| /* |
| * I2C adapter for the IMG Serial Control Bus (SCB) IP block. |
| * |
| * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * There are three ways that this I2C controller can be driven: |
| * |
| * - Raw control of the SDA and SCK signals. |
| * |
| * This corresponds to MODE_RAW, which takes control of the signals |
| * directly for a certain number of clock cycles (the INT_TIMING |
| * interrupt can be used for timing). |
| * |
| * - Atomic commands. A low level I2C symbol (such as generate |
| * start/stop/ack/nack bit, generate byte, receive byte, and receive |
| * ACK) is given to the hardware, with detection of completion by bits |
| * in the LINESTAT register. |
| * |
| * This mode of operation is used by MODE_ATOMIC, which uses an I2C |
| * state machine in the interrupt handler to compose/react to I2C |
| * transactions using atomic mode commands, and also by MODE_SEQUENCE, |
| * which emits a simple fixed sequence of atomic mode commands. |
| * |
| * Due to software control, the use of atomic commands usually results |
| * in suboptimal use of the bus, with gaps between the I2C symbols while |
| * the driver decides what to do next. |
| * |
| * - Automatic mode. A bus address, and whether to read/write is |
| * specified, and the hardware takes care of the I2C state machine, |
| * using a FIFO to send/receive bytes of data to an I2C slave. The |
| * driver just has to keep the FIFO drained or filled in response to the |
| * appropriate FIFO interrupts. |
| * |
| * This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals |
| * with control of repeated start bits between I2C messages. |
| * |
| * Use of automatic mode and the FIFO can make much more efficient use |
| * of the bus compared to individual atomic commands, with potentially |
| * no wasted time between I2C symbols or I2C messages. |
| * |
| * In most cases MODE_AUTOMATIC is used, however if any of the messages in |
| * a transaction are zero byte writes (e.g. used by i2cdetect for probing |
| * the bus), MODE_ATOMIC must be used since automatic mode is normally |
| * started by the writing of data into the FIFO. |
| * |
| * The other modes are used in specific circumstances where MODE_ATOMIC and |
| * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus |
| * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure |
| * it is in a sane state. |
| * |
| * Notice that the driver implements a timer-based timeout mechanism. |
| * The reason for this mechanism is to reduce the number of interrupts |
| * received in automatic mode. |
| * |
| * The driver would get a slave event and transaction done interrupts for |
| * each atomic mode command that gets completed. However, these events are |
| * not needed in automatic mode, becase those atomic mode commands are |
| * managed automatically by the hardware. |
| * |
| * In practice, normal I2C transactions will be complete well before you |
| * get the timer interrupt, as the timer is re-scheduled during FIFO |
| * maintenance and disabled after the transaction is complete. |
| * |
| * In this way normal automatic mode operation isn't impacted by |
| * unnecessary interrupts, but the exceptional abort condition can still be |
