[i].guid)) { |
| *(table_types[i].ptr) = table; |
| pr_cont(" %s=0x%lx ", |
| table_types[i].name, table); |
| return 1; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| int __init efi_config_parse_tables(void *config_tables, int count, int sz, |
| efi_config_table_type_t *arch_tables) |
| { |
| void *tablep; |
| int i; |
| |
| tablep = config_tables; |
| pr_info(""); |
| for (i = 0; i < count; i++) { |
| efi_guid_t guid; |
| unsigned long table; |
| |
| if (efi_enabled(EFI_64BIT)) { |
| u64 table64; |
| guid = ((efi_config_table_64_t *)tablep)->guid; |
| table64 = ((efi_config_table_64_t *)tablep)->table; |
| table = table64; |
| #ifndef CONFIG_64BIT |
| if (table64 >> 32) { |
| pr_cont("\n"); |
| pr_err("Table located above 4GB, disabling EFI.\n"); |
| return -EINVAL; |
| } |
| #endif |
| } else { |
| guid = ((efi_config_table_32_t *)tablep)->guid; |
| table = ((efi_config_table_32_t *)tablep)->table; |
| } |
| |
| if (!match_config_table(&guid, table, common_tables)) |
| match_config_table(&guid, table, arch_tables); |
| |
| tablep += sz; |
| } |
| pr_cont("\n"); |
| set_bit(EFI_CONFIG_TABLES, &efi.flags); |
| return 0; |
| } |
| |
| int __init efi_config_init(efi_config_table_type_t *arch_tables) |
| { |
| void *config_tables; |
| int sz, ret; |
| |
| if (efi_enabled(EFI_64BIT)) |
| sz = sizeof(efi_config_table_64_t); |
| else |
| sz = sizeof(efi_config_table_32_t); |
| |
| /* |
| * Let's see what config tables the firmware passed to us. |
| */ |
| config_tables = early_memremap(efi.systab->tables, |
| efi.systab->nr_tables * sz); |
| if (config_tables == NULL) { |
| pr_err("Could not map Configuration table!\n"); |
| return -ENOMEM; |
| } |
| |
| ret = efi_config_parse_tables(config_tables, efi.systab->nr_tables, sz, |
| arch_tables); |
| |
| early_memunmap(config_tables, efi.systab->nr_tables * sz); |
| return ret; |
| } |
| |
| #ifdef CONFIG_EFI_VARS_MODULE |
| static int __init efi_load_efivars(void) |
| { |
| struct platform_device *pdev; |
| |
| if (!efi_enabled(EFI_RUNTIME_SERVICES)) |
| return 0; |
| |
| pdev = platform_device_register_simple("efivars", 0, NULL, 0); |
| return IS_ERR(pdev) ? PTR_ERR(pdev) : 0; |
| } |
| device_initcall(efi_load_efivars); |
| #endif |
| |
| #ifdef CONFIG_EFI_PARAMS_FROM_FDT |
| |
| #define UEFI_PARAM(name, prop, field) \ |
| { \ |
| { name }, \ |
| { prop }, \ |
| offsetof(struct efi_fdt_params, field), \ |
| FIELD_SIZEOF(struct efi_fdt_params, field) \ |
| } |
| |
| static __initdata struct { |
| const char name[32]; |
| const char propname[32]; |
| int offset; |
| int size; |
| } dt_params[] = { |
| UEFI_PARAM("System Table", "linux,uefi-system-table", system_table), |
| UEFI_PARAM("MemMap Address", "linux,uefi-mmap-start", mmap), |
| UEFI_PARAM("MemMap Size", "linux,uefi-mmap-size", mmap_size), |
| UEFI_PARAM("MemMap Desc. Size", "linux,uefi-mmap-desc-size", desc_size), |
| UEFI_PARAM("MemMap Desc. Version", "linux,uefi-mmap-desc-ver", desc_ver) |
| }; |
| |
| struct param_info { |
| int verbose; |
| int found; |
| void *params; |
