| /* |
| * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_types.h" |
| #include "xfs_bit.h" |
| #include "xfs_log.h" |
| #include "xfs_inum.h" |
| #include "xfs_trans.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_mount.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_dinode.h" |
| #include "xfs_inode.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_error.h" |
| #include "xfs_trace.h" |
| |
| |
| kmem_zone_t *xfs_ili_zone; /* inode log item zone */ |
| |
| static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) |
| { |
| return container_of(lip, struct xfs_inode_log_item, ili_item); |
| } |
| |
| |
| /* |
| * This returns the number of iovecs needed to log the given inode item. |
| * |
| * We need one iovec for the inode log format structure, one for the |
| * inode core, and possibly one for the inode data/extents/b-tree root |
| * and one for the inode attribute data/extents/b-tree root. |
| */ |
| STATIC uint |
| xfs_inode_item_size( |
| struct xfs_log_item *lip) |
| { |
| struct xfs_inode_log_item *iip = INODE_ITEM(lip); |
| struct xfs_inode *ip = iip->ili_inode; |
| uint nvecs = 2; |
| |
| switch (ip->i_d.di_format) { |
| case XFS_DINODE_FMT_EXTENTS: |
| if ((iip->ili_fields & XFS_ILOG_DEXT) && |
| ip->i_d.di_nextents > 0 && |
| ip->i_df.if_bytes > 0) |
| nvecs++; |
| break; |
| |
| case XFS_DINODE_FMT_BTREE: |
| if ((iip->ili_fields & XFS_ILOG_DBROOT) && |
| ip->i_df.if_broot_bytes > 0) |
| nvecs++; |
| break; |
| |
| case XFS_DINODE_FMT_LOCAL: |
| if ((iip->ili_fields & XFS_ILOG_DDATA) && |
| ip->i_df.if_bytes > 0) |
| nvecs++; |
| break; |
| |
| case XFS_DINODE_FMT_DEV: |
| case XFS_DINODE_FMT_UUID: |
| break; |
| |
| default: |
| ASSERT(0); |
| break; |
| } |
| |
| if (!XFS_IFORK_Q(ip)) |
| return nvecs; |
| |
| |
| /* |
| * Log any necessary attribute data. |
| */ |
| switch (ip->i_d.di_aformat) { |
| case XFS_DINODE_FMT_EXTENTS: |
| if ((iip->ili_fields & XFS_ILOG_AEXT) && |
| ip->i_d.di_anextents > 0 && |
| ip->i_afp->if_bytes > 0) |
| nvecs++; |
| break; |
| |
| case XFS_DINODE_FMT_BTREE: |
| if ((iip->ili_fields & XFS_ILOG_ABROOT) && |
| ip->i_afp->if_broot_bytes > 0) |
| nvecs++; |
| break; |
| |
| case XFS_DINODE_FMT_LOCAL: |
| if ((iip->ili_fields & XFS_ILOG_ADATA) && |
| ip->i_afp->if_bytes > 0) |
| nvecs++; |
| break; |
| |
| default: |
| ASSERT(0); |
| break; |
| } |
| |
| return nvecs; |
| } |
| |
| /* |
| * xfs_inode_item_format_extents - convert in-core extents to on-disk form |
| * |
| * For either the data or attr fork in extent format, we need to endian convert |
| * the in-core extent as we place them into the on-disk inode. In this case, we |
| * need to do this conversion before we write the extents into the log. Because |
| * we don't have the disk inode to write into here, we allocate a buffer and |
| * format the extents into it via xfs_iextents_copy(). We free the buffer in |
| * the unlock routine after the copy for the log has been made. |
| * |
| * In the case of the data fork, the in-core and on-disk fork sizes can be |
| * different due to delayed allocation extents. We only log on-disk extents |
| * here, so always use the physical fork size to determine the size of the |
| * buffer we need to allocate. |
| */ |
| STATIC void |
| xfs_inode_item_format_extents( |
| struct xfs_inode *ip, |
| struct xfs_log_iovec *vecp, |
| int whichfork, |
| int type) |
| { |
| xfs_bmbt_rec_t *ext_buffer; |
| |
| ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP); |
| if (whichfork == XFS_DATA_FORK) |
| ip->i_itemp->ili_extents_buf = ext_buffer; |
| else |
| ip->i_itemp->ili_aextents_buf = ext_buffer; |