| * detected (with a slight delay). |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/clk.h> |
| #include <linux/completion.h> |
| #include <linux/err.h> |
| #include <linux/i2c.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/of_platform.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/timer.h> |
| |
| /* Register offsets */ |
| |
| #define SCB_STATUS_REG 0x00 |
| #define SCB_OVERRIDE_REG 0x04 |
| #define SCB_READ_ADDR_REG 0x08 |
| #define SCB_READ_COUNT_REG 0x0c |
| #define SCB_WRITE_ADDR_REG 0x10 |
| #define SCB_READ_DATA_REG 0x14 |
| #define SCB_WRITE_DATA_REG 0x18 |
| #define SCB_FIFO_STATUS_REG 0x1c |
| #define SCB_CONTROL_SOFT_RESET 0x1f |
| #define SCB_CLK_SET_REG 0x3c |
| #define SCB_INT_STATUS_REG 0x40 |
| #define SCB_INT_CLEAR_REG 0x44 |
| #define SCB_INT_MASK_REG 0x48 |
| #define SCB_CONTROL_REG 0x4c |
| #define SCB_TIME_TPL_REG 0x50 |
| #define SCB_TIME_TPH_REG 0x54 |
| #define SCB_TIME_TP2S_REG 0x58 |
| #define SCB_TIME_TBI_REG 0x60 |
| #define SCB_TIME_TSL_REG 0x64 |
| #define SCB_TIME_TDL_REG 0x68 |
| #define SCB_TIME_TSDL_REG 0x6c |
| #define SCB_TIME_TSDH_REG 0x70 |
| #define SCB_READ_XADDR_REG 0x74 |
| #define SCB_WRITE_XADDR_REG 0x78 |
| #define SCB_WRITE_COUNT_REG 0x7c |
| #define SCB_CORE_REV_REG 0x80 |
| #define SCB_TIME_TCKH_REG 0x84 |
| #define SCB_TIME_TCKL_REG 0x88 |
| #define SCB_FIFO_FLUSH_REG 0x8c |
| #define SCB_READ_FIFO_REG 0x94 |
| #define SCB_CLEAR_REG 0x98 |
| |
| /* SCB_CONTROL_REG bits */ |
| |
| #define SCB_CONTROL_CLK_ENABLE 0x1e0 |
| #define SCB_CONTROL_TRANSACTION_HALT 0x200 |
| |
| #define FIFO_READ_FULL BIT(0) |
| #define FIFO_READ_EMPTY BIT(1) |
| #define FIFO_WRITE_FULL BIT(2) |
| #define FIFO_WRITE_EMPTY BIT(3) |
| |
| /* SCB_CLK_SET_REG bits */ |
| #define SCB_FILT_DISABLE BIT(31) |
| #define SCB_FILT_BYPASS BIT(30) |
| #define SCB_FILT_INC_MASK 0x7f |
| #define SCB_FILT_INC_SHIFT 16 |
| #define SCB_INC_MASK 0x7f |
| #define SCB_INC_SHIFT 8 |
| |
| /* SCB_INT_*_REG bits */ |
| |
| #define INT_BUS_INACTIVE BIT(0) |
| #define INT_UNEXPECTED_START BIT(1) |
| #define INT_SCLK_LOW_TIMEOUT BIT(2) |
| #define INT_SDAT_LOW_TIMEOUT BIT(3) |
| #define INT_WRITE_ACK_ERR BIT(4) |
| #define INT_ADDR_ACK_ERR BIT(5) |
| #define INT_FIFO_FULL BIT(9) |
| #define INT_FIFO_FILLING BIT(10) |
| #define INT_FIFO_EMPTY BIT(11) |
| #define INT_FIFO_EMPTYING BIT(12) |
| #define INT_TRANSACTION_DONE BIT(15) |
| #define INT_SLAVE_EVENT BIT(16) |
| #define INT_MASTER_HALTED BIT(17) |
| #define INT_TIMING BIT(18) |
| #define INT_STOP_DETECTED BIT(19) |
| |
| #define INT_FIFO_FULL_FILLING (INT_FIFO_FULL | INT_FIFO_FILLING) |
| |
| /* Level interrupts need clearing after handling instead of before */ |
| #define INT_LEVEL 0x01e00 |
| |
| /* Don't allow any interrupts while the clock may be off */ |
| #define INT_ENABLE_MASK_INACTIVE 0x00000 |
| |
| /* Interrupt masks for the different driver modes */ |
| |
| #define INT_ENABLE_MASK_RAW INT_TIMING |
| |
| #define INT_ENABLE_MASK_ATOMIC (INT_TRANSACTION_DONE | \ |
| INT_SLAVE_EVENT | \ |
| INT_ADDR_ACK_ERR | \ |
| INT_WRITE_ACK_ERR) |
| |
| #define INT_ENABLE_MASK_AUTOMATIC (INT_SCLK_LOW_TIMEOUT | \ |
| INT_ADDR_ACK_ERR | \ |
