| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2003, 2004 Ralf Baechle |
| */ |
| #ifndef _ASM_HAZARDS_H |
| #define _ASM_HAZARDS_H |
| |
| #include <linux/config.h> |
| |
| #ifdef __ASSEMBLY__ |
| |
| .macro _ssnop |
| sll $0, $0, 1 |
| .endm |
| |
| .macro _ehb |
| sll $0, $0, 3 |
| .endm |
| |
| /* |
| * RM9000 hazards. When the JTLB is updated by tlbwi or tlbwr, a subsequent |
| * use of the JTLB for instructions should not occur for 4 cpu cycles and use |
| * for data translations should not occur for 3 cpu cycles. |
| */ |
| #ifdef CONFIG_CPU_RM9000 |
| |
| .macro mtc0_tlbw_hazard |
| .set push |
| .set mips32 |
| _ssnop; _ssnop; _ssnop; _ssnop |
| .set pop |
| .endm |
| |
| .macro tlbw_eret_hazard |
| .set push |
| .set mips32 |
| _ssnop; _ssnop; _ssnop; _ssnop |
| .set pop |
| .endm |
| |
| #else |
| |
| /* |
| * The taken branch will result in a two cycle penalty for the two killed |
| * instructions on R4000 / R4400. Other processors only have a single cycle |
| * hazard so this is nice trick to have an optimal code for a range of |
| * processors. |
| */ |
| .macro mtc0_tlbw_hazard |
| b . + 8 |
| .endm |
| |
| .macro tlbw_eret_hazard |
| .endm |
| #endif |
| |
| /* |
| * mtc0->mfc0 hazard |
| * The 24K has a 2 cycle mtc0/mfc0 execution hazard. |
| * It is a MIPS32R2 processor so ehb will clear the hazard. |
| */ |
| |
| #ifdef CONFIG_CPU_MIPSR2 |
| /* |
| * Use a macro for ehb unless explicit support for MIPSR2 is enabled |
| */ |
| |
| #define irq_enable_hazard |
| _ehb |
| |
| #define irq_disable_hazard |
| _ehb |
| |
| #elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000) || \ |
| defined(CONFIG_CPU_SB1) |
| |
| /* |
| * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer. |
| */ |
| |
| #define irq_enable_hazard |
| |
| #define irq_disable_hazard |
| |
| #else |
| |
| /* |
| * Classic MIPS needs 1 - 3 nops or ssnops |
| */ |
| #define irq_enable_hazard |
| #define irq_disable_hazard \ |
| _ssnop; _ssnop; _ssnop |
| |
| #endif |
| |
| #else /* __ASSEMBLY__ */ |
| |
| __asm__( |
| " .macro _ssnop \n\t" |
| " sll $0, $2, 1 \n\t" |
| " .endm \n\t" |
| " \n\t" |
| " .macro _ehb \n\t" |
| " sll $0, $0, 3 \n\t" |
| " .endm \n\t"); |
| |
| #ifdef CONFIG_CPU_RM9000 |
| |
| /* |
| * RM9000 hazards. When the JTLB is updated by tlbwi or tlbwr, a subsequent |
| * use of the JTLB for instructions should not occur for 4 cpu cycles and use |
| * for data translations should not occur for 3 cpu cycles. |
| */ |
| |
| #define mtc0_tlbw_hazard() \ |
| __asm__ __volatile__( \ |
| ".set\tmips32\n\t" \ |
| "_ssnop; _ssnop; _ssnop; _ssnop\n\t" \ |
| ".set\tmips0") |
| |
| #define tlbw_use_hazard() \ |
| __asm__ __volatile__( \ |
| ".set\tmips32\n\t" \ |
| "_ssnop; _ssnop; _ssnop; _ssnop\n\t" \ |
| ".set\tmips0") |
| |
| #define back_to_back_c0_hazard() do { } while (0) |
| |
| #else |
| |
| /* |
| * Overkill warning ... |
| */ |
| #define mtc0_tlbw_hazard() \ |
| __asm__ __volatile__( \ |
| ".set noreorder\n\t" \ |
| "nop; nop; nop; nop; nop; nop;\n\t" \ |
| ".set reorder\n\t") |
| |
| #define tlbw_use_hazard() \ |
| __asm__ __volatile__( \ |
| ".set noreorder\n\t" \ |
| "nop; nop; nop; nop; nop; nop;\n\t" \ |
| ".set reorder\n\t") |
| |
| #endif |
| |
| /* |
| * Interrupt enable/disable hazards |
| * Some processors have hazards when modifying |
| * the status register to change the interrupt state |
| */ |
| |
| #ifdef CONFIG_CPU_MIPSR2 |
| |
| __asm__( |
| " .macro\tirq_enable_hazard \n\t" |
| " _ehb \n\t" |
| " .endm \n\t" |
| " \n\t" |
| " .macro\tirq_disable_hazard \n\t" |
| " _ehb \n\t" |
| " .endm \n\t" |
| " \n\t" |
| " .macro\tback_to_back_c0_hazard \n\t" |
| " _ehb \n\t" |
| " .endm"); |
| |
| #define irq_enable_hazard() \ |
| __asm__ __volatile__( \ |
| "irq_enable_hazard") |
| |
| #define irq_disable_hazard() \ |
| __asm__ __volatile__( \ |
| "irq_disable_hazard") |
| |
| #define back_to_back_c0_hazard() \ |
| __asm__ __volatile__( \ |
| "back_to_back_c0_hazard") |
| |
| #elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000) || \ |
| defined(CONFIG_CPU_SB1) |
| |
| /* |
| * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer. |
| */ |
| |
| __asm__( |
| " .macro\tirq_enable_hazard \n\t" |
| " .endm \n\t" |
| " \n\t" |
| " .macro\tirq_disable_hazard \n\t" |
| " .endm"); |
| |
| #define irq_enable_hazard() do { } while (0) |
| #define irq_disable_hazard() do { } while (0) |
| |
| #define back_to_back_c0_hazard() do { } while (0) |
| |
| #else |
| |
| /* |
| * Default for classic MIPS processors. Assume worst case hazards but don't |
| * care about the irq_enable_hazard - sooner or later the hardware will |
| * enable it and we don't care when exactly. |
| */ |
| |
| __asm__( |
| " # \n\t" |
| " # There is a hazard but we do not care \n\t" |
| " # \n\t" |
| " .macro\tirq_enable_hazard \n\t" |
| " .endm \n\t" |
| " \n\t" |
| " .macro\tirq_disable_hazard \n\t" |
| " _ssnop; _ssnop; _ssnop \n\t" |
| " .endm"); |
| |
| #define irq_enable_hazard() do { } while (0) |
| #define irq_disable_hazard() \ |
| __asm__ __volatile__( \ |
| "irq_disable_hazard") |
| |
| #define back_to_back_c0_hazard() \ |
| __asm__ __volatile__( \ |
| " .set noreorder \n" \ |
| " nop; nop; nop \n" \ |
| " .set reorder \n") |
| |
| #endif |
| |
| #if defined(CONFIG_CPU_MIPS32_R2) || defined (CONFIG_CPU_MIPS64_R2) |
| #define instruction_hazard() \ |
| do { \ |
| __label__ __next; \ |
| __asm__ __volatile__( \ |
| " jr.hb %0 \n" \ |
| : \ |
| : "r" (&&__next)); \ |
| __next: \ |
| ; \ |
| } while (0) |
| |
| #else |
| #define instruction_hazard() do { } while (0) |
| #endif |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| #endif /* _ASM_HAZARDS_H */ |