| |
| vecp->i_addr = ext_buffer; |
| vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork); |
| vecp->i_type = type; |
| } |
| |
| /* |
| * This is called to fill in the vector of log iovecs for the |
| * given inode log item. It fills the first item with an inode |
| * log format structure, the second with the on-disk inode structure, |
| * and a possible third and/or fourth with the inode data/extents/b-tree |
| * root and inode attributes data/extents/b-tree root. |
| */ |
| STATIC void |
| xfs_inode_item_format( |
| struct xfs_log_item *lip, |
| struct xfs_log_iovec *vecp) |
| { |
| struct xfs_inode_log_item *iip = INODE_ITEM(lip); |
| struct xfs_inode *ip = iip->ili_inode; |
| uint nvecs; |
| size_t data_bytes; |
| xfs_mount_t *mp; |
| |
| vecp->i_addr = &iip->ili_format; |
| vecp->i_len = sizeof(xfs_inode_log_format_t); |
| vecp->i_type = XLOG_REG_TYPE_IFORMAT; |
| vecp++; |
| nvecs = 1; |
| |
| vecp->i_addr = &ip->i_d; |
| vecp->i_len = sizeof(struct xfs_icdinode); |
| vecp->i_type = XLOG_REG_TYPE_ICORE; |
| vecp++; |
| nvecs++; |
| |
| /* |
| * If this is really an old format inode, then we need to |
| * log it as such. This means that we have to copy the link |
| * count from the new field to the old. We don't have to worry |
| * about the new fields, because nothing trusts them as long as |
| * the old inode version number is there. If the superblock already |
| * has a new version number, then we don't bother converting back. |
| */ |
| mp = ip->i_mount; |
| ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); |
| if (ip->i_d.di_version == 1) { |
| if (!xfs_sb_version_hasnlink(&mp->m_sb)) { |
| /* |
| * Convert it back. |
| */ |
| ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); |
| ip->i_d.di_onlink = ip->i_d.di_nlink; |
| } else { |
| /* |
| * The superblock version has already been bumped, |
| * so just make the conversion to the new inode |
| * format permanent. |
| */ |
| ip->i_d.di_version = 2; |
| ip->i_d.di_onlink = 0; |
| memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); |
| } |
| } |
| |
| switch (ip->i_d.di_format) { |
| case XFS_DINODE_FMT_EXTENTS: |
| iip->ili_fields &= |
| ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | |
| XFS_ILOG_DEV | XFS_ILOG_UUID); |
| |
| if ((iip->ili_fields & XFS_ILOG_DEXT) && |
| ip->i_d.di_nextents > 0 && |
| ip->i_df.if_bytes > 0) { |
| ASSERT(ip->i_df.if_u1.if_extents != NULL); |
| ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0); |
| ASSERT(iip->ili_extents_buf == NULL); |
| |
| #ifdef XFS_NATIVE_HOST |
| if (ip->i_d.di_nextents == ip->i_df.if_bytes / |
| (uint)sizeof(xfs_bmbt_rec_t)) { |
| /* |
| * There are no delayed allocation |
| * extents, so just point to the |
| * real extents array. |
| */ |
| vecp->i_addr = ip->i_df.if_u1.if_extents; |
| vecp->i_len = ip->i_df.if_bytes; |
| vecp->i_type = XLOG_REG_TYPE_IEXT; |
| } else |
| #endif |
| { |
| xfs_inode_item_format_extents(ip, vecp, |
| XFS_DATA_FORK, XLOG_REG_TYPE_IEXT); |
| } |
| ASSERT(vecp->i_len <= ip->i_df.if_bytes); |
| iip->ili_format.ilf_dsize = vecp->i_len; |
| vecp++; |
| nvecs++; |
| } else { |
| iip->ili_fields &= ~XFS_ILOG_DEXT; |
| } |
| break; |
| |
| case XFS_DINODE_FMT_BTREE: |
| iip->ili_fields &= |
| ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | |
| XFS_ILOG_DEV | XFS_ILOG_UUID); |
| |
| if ((iip->ili_fields & XFS_ILOG_DBROOT) && |
| ip->i_df.if_broot_bytes > 0) { |
| ASSERT(ip->i_df.if_broot != NULL); |
| vecp->i_addr = ip->i_df.if_broot; |
| vecp->i_len = ip->i_df.if_broot_bytes; |
| vecp->i_type = XLOG_REG_TYPE_IBROOT; |
| vecp++; |