| INT_WRITE_ACK_ERR | \ |
| INT_FIFO_FULL | \ |
| INT_FIFO_FILLING | \ |
| INT_FIFO_EMPTY | \ |
| INT_MASTER_HALTED | \ |
| INT_STOP_DETECTED) |
| |
| #define INT_ENABLE_MASK_WAITSTOP (INT_SLAVE_EVENT | \ |
| INT_ADDR_ACK_ERR | \ |
| INT_WRITE_ACK_ERR) |
| |
| /* SCB_STATUS_REG fields */ |
| |
| #define LINESTAT_SCLK_LINE_STATUS BIT(0) |
| #define LINESTAT_SCLK_EN BIT(1) |
| #define LINESTAT_SDAT_LINE_STATUS BIT(2) |
| #define LINESTAT_SDAT_EN BIT(3) |
| #define LINESTAT_DET_START_STATUS BIT(4) |
| #define LINESTAT_DET_STOP_STATUS BIT(5) |
| #define LINESTAT_DET_ACK_STATUS BIT(6) |
| #define LINESTAT_DET_NACK_STATUS BIT(7) |
| #define LINESTAT_BUS_IDLE BIT(8) |
| #define LINESTAT_T_DONE_STATUS BIT(9) |
| #define LINESTAT_SCLK_OUT_STATUS BIT(10) |
| #define LINESTAT_SDAT_OUT_STATUS BIT(11) |
| #define LINESTAT_GEN_LINE_MASK_STATUS BIT(12) |
| #define LINESTAT_START_BIT_DET BIT(13) |
| #define LINESTAT_STOP_BIT_DET BIT(14) |
| #define LINESTAT_ACK_DET BIT(15) |
| #define LINESTAT_NACK_DET BIT(16) |
| #define LINESTAT_INPUT_HELD_V BIT(17) |
| #define LINESTAT_ABORT_DET BIT(18) |
| #define LINESTAT_ACK_OR_NACK_DET (LINESTAT_ACK_DET | LINESTAT_NACK_DET) |
| #define LINESTAT_INPUT_DATA 0xff000000 |
| #define LINESTAT_INPUT_DATA_SHIFT 24 |
| |
| #define LINESTAT_CLEAR_SHIFT 13 |
| #define LINESTAT_LATCHED (0x3f << LINESTAT_CLEAR_SHIFT) |
| |
| /* SCB_OVERRIDE_REG fields */ |
| |
| #define OVERRIDE_SCLK_OVR BIT(0) |
| #define OVERRIDE_SCLKEN_OVR BIT(1) |
| #define OVERRIDE_SDAT_OVR BIT(2) |
| #define OVERRIDE_SDATEN_OVR BIT(3) |
| #define OVERRIDE_MASTER BIT(9) |
| #define OVERRIDE_LINE_OVR_EN BIT(10) |
| #define OVERRIDE_DIRECT BIT(11) |
| #define OVERRIDE_CMD_SHIFT 4 |
| #define OVERRIDE_CMD_MASK 0x1f |
| #define OVERRIDE_DATA_SHIFT 24 |
| |
| #define OVERRIDE_SCLK_DOWN (OVERRIDE_LINE_OVR_EN | \ |
| OVERRIDE_SCLKEN_OVR) |
| #define OVERRIDE_SCLK_UP (OVERRIDE_LINE_OVR_EN | \ |
| OVERRIDE_SCLKEN_OVR | \ |
| OVERRIDE_SCLK_OVR) |
| #define OVERRIDE_SDAT_DOWN (OVERRIDE_LINE_OVR_EN | \ |
| OVERRIDE_SDATEN_OVR) |
| #define OVERRIDE_SDAT_UP (OVERRIDE_LINE_OVR_EN | \ |
| OVERRIDE_SDATEN_OVR | \ |
| OVERRIDE_SDAT_OVR) |
| |
| /* OVERRIDE_CMD values */ |
| |
| #define CMD_PAUSE 0x00 |
| #define CMD_GEN_DATA 0x01 |
| #define CMD_GEN_START 0x02 |
| #define CMD_GEN_STOP 0x03 |
| #define CMD_GEN_ACK 0x04 |
| #define CMD_GEN_NACK 0x05 |
| #define CMD_RET_DATA 0x08 |
| #define CMD_RET_ACK 0x09 |
| |
| /* Fixed timing values */ |
| |
| #define TIMEOUT_TBI 0x0 |
| #define TIMEOUT_TSL 0xffff |
| #define TIMEOUT_TDL 0x0 |
| |
| /* Transaction timeout */ |
| |
| #define IMG_I2C_TIMEOUT (msecs_to_jiffies(1000)) |
| |
| /* |
| * Worst incs are 1 (innacurate) and 16*256 (irregular). |
| * So a sensible inc is the logarithmic mean: 64 (2^6), which is |
| * in the middle of the valid range (0-127). |
| */ |
| #define SCB_OPT_INC 64 |
| |
| /* Setup the clock enable filtering for 25 ns */ |
| #define SCB_FILT_GLITCH 25 |
| |
| /* |
| * Bits to return from interrupt handler functions for different modes. |
| * This delays completion until we've finished with the registers, so that the |
| * function waiting for completion can safely disable the clock to save power. |