| }; |
| |
| static int __init fdt_find_uefi_params(unsigned long node, const char *uname, |
| int depth, void *data) |
| { |
| struct param_info *info = data; |
| const void *prop; |
| void *dest; |
| u64 val; |
| int i, len; |
| |
| if (depth != 1 || strcmp(uname, "chosen") != 0) |
| return 0; |
| |
| for (i = 0; i < ARRAY_SIZE(dt_params); i++) { |
| prop = of_get_flat_dt_prop(node, dt_params[i].propname, &len); |
| if (!prop) |
| return 0; |
| dest = info->params + dt_params[i].offset; |
| info->found++; |
| |
| val = of_read_number(prop, len / sizeof(u32)); |
| |
| if (dt_params[i].size == sizeof(u32)) |
| *(u32 *)dest = val; |
| else |
| *(u64 *)dest = val; |
| |
| if (info->verbose) |
| pr_info(" %s: 0x%0*llx\n", dt_params[i].name, |
| dt_params[i].size * 2, val); |
| } |
| return 1; |
| } |
| |
| int __init efi_get_fdt_params(struct efi_fdt_params *params, int verbose) |
| { |
| struct param_info info; |
| int ret; |
| |
| pr_info("Getting EFI parameters from FDT:\n"); |
| |
| info.verbose = verbose; |
| info.found = 0; |
| info.params = params; |
| |
| ret = of_scan_flat_dt(fdt_find_uefi_params, &info); |
| if (!info.found) |
| pr_info("UEFI not found.\n"); |
| else if (!ret) |
| pr_err("Can't find '%s' in device tree!\n", |
| dt_params[info.found].name); |
| |
| return ret; |
| } |
| #endif /* CONFIG_EFI_PARAMS_FROM_FDT */ |
| |
| static __initdata char memory_type_name[][20] = { |
| "Reserved", |
| "Loader Code", |
| "Loader Data", |
| "Boot Code", |
| "Boot Data", |
| "Runtime Code", |
| "Runtime Data", |
| "Conventional Memory", |
| "Unusable Memory", |
| "ACPI Reclaim Memory", |
| "ACPI Memory NVS", |
| "Memory Mapped I/O", |
| "MMIO Port Space", |
| "PAL Code" |
| }; |
| |
| char * __init efi_md_typeattr_format(char *buf, size_t size, |
| const efi_memory_desc_t *md) |
| { |
| char *pos; |
| int type_len; |
| u64 attr; |
| |
| pos = buf; |
| if (md->type >= ARRAY_SIZE(memory_type_name)) |
| type_len = snprintf(pos, size, "[type=%u", md->type); |
| else |
| type_len = snprintf(pos, size, "[%-*s", |
| (int)(sizeof(memory_type_name[0]) - 1), |
| memory_type_name[md->type]); |
| if (type_len >= size) |
| return buf; |
| |
| pos += type_len; |
| size -= type_len; |
| |
| attr = md->attribute; |
| if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT | |
| EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO | |
| EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP | |
| EFI_MEMORY_RUNTIME)) |
| snprintf(pos, size, "|attr=0x%016llx]", |
| (unsigned long long)attr); |
| else |
| snprintf(pos, size, "|%3s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]", |
| attr & EFI_MEMORY_RUNTIME ? "RUN" : "", |
| attr & EFI_MEMORY_XP ? "XP" : "", |
| attr & EFI_MEMORY_RP ? "RP" : "", |
| attr & EFI_MEMORY_WP ? "WP" : "", |
| attr & EFI_MEMORY_RO ? "RO" : "", |
| attr & EFI_MEMORY_UCE ? "UCE" : "", |
| attr & EFI_MEMORY_WB ? "WB" : "", |
| attr & EFI_MEMORY_WT ? "WT" : "", |
| attr & EFI_MEMORY_WC ? "WC" : "", |
| attr & EFI_MEMORY_UC ? "UC" : ""); |
| return buf; |
| } |