| nvecs++; |
| iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes; |
| } else { |
| ASSERT(!(iip->ili_fields & |
| XFS_ILOG_DBROOT)); |
| #ifdef XFS_TRANS_DEBUG |
| if (iip->ili_root_size > 0) { |
| ASSERT(iip->ili_root_size == |
| ip->i_df.if_broot_bytes); |
| ASSERT(memcmp(iip->ili_orig_root, |
| ip->i_df.if_broot, |
| iip->ili_root_size) == 0); |
| } else { |
| ASSERT(ip->i_df.if_broot_bytes == 0); |
| } |
| #endif |
| iip->ili_fields &= ~XFS_ILOG_DBROOT; |
| } |
| break; |
| |
| case XFS_DINODE_FMT_LOCAL: |
| iip->ili_fields &= |
| ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | |
| XFS_ILOG_DEV | XFS_ILOG_UUID); |
| if ((iip->ili_fields & XFS_ILOG_DDATA) && |
| ip->i_df.if_bytes > 0) { |
| ASSERT(ip->i_df.if_u1.if_data != NULL); |
| ASSERT(ip->i_d.di_size > 0); |
| |
| vecp->i_addr = ip->i_df.if_u1.if_data; |
| /* |
| * Round i_bytes up to a word boundary. |
| * The underlying memory is guaranteed to |
| * to be there by xfs_idata_realloc(). |
| */ |
| data_bytes = roundup(ip->i_df.if_bytes, 4); |
| ASSERT((ip->i_df.if_real_bytes == 0) || |
| (ip->i_df.if_real_bytes == data_bytes)); |
| vecp->i_len = (int)data_bytes; |
| vecp->i_type = XLOG_REG_TYPE_ILOCAL; |
| vecp++; |
| nvecs++; |
| iip->ili_format.ilf_dsize = (unsigned)data_bytes; |
| } else { |
| iip->ili_fields &= ~XFS_ILOG_DDATA; |
| } |
| break; |
| |
| case XFS_DINODE_FMT_DEV: |
| iip->ili_fields &= |
| ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | |
| XFS_ILOG_DEXT | XFS_ILOG_UUID); |
| if (iip->ili_fields & XFS_ILOG_DEV) { |
| iip->ili_format.ilf_u.ilfu_rdev = |
| ip->i_df.if_u2.if_rdev; |
| } |
| break; |
| |
| case XFS_DINODE_FMT_UUID: |
| iip->ili_fields &= |
| ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | |
| XFS_ILOG_DEXT | XFS_ILOG_DEV); |
| if (iip->ili_fields & XFS_ILOG_UUID) { |
| iip->ili_format.ilf_u.ilfu_uuid = |
| ip->i_df.if_u2.if_uuid; |
| } |
| break; |
| |
| default: |
| ASSERT(0); |
| break; |
| } |
| |
| /* |
| * If there are no attributes associated with the file, then we're done. |
| */ |
| if (!XFS_IFORK_Q(ip)) { |
| iip->ili_fields &= |
| ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); |
| goto out; |
| } |
| |
| switch (ip->i_d.di_aformat) { |
| case XFS_DINODE_FMT_EXTENTS: |
| iip->ili_fields &= |
| ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); |
| |
| if ((iip->ili_fields & XFS_ILOG_AEXT) && |
| ip->i_d.di_anextents > 0 && |
| ip->i_afp->if_bytes > 0) { |
| ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) == |
| ip->i_d.di_anextents); |
| ASSERT(ip->i_afp->if_u1.if_extents != NULL); |
| #ifdef XFS_NATIVE_HOST |
| /* |
| * There are not delayed allocation extents |
| * for attributes, so just point at the array. |
| */ |
| vecp->i_addr = ip->i_afp->if_u1.if_extents; |
| vecp->i_len = ip->i_afp->if_bytes; |
| vecp->i_type = XLOG_REG_TYPE_IATTR_EXT; |
| #else |
| ASSERT(iip->ili_aextents_buf == NULL); |
| xfs_inode_item_format_extents(ip, vecp, |
| XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT); |
| #endif |
| iip->ili_format.ilf_asize = vecp->i_len; |
| vecp++; |
| nvecs++; |
| } else { |
| iip->ili_fields &= ~XFS_ILOG_AEXT; |
| } |
| break; |
| |
| case XFS_DINODE_FMT_BTREE: |
| iip->ili_fields &= |
| ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); |
| |
| if ((iip->ili_fields & XFS_ILOG_ABROOT) && |
| ip->i_afp->if_broot_bytes > 0) { |
| ASSERT(ip->i_afp->if_broot != NULL); |
| |
| vecp->i_addr = ip->i_afp->if_broot; |
| vecp->i_len = ip->i_afp->if_broot_bytes; |
| vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT; |
| vecp++; |
| nvecs++; |
| iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes; |
| } else { |
| iip->ili_fields &= ~XFS_ILOG_ABROOT; |
| } |
| break; |
| |
| case XFS_DINODE_FMT_LOCAL: |
| iip->ili_fields &= |
| ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); |
| |
| if ((iip->ili_fields & XFS_ILOG_ADATA) && |
| ip->i_afp->if_bytes > 0) { |
| ASSERT(ip->i_afp->if_u1.if_data != NULL); |
| |
| vecp->i_addr = ip->i_afp->if_u1.if_data; |
| /* |
| * Round i_bytes up to a word boundary. |
| * The underlying memory is guaranteed to |
| * to be there by xfs_idata_realloc(). |
| */ |
| data_bytes = roundup(ip->i_afp->if_bytes, 4); |
| ASSERT((ip->i_afp->if_real_bytes == 0) || |
| (ip->i_afp->if_real_bytes == data_bytes)); |
| vecp->i_len = (int)data_bytes; |
| vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL; |
| vecp++; |
| nvecs++; |
| iip->ili_format.ilf_asize = (unsigned)data_bytes; |
| } else { |
| iip->ili_fields &= ~XFS_ILOG_ADATA; |
| } |
| break; |
| |
| default: |
| ASSERT(0); |
| break; |
| } |
| |
| out: |
| /* |
| * Now update the log format that goes out to disk from the in-core |
| * values. We always write the inode core to make the arithmetic |
| * games in recovery easier, which isn't a big deal as just about any |
| * transaction would dirty it anyway. |
| */ |
| iip->ili_format.ilf_fields = XFS_ILOG_CORE | iip->ili_fields; |
| iip->ili_format.ilf_size = nvecs; |
| } |
| |
| |
| /* |
| * This is called to pin the inode associated with the inode log |
| * item in memory so it cannot be written out. |
| */ |
| STATIC void |
| xfs_inode_item_pin( |
| struct xfs_log_item *lip) |
| { |
| struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; |
| |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| |
| trace_xfs_inode_pin(ip, _RET_IP_); |
| atomic_inc(&ip->i_pincount); |
| } |
| |
| |
| /* |
| * This is called to unpin the inode associated with the inode log |
| * item which was previously pinned with a call to xfs_inode_item_pin(). |
| * |
| * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. |
| */ |
| STATIC void |
| xfs_inode_item_unpin( |
| struct xfs_log_item *lip, |
| int remove) |
| { |
| struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; |
| |
| trace_xfs_inode_unpin(ip, _RET_IP_); |
| ASSERT(atomic_read(&ip->i_pincount) > 0); |
| if (atomic_dec_and_test(&ip->i_pincount)) |
| wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); |
| } |
| |
| /* |
| * This is called to attempt to lock the inode associated with this |
| * inode log item, in preparation for the push routine which does the actual |
| * iflush. Don't sleep on the inode lock or the flush lock. |
| * |
| * If the flush lock is already held, indicating that the inode has |
| * been or is in the process of being flushed, then (ideally) we'd like to |
| * see if the inode's buffer is still incore, and if so give it a nudge. |
| * We delay doing so until the pushbuf routine, though, to avoid holding |
| * the AIL lock across a call to the blackhole which is the buffer cache. |
| * Also we don't want to sleep in any device strategy routines, which can happen |
| * if we do the subsequent bawrite in here. |
| */ |
| STATIC uint |
| xfs_inode_item_trylock( |
| struct xfs_log_item *lip) |
| { |
| struct xfs_inode_log_item *iip = INODE_ITEM(lip); |
| struct xfs_inode *ip = iip->ili_inode; |
| |
| if (xfs_ipincount(ip) > 0) |
| return XFS_ITEM_PINNED; |
| |
| if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) |
| return XFS_ITEM_LOCKED; |
| |
| if (!xfs_iflock_nowait(ip)) { |
| /* |
| * inode has already been flushed to the backing buffer, |