| */ |
| #define ISR_COMPLETE_M BIT(31) |
| #define ISR_FATAL_M BIT(30) |
| #define ISR_WAITSTOP BIT(29) |
| #define ISR_STATUS_M 0x0000ffff /* contains +ve errno */ |
| #define ISR_COMPLETE(err) (ISR_COMPLETE_M | (ISR_STATUS_M & (err))) |
| #define ISR_FATAL(err) (ISR_COMPLETE(err) | ISR_FATAL_M) |
| |
| enum img_i2c_mode { |
| MODE_INACTIVE, |
| MODE_RAW, |
| MODE_ATOMIC, |
| MODE_AUTOMATIC, |
| MODE_SEQUENCE, |
| MODE_FATAL, |
| MODE_WAITSTOP, |
| MODE_SUSPEND, |
| }; |
| |
| /* Timing parameters for i2c modes (in ns) */ |
| struct img_i2c_timings { |
| const char *name; |
| unsigned int max_bitrate; |
| unsigned int tckh, tckl, tsdh, tsdl; |
| unsigned int tp2s, tpl, tph; |
| }; |
| |
| /* The timings array must be ordered from slower to faster */ |
| static struct img_i2c_timings timings[] = { |
| /* Standard mode */ |
| { |
| .name = "standard", |
| .max_bitrate = 100000, |
| .tckh = 4000, |
| .tckl = 4700, |
| .tsdh = 4700, |
| .tsdl = 8700, |
| .tp2s = 4700, |
| .tpl = 4700, |
| .tph = 4000, |
| }, |
| /* Fast mode */ |
| { |
| .name = "fast", |
| .max_bitrate = 400000, |
| .tckh = 600, |
| .tckl = 1300, |
| .tsdh = 600, |
| .tsdl = 1200, |
| .tp2s = 1300, |
| .tpl = 600, |
| .tph = 600, |
| }, |
| }; |
| |
| /* Reset dance */ |
| static u8 img_i2c_reset_seq[] = { CMD_GEN_START, |
| CMD_GEN_DATA, 0xff, |
| CMD_RET_ACK, |
| CMD_GEN_START, |
| CMD_GEN_STOP, |
| 0 }; |
| /* Just issue a stop (after an abort condition) */ |
| static u8 img_i2c_stop_seq[] = { CMD_GEN_STOP, |
| 0 }; |
| |
| /* We're interested in different interrupts depending on the mode */ |
| static unsigned int img_i2c_int_enable_by_mode[] = { |
| [MODE_INACTIVE] = INT_ENABLE_MASK_INACTIVE, |
| [MODE_RAW] = INT_ENABLE_MASK_RAW, |
| [MODE_ATOMIC] = INT_ENABLE_MASK_ATOMIC, |
| [MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC, |
| [MODE_SEQUENCE] = INT_ENABLE_MASK_ATOMIC, |
| [MODE_FATAL] = 0, |
| [MODE_WAITSTOP] = INT_ENABLE_MASK_WAITSTOP, |
| [MODE_SUSPEND] = 0, |
| }; |
| |
| /* Atomic command names */ |
| static const char * const img_i2c_atomic_cmd_names[] = { |
| [CMD_PAUSE] = "PAUSE", |
| [CMD_GEN_DATA] = "GEN_DATA", |
| [CMD_GEN_START] = "GEN_START", |
| [CMD_GEN_STOP] = "GEN_STOP", |
| [CMD_GEN_ACK] = "GEN_ACK", |
| [CMD_GEN_NACK] = "GEN_NACK", |
| [CMD_RET_DATA] = "RET_DATA", |
| [CMD_RET_ACK] = "RET_ACK", |
| }; |
| |
| struct img_i2c { |
| struct i2c_adapter adap; |
| |
| void __iomem *base; |
| |
| /* |
| * The scb core clock is used to get the input frequency, and to disable |
| * it after every set of transactions to save some power. |
| */ |
| struct clk *scb_clk, *sys_clk; |
| unsigned int bitrate; |
| bool need_wr_rd_fence; |
| |
| /* state */ |
| struct completion msg_complete; |
| spinlock_t lock; /* lock before doing anything with the state */ |
| struct i2c_msg msg; |
| |
| /* After the last transaction, wait for a stop bit */ |
| bool last_msg; |
| int msg_status; |
| |
| enum img_i2c_mode mode; |
| u32 int_enable; /* depends on mode */ |
| u32 line_status; /* line status over command */ |
| |
| /* |
| * To avoid slave event interrupts in automatic mode, use a timer to |
| * poll the abort condition if we don't get an interrupt for too long. |