| * leave it locked in shared mode, pushbuf routine will |
| * unlock it. |
| */ |
| return XFS_ITEM_PUSHBUF; |
| } |
| |
| /* Stale items should force out the iclog */ |
| if (ip->i_flags & XFS_ISTALE) { |
| xfs_ifunlock(ip); |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| return XFS_ITEM_PINNED; |
| } |
| |
| #ifdef DEBUG |
| if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { |
| ASSERT(iip->ili_fields != 0); |
| ASSERT(iip->ili_logged == 0); |
| ASSERT(lip->li_flags & XFS_LI_IN_AIL); |
| } |
| #endif |
| return XFS_ITEM_SUCCESS; |
| } |
| |
| /* |
| * Unlock the inode associated with the inode log item. |
| * Clear the fields of the inode and inode log item that |
| * are specific to the current transaction. If the |
| * hold flags is set, do not unlock the inode. |
| */ |
| STATIC void |
| xfs_inode_item_unlock( |
| struct xfs_log_item *lip) |
| { |
| struct xfs_inode_log_item *iip = INODE_ITEM(lip); |
| struct xfs_inode *ip = iip->ili_inode; |
| unsigned short lock_flags; |
| |
| ASSERT(ip->i_itemp != NULL); |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| |
| /* |
| * If the inode needed a separate buffer with which to log |
| * its extents, then free it now. |
| */ |
| if (iip->ili_extents_buf != NULL) { |
| ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS); |
| ASSERT(ip->i_d.di_nextents > 0); |
| ASSERT(iip->ili_fields & XFS_ILOG_DEXT); |
| ASSERT(ip->i_df.if_bytes > 0); |
| kmem_free(iip->ili_extents_buf); |
| iip->ili_extents_buf = NULL; |
| } |
| if (iip->ili_aextents_buf != NULL) { |
| ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS); |
| ASSERT(ip->i_d.di_anextents > 0); |
| ASSERT(iip->ili_fields & XFS_ILOG_AEXT); |
| ASSERT(ip->i_afp->if_bytes > 0); |
| kmem_free(iip->ili_aextents_buf); |
| iip->ili_aextents_buf = NULL; |
| } |
| |
| lock_flags = iip->ili_lock_flags; |
| iip->ili_lock_flags = 0; |
| if (lock_flags) |
| xfs_iunlock(ip, lock_flags); |
| } |
| |
| /* |
| * This is called to find out where the oldest active copy of the inode log |
| * item in the on disk log resides now that the last log write of it completed |
| * at the given lsn. Since we always re-log all dirty data in an inode, the |
| * latest copy in the on disk log is the only one that matters. Therefore, |
| * simply return the given lsn. |
| * |
| * If the inode has been marked stale because the cluster is being freed, we |
| * don't want to (re-)insert this inode into the AIL. There is a race condition |
| * where the cluster buffer may be unpinned before the inode is inserted into |
| * the AIL during transaction committed processing. If the buffer is unpinned |
| * before the inode item has been committed and inserted, then it is possible |
| * for the buffer to be written and IO completes before the inode is inserted |
| * into the AIL. In that case, we'd be inserting a clean, stale inode into the |
| * AIL which will never get removed. It will, however, get reclaimed which |
| * triggers an assert in xfs_inode_free() complaining about freein an inode |
| * still in the AIL. |
| * |
| * To avoid this, just unpin the inode directly and return a LSN of -1 so the |
| * transaction committed code knows that it does not need to do any further |
| * processing on the item. |
| */ |
| STATIC xfs_lsn_t |
| xfs_inode_item_committed( |
| struct xfs_log_item *lip, |
| xfs_lsn_t lsn) |
| { |
| struct xfs_inode_log_item *iip = INODE_ITEM(lip); |
| struct xfs_inode *ip = iip->ili_inode; |
| |
| if (xfs_iflags_test(ip, XFS_ISTALE)) { |
| xfs_inode_item_unpin(lip, 0); |
| return -1; |
| } |
| return lsn; |
| } |
| |
| /* |
| * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK |
| * failed to get the inode flush lock but did get the inode locked SHARED. |
| * Here we're trying to see if the inode buffer is incore, and if so whether it's |
| * marked delayed write. If that's the case, we'll promote it and that will |
| * allow the caller to write the buffer by triggering the xfsbufd to run. |
| */ |
| STATIC bool |
| xfs_inode_item_pushbuf( |
| struct xfs_log_item *lip) |
| { |
| struct xfs_inode_log_item *iip = INODE_ITEM(lip); |
| struct xfs_inode *ip = iip->ili_inode; |
| struct xfs_buf *bp; |
| bool ret = true; |
| |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED)); |
| |
| /* |
| * If a flush is not in progress anymore, chances are that the |
| * inode was taken off the AIL. So, just get out. |
| */ |
| if (!xfs_isiflocked(ip) || |
| !(lip->li_flags & XFS_LI_IN_AIL)) { |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| return true; |
| } |
| |
| bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno, |
| iip->ili_format.ilf_len, XBF_TRYLOCK); |
| |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| if (!bp) |
| return true; |
| if (XFS_BUF_ISDELAYWRITE(bp)) |
| xfs_buf_delwri_promote(bp); |
| if (xfs_buf_ispinned(bp)) |
| ret = false; |
| xfs_buf_relse(bp); |
| return ret; |
| } |
| |
| /* |
| * This is called to asynchronously write the inode associated with this |
| * inode log item out to disk. The inode will already have been locked by |
| * a successful call to xfs_inode_item_trylock(). |
| */ |
| STATIC void |
| xfs_inode_item_push( |
| struct xfs_log_item *lip) |
| { |
| struct xfs_inode_log_item *iip = INODE_ITEM(lip); |
| struct xfs_inode *ip = iip->ili_inode; |
| |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED)); |
| ASSERT(xfs_isiflocked(ip)); |
| |
| /* |
| * Since we were able to lock the inode's flush lock and |
| * we found it on the AIL, the inode must be dirty. This |
| * is because the inode is removed from the AIL while still |
| * holding the flush lock in xfs_iflush_done(). Thus, if |
| * we found it in the AIL and were able to obtain the flush |
| * lock without sleeping, then there must not have been |
| * anyone in the process of flushing the inode. |
| */ |
| ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || iip->ili_fields != 0); |
| |
| /* |
| * Push the inode to it's backing buffer. This will not remove the |
| * inode from the AIL - a further push will be required to trigger a |
| * buffer push. However, this allows all the dirty inodes to be pushed |
| * to the buffer before it is pushed to disk. The buffer IO completion |
| * will pull the inode from the AIL, mark it clean and unlock the flush |
| * lock. |
| */ |
| (void) xfs_iflush(ip, SYNC_TRYLOCK); |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| } |
| |
| /* |
| * XXX rcc - this one really has to do something. Probably needs |
| * to stamp in a new field in the incore inode. |
| */ |
| STATIC void |
| xfs_inode_item_committing( |
| struct xfs_log_item *lip, |
| xfs_lsn_t lsn) |
| { |
| INODE_ITEM(lip)->ili_last_lsn = lsn; |
| } |
| |
| /* |
| * This is the ops vector shared by all buf log items. |
| */ |
| static const struct xfs_item_ops xfs_inode_item_ops = { |
| .iop_size = xfs_inode_item_size, |
| .iop_format = xfs_inode_item_format, |
| .iop_pin = xfs_inode_item_pin, |
| .iop_unpin = xfs_inode_item_unpin, |
| .iop_trylock = xfs_inode_item_trylock, |
| .iop_unlock = xfs_inode_item_unlock, |
| .iop_committed = xfs_inode_item_committed, |
| .iop_push = xfs_inode_item_push, |
| .iop_pushbuf = xfs_inode_item_pushbuf, |
| .iop_committing = xfs_inode_item_committing |
| }; |
| |
| |
| /* |
| * Initialize the inode log item for a newly allocated (in-core) inode. |
| */ |
| void |
| xfs_inode_item_init( |
| struct xfs_inode *ip, |
| struct xfs_mount *mp) |
| { |
| struct xfs_inode_log_item *iip; |
| |
| ASSERT(ip->i_itemp == NULL); |
| iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); |
| |
| iip->ili_inode = ip; |
| xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, |
| &xfs_inode_item_ops); |
| iip->ili_format.ilf_type = XFS_LI_INODE; |
| iip->ili_format.ilf_ino = ip->i_ino; |
| iip->ili_format.ilf_blkno = ip->i_imap.im_blkno; |
| iip->ili_format.ilf_len = ip->i_imap.im_len; |
| iip->ili_format.ilf_boffset = ip->i_imap.im_boffset; |
| } |
| |
| /* |
| * Free the inode log item and any memory hanging off of it. |
| */ |
| void |
| xfs_inode_item_destroy( |
| xfs_inode_t *ip) |
| { |
| #ifdef XFS_TRANS_DEBUG |
| if (ip->i_itemp->ili_root_size != 0) { |
| kmem_free(ip->i_itemp->ili_orig_root); |
| } |
| #endif |
| kmem_zone_free(xfs_ili_zone, ip->i_itemp); |
| } |
| |
| |
| /* |
| * This is the inode flushing I/O completion routine. It is called |
| * from interrupt level when the buffer containing the inode is |
| * flushed to disk. It is responsible for removing the inode item |
| * from the AIL if it has not been re-logged, and unlocking the inode's |
| * flush lock. |
| * |
| * To reduce AIL lock traffic as much as possible, we scan the buffer log item |
| * list for other inodes that will run this function. We remove them from the |
| * buffer list so we can process all the inode IO completions in one AIL lock |
| * traversal. |
| */ |
| void |
| xfs_iflush_done( |
| struct xfs_buf *bp, |
| struct xfs_log_item *lip) |
| { |
| struct xfs_inode_log_item *iip; |
| struct xfs_log_item *blip; |
| struct xfs_log_item *next; |
| struct xfs_log_item *prev; |
| struct xfs_ail *ailp = lip->li_ailp; |
| int need_ail = 0; |
| |
| /* |
| * Scan the buffer IO completions for other inodes being completed and |
| * attach them to the current inode log item. |
| */ |
| blip = bp->b_fspriv; |
| prev = NULL; |
| while (blip != NULL) { |
| if (lip->li_cb != xfs_iflush_done) { |
| prev = blip; |
| blip = blip->li_bio_list; |
| continue; |
| } |
| |
| /* remove from list */ |
| next = blip->li_bio_list; |
| if (!prev) { |
| bp->b_fspriv = next; |
| } else { |
| prev->li_bio_list = next; |
| } |
| |
| /* add to current list */ |
| blip->li_bio_list = lip->li_bio_list; |
| lip->li_bio_list = blip; |
| |
| /* |
| * while we have the item, do the unlocked check for needing |
| * the AIL lock. |
| */ |
| iip = INODE_ITEM(blip); |
| if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) |
| need_ail++; |
| |
| blip = next; |
| } |
| |
| /* make sure we capture the state of the initial inode. */ |
| iip = INODE_ITEM(lip); |
| if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) |
| need_ail++; |
| |
| /* |
| * We only want to pull the item from the AIL if it is |
| * actually there and its location in the log has not |
| * changed since we started the flush. Thus, we only bother |
| * if the ili_logged flag is set and the inode's lsn has not |
| * changed. First we check the lsn outside |
| * the lock since it's cheaper, and then we recheck while |
| * holding the lock before removing the inode from the AIL. |
| */ |
| if (need_ail) { |
| struct xfs_log_item *log_items[need_ail]; |
| int i = 0; |
| spin_lock(&ailp->xa_lock); |
| for (blip = lip; blip; blip = blip->li_bio_list) { |
| iip = INODE_ITEM(blip); |
| if (iip->ili_logged && |
| blip->li_lsn == iip->ili_flush_lsn) { |