| */ |
| struct timer_list check_timer; |
| bool t_halt; |
| |
| /* atomic mode state */ |
| bool at_t_done; |
| bool at_slave_event; |
| int at_cur_cmd; |
| u8 at_cur_data; |
| |
| /* Sequence: either reset or stop. See img_i2c_sequence. */ |
| u8 *seq; |
| |
| /* raw mode */ |
| unsigned int raw_timeout; |
| }; |
| |
| static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value) |
| { |
| writel(value, i2c->base + offset); |
| } |
| |
| static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset) |
| { |
| return readl(i2c->base + offset); |
| } |
| |
| /* |
| * The code to read from the master read fifo, and write to the master |
| * write fifo, checks a bit in an SCB register before every byte to |
| * ensure that the fifo is not full (write fifo) or empty (read fifo). |
| * Due to clock domain crossing inside the SCB block the updated value |
| * of this bit is only visible after 2 cycles. |
| * |
| * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only |
| * revision register), and it's called after reading from or writing to the |
| * fifos to ensure that subsequent reads of the fifo status bits do not read |
| * stale values. |
| */ |
| static void img_i2c_wr_rd_fence(struct img_i2c *i2c) |
| { |
| if (i2c->need_wr_rd_fence) { |
| img_i2c_writel(i2c, SCB_CORE_REV_REG, 0); |
| img_i2c_writel(i2c, SCB_CORE_REV_REG, 0); |
| } |
| } |
| |
| static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode) |
| { |
| i2c->mode = mode; |
| i2c->int_enable = img_i2c_int_enable_by_mode[mode]; |
| i2c->line_status = 0; |
| } |
| |
| static void img_i2c_raw_op(struct img_i2c *i2c) |
| { |
| i2c->raw_timeout = 0; |
| img_i2c_writel(i2c, SCB_OVERRIDE_REG, |
| OVERRIDE_SCLKEN_OVR | |
| OVERRIDE_SDATEN_OVR | |
| OVERRIDE_MASTER | |
| OVERRIDE_LINE_OVR_EN | |
| OVERRIDE_DIRECT | |
| ((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) | |
| (i2c->at_cur_data << OVERRIDE_DATA_SHIFT)); |
| } |
| |
| static const char *img_i2c_atomic_op_name(unsigned int cmd) |
| { |
| if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names))) |
| return "UNKNOWN"; |
| return img_i2c_atomic_cmd_names[cmd]; |
| } |
| |
| /* Send a single atomic mode command to the hardware */ |
| static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data) |
| { |
| i2c->at_cur_cmd = cmd; |
| i2c->at_cur_data = data; |
| |
| /* work around lack of data setup time when generating data */ |
| if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) { |
| u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG); |
| |
| if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) { |
| /* hold the data line down for a moment */ |
| img_i2c_switch_mode(i2c, MODE_RAW); |
| img_i2c_raw_op(i2c); |
| return; |
| } |
| } |
| |
| dev_dbg(i2c->adap.dev.parent, |
| "atomic cmd=%s (%d) data=%#x\n", |
| img_i2c_atomic_op_name(cmd), cmd, data); |
| i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK); |
| i2c->at_slave_event = false; |
| i2c->line_status = 0; |
| |
| img_i2c_writel(i2c, SCB_OVERRIDE_REG, |
| ((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) | |
| OVERRIDE_MASTER | |
| OVERRIDE_DIRECT | |
| (data << OVERRIDE_DATA_SHIFT)); |
| } |
| |