| log_items[i++] = blip; |
| } |
| ASSERT(i <= need_ail); |
| } |
| /* xfs_trans_ail_delete_bulk() drops the AIL lock. */ |
| xfs_trans_ail_delete_bulk(ailp, log_items, i); |
| } |
| |
| |
| /* |
| * clean up and unlock the flush lock now we are done. We can clear the |
| * ili_last_fields bits now that we know that the data corresponding to |
| * them is safely on disk. |
| */ |
| for (blip = lip; blip; blip = next) { |
| next = blip->li_bio_list; |
| blip->li_bio_list = NULL; |
| |
| iip = INODE_ITEM(blip); |
| iip->ili_logged = 0; |
| iip->ili_last_fields = 0; |
| xfs_ifunlock(iip->ili_inode); |
| } |
| } |
| |
| /* |
| * This is the inode flushing abort routine. It is called |
| * from xfs_iflush when the filesystem is shutting down to clean |
| * up the inode state. |
| * It is responsible for removing the inode item |
| * from the AIL if it has not been re-logged, and unlocking the inode's |
| * flush lock. |
| */ |
| void |
| xfs_iflush_abort( |
| xfs_inode_t *ip) |
| { |
| xfs_inode_log_item_t *iip = ip->i_itemp; |
| |
| if (iip) { |
| struct xfs_ail *ailp = iip->ili_item.li_ailp; |
| if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { |
| spin_lock(&ailp->xa_lock); |
| if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { |
| /* xfs_trans_ail_delete() drops the AIL lock. */ |
| xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip); |
| } else |
| spin_unlock(&ailp->xa_lock); |
| } |
| iip->ili_logged = 0; |
| /* |
| * Clear the ili_last_fields bits now that we know that the |
| * data corresponding to them is safely on disk. |
| */ |
| iip->ili_last_fields = 0; |
| /* |
| * Clear the inode logging fields so no more flushes are |
| * attempted. |
| */ |
| iip->ili_fields = 0; |
| } |
| /* |
| * Release the inode's flush lock since we're done with it. |
| */ |
| xfs_ifunlock(ip); |
| } |
| |
| void |
| xfs_istale_done( |
| struct xfs_buf *bp, |
| struct xfs_log_item *lip) |
| { |
| xfs_iflush_abort(INODE_ITEM(lip)->ili_inode); |
| } |
| |
| /* |
| * convert an xfs_inode_log_format struct from either 32 or 64 bit versions |
| * (which can have different field alignments) to the native version |
| */ |
| int |
| xfs_inode_item_format_convert( |
| xfs_log_iovec_t *buf, |
| xfs_inode_log_format_t *in_f) |
| { |
| if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) { |
| xfs_inode_log_format_32_t *in_f32 = buf->i_addr; |
| |
| in_f->ilf_type = in_f32->ilf_type; |
| in_f->ilf_size = in_f32->ilf_size; |
| in_f->ilf_fields = in_f32->ilf_fields; |
| in_f->ilf_asize = in_f32->ilf_asize; |
| in_f->ilf_dsize = in_f32->ilf_dsize; |
| in_f->ilf_ino = in_f32->ilf_ino; |
| /* copy biggest field of ilf_u */ |
| memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, |
| in_f32->ilf_u.ilfu_uuid.__u_bits, |
| sizeof(uuid_t)); |
| in_f->ilf_blkno = in_f32->ilf_blkno; |
| in_f->ilf_len = in_f32->ilf_len; |
| in_f->ilf_boffset = in_f32->ilf_boffset; |
| return 0; |
| } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){ |
| xfs_inode_log_format_64_t *in_f64 = buf->i_addr; |
| |
| in_f->ilf_type = in_f64->ilf_type; |
| in_f->ilf_size = in_f64->ilf_size; |
| in_f->ilf_fields = in_f64->ilf_fields; |
| in_f->ilf_asize = in_f64->ilf_asize; |
| in_f->ilf_dsize = in_f64->ilf_dsize; |
| in_f->ilf_ino = in_f64->ilf_ino; |
| /* copy biggest field of ilf_u */ |
| memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, |
| in_f64->ilf_u.ilfu_uuid.__u_bits, |
| sizeof(uuid_t)); |
| in_f->ilf_blkno = in_f64->ilf_blkno; |
| in_f->ilf_len = in_f64->ilf_len; |
| in_f->ilf_boffset = in_f64->ilf_boffset; |
| return 0; |
| } |
| return EFSCORRUPTED; |
| } |