| /* Start a transaction in atomic mode */ |
| static void img_i2c_atomic_start(struct img_i2c *i2c) |
| { |
| img_i2c_switch_mode(i2c, MODE_ATOMIC); |
| img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00); |
| } |
| |
| static void img_i2c_soft_reset(struct img_i2c *i2c) |
| { |
| i2c->t_halt = false; |
| img_i2c_writel(i2c, SCB_CONTROL_REG, 0); |
| img_i2c_writel(i2c, SCB_CONTROL_REG, |
| SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET); |
| } |
| |
| /* |
| * Enable or release transaction halt for control of repeated starts. |
| * In version 3.3 of the IP when transaction halt is set, an interrupt |
| * will be generated after each byte of a transfer instead of after |
| * every transfer but before the stop bit. |
| * Due to this behaviour we have to be careful that every time we |
| * release the transaction halt we have to re-enable it straight away |
| * so that we only process a single byte, not doing so will result in |
| * all remaining bytes been processed and a stop bit being issued, |
| * which will prevent us having a repeated start. |
| */ |
| static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt) |
| { |
| u32 val; |
| |
| if (i2c->t_halt == t_halt) |
| return; |
| i2c->t_halt = t_halt; |
| val = img_i2c_readl(i2c, SCB_CONTROL_REG); |
| if (t_halt) |
| val |= SCB_CONTROL_TRANSACTION_HALT; |
| else |
| val &= ~SCB_CONTROL_TRANSACTION_HALT; |
| img_i2c_writel(i2c, SCB_CONTROL_REG, val); |
| } |
| |
| /* Drain data from the FIFO into the buffer (automatic mode) */ |
| static void img_i2c_read_fifo(struct img_i2c *i2c) |
| { |
| while (i2c->msg.len) { |
| u32 fifo_status; |
| u8 data; |
| |
| img_i2c_wr_rd_fence(i2c); |
| fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG); |
| if (fifo_status & FIFO_READ_EMPTY) |
| break; |
| |
| data = img_i2c_readl(i2c, SCB_READ_DATA_REG); |
| *i2c->msg.buf = data; |
| |
| img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff); |
| i2c->msg.len--; |
| i2c->msg.buf++; |
| } |
| } |
| |
| /* Fill the FIFO with data from the buffer (automatic mode) */ |
| static void img_i2c_write_fifo(struct img_i2c *i2c) |
| { |
| while (i2c->msg.len) { |
| u32 fifo_status; |
| |
| img_i2c_wr_rd_fence(i2c); |
| fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG); |
| if (fifo_status & FIFO_WRITE_FULL) |
| break; |
| |
| img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf); |
| i2c->msg.len--; |
| i2c->msg.buf++; |
| } |
| |
| /* Disable fifo emptying interrupt if nothing more to write */ |
| if (!i2c->msg.len) |
| i2c->int_enable &= ~INT_FIFO_EMPTYING; |
| } |
| |
| /* Start a read transaction in automatic mode */ |
| static void img_i2c_read(struct img_i2c *i2c) |
| { |
| img_i2c_switch_mode(i2c, MODE_AUTOMATIC); |
| if (!i2c->last_msg) |
| i2c->int_enable |= INT_SLAVE_EVENT; |
| |
| img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr); |
| img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len); |
| |
| mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1)); |
| } |
| |
| /* Start a write transaction in automatic mode */ |
| static void img_i2c_write(struct img_i2c *i2c) |
| { |
| img_i2c_switch_mode(i2c, MODE_AUTOMATIC); |
| if (!i2c->last_msg) |
| i2c->int_enable |= INT_SLAVE_EVENT; |
| |
| img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr); |
| img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len); |
| |
| mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1)); |
| img_i2c_write_fifo(i2c); |
| |
| /* img_i2c_write_fifo() may modify int_enable */ |
| img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| } |
| |
| /* |
| * Indicate that the transaction is complete. This is called from the |
| * ISR to wake up the waiting thread, after which the ISR must not |
| * access any more SCB registers. |
| */ |
| static void img_i2c_complete_transaction(struct img_i2c *i2c, int status) |
| { |
| img_i2c_switch_mode(i2c, MODE_INACTIVE); |
| if (status) { |
| i2c->msg_status = status; |
| img_i2c_transaction_halt(i2c, false); |
| } |
| complete(&i2c->msg_complete); |
| } |
| |
| static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c, |
| u32 int_status, u32 line_status) |
| { |
| /* Stay in raw mode for this, so we don't just loop infinitely */ |
| img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data); |
| img_i2c_switch_mode(i2c, MODE_ATOMIC); |
| return 0; |
| } |
| |
| static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status, |
| u32 line_status) |
| { |
| if (int_status & INT_TIMING) { |
| if (i2c->raw_timeout == 0) |
| return img_i2c_raw_atomic_delay_handler(i2c, |
| int_status, line_status); |
| --i2c->raw_timeout; |
| } |
| return 0; |
| } |
| |
| static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status) |
| { |
| static const unsigned int continue_bits[] = { |
| [CMD_GEN_START] = LINESTAT_START_BIT_DET, |
| [CMD_GEN_DATA] = LINESTAT_INPUT_HELD_V, |
| [CMD_RET_ACK] = LINESTAT_ACK_DET | LINESTAT_NACK_DET, |
| [CMD_RET_DATA] = LINESTAT_INPUT_HELD_V, |
| [CMD_GEN_STOP] = LINESTAT_STOP_BIT_DET, |
| }; |
| int next_cmd = -1; |
| u8 next_data = 0x00; |
| |
| if (int_status & INT_SLAVE_EVENT) |
| i2c->at_slave_event = true; |
| if (int_status & INT_TRANSACTION_DONE) |
| i2c->at_t_done = true; |
| |
| if (!i2c->at_slave_event || !i2c->at_t_done) |
| return 0; |
| |
| /* wait if no continue bits are set */ |
| if (i2c->at_cur_cmd >= 0 && |
| i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) { |
| unsigned int cont_bits = continue_bits[i2c->at_cur_cmd]; |
| |
| if (cont_bits) { |
| cont_bits |= LINESTAT_ABORT_DET; |
| if (!(i2c->line_status & cont_bits)) |
| return 0; |
| } |
| } |
| |
| /* follow the sequence of commands in i2c->seq */ |
| next_cmd = *i2c->seq; |
| /* stop on a nil */ |
| if (!next_cmd) { |
| img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0); |
| return ISR_COMPLETE(0); |
| } |
| /* when generating data, the next byte is the data */ |
| if (next_cmd == CMD_GEN_DATA) { |
| ++i2c->seq; |
| next_data = *i2c->seq; |
| } |
| ++i2c->seq; |
| img_i2c_atomic_op(i2c, next_cmd, next_data); |
| |
| return 0; |
| } |
| |
| static void img_i2c_reset_start(struct img_i2c *i2c) |
| { |
| /* Initiate the magic dance */ |
| img_i2c_switch_mode(i2c, MODE_SEQUENCE); |
| img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| i2c->seq = img_i2c_reset_seq; |
| i2c->at_slave_event = true; |
| i2c->at_t_done = true; |
| i2c->at_cur_cmd = -1; |
| |
| /* img_i2c_reset_seq isn't empty so the following won't fail */ |
| img_i2c_sequence(i2c, 0); |
| } |
| |
| static void img_i2c_stop_start(struct img_i2c *i2c) |
| { |
| /* Initiate a stop bit sequence */ |
| img_i2c_switch_mode(i2c, MODE_SEQUENCE); |
| img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| i2c->seq = img_i2c_stop_seq; |
| i2c->at_slave_event = true; |
| i2c->at_t_done = true; |
| i2c->at_cur_cmd = -1; |
| |
| /* img_i2c_stop_seq isn't empty so the following won't fail */ |
| img_i2c_sequence(i2c, 0); |
| } |
| |
| static unsigned int img_i2c_atomic(struct img_i2c *i2c, |
| u32 int_status, |
| u32 line_status) |
| { |
| int next_cmd = -1; |
| u8 next_data = 0x00; |
| |
| if (int_status & INT_SLAVE_EVENT) |
| i2c->at_slave_event = true; |
| if (int_status & INT_TRANSACTION_DONE) |
| i2c->at_t_done = true; |
| |
| if (!i2c->at_slave_event || !i2c->at_t_done) |
| goto next_atomic_cmd; |
| if (i2c->line_status & LINESTAT_ABORT_DET) { |
| dev_dbg(i2c->adap.dev.parent, "abort condition detected\n"); |
| next_cmd = CMD_GEN_STOP; |
| i2c->msg_status = -EIO; |
| goto next_atomic_cmd; |
| } |
| |
| /* i2c->at_cur_cmd may have completed */ |
| switch (i2c->at_cur_cmd) { |
| case CMD_GEN_START: |
| next_cmd = CMD_GEN_DATA; |
| next_data = (i2c->msg.addr << 1); |
| if (i2c->msg.flags & I2C_M_RD) |
| next_data |= 0x1; |
| break; |
| case CMD_GEN_DATA: |
| if (i2c->line_status & LINESTAT_INPUT_HELD_V) |
| next_cmd = CMD_RET_ACK; |
| break; |
| case CMD_RET_ACK: |
| if (i2c->line_status & LINESTAT_ACK_DET || |
| (i2c->line_status & LINESTAT_NACK_DET && |
| i2c->msg.flags & I2C_M_IGNORE_NAK)) { |
| if (i2c->msg.len == 0) { |
| next_cmd = CMD_GEN_STOP; |
| } else if (i2c->msg.flags & I2C_M_RD) { |
| next_cmd = CMD_RET_DATA; |
| } else { |
| next_cmd = CMD_GEN_DATA; |
| next_data = *i2c->msg.buf; |
| --i2c->msg.len; |
| ++i2c->msg.buf; |
| } |
| } else if (i2c->line_status & LINESTAT_NACK_DET) { |
| i2c->msg_status = -EIO; |
| next_cmd = CMD_GEN_STOP; |
| } |
| break; |
| case CMD_RET_DATA: |
| if (i2c->line_status & LINESTAT_INPUT_HELD_V) { |
| *i2c->msg.buf = (i2c->line_status & |
| LINESTAT_INPUT_DATA) |
| >> LINESTAT_INPUT_DATA_SHIFT; |
| --i2c->msg.len; |
| ++i2c->msg.buf; |
| if (i2c->msg.len) |
| next_cmd = CMD_GEN_ACK; |
| else |
| next_cmd = CMD_GEN_NACK; |
| } |
| break; |
| case CMD_GEN_ACK: |
| if (i2c->line_status & LINESTAT_ACK_DET) { |
| next_cmd = CMD_RET_DATA; |
| } else { |
| i2c->msg_status = -EIO; |
| next_cmd = CMD_GEN_STOP; |
| } |
| break; |
| case CMD_GEN_NACK: |
| next_cmd = CMD_GEN_STOP; |
| break; |
| case CMD_GEN_STOP: |
| img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0); |
| return ISR_COMPLETE(0); |
| default: |
| dev_err(i2c->adap.dev.parent, "bad atomic command %d\n", |
| i2c->at_cur_cmd); |
| i2c->msg_status = -EIO; |
| next_cmd = CMD_GEN_STOP; |
| break; |
| } |
| |
| next_atomic_cmd: |
| if (next_cmd != -1) { |
| /* don't actually stop unless we're the last transaction */ |
| if (next_cmd == CMD_GEN_STOP && !i2c->msg_status && |
| !i2c->last_msg) |
| return ISR_COMPLETE(0); |
| img_i2c_atomic_op(i2c, next_cmd, next_data); |
| } |
| return 0; |
| } |
| |
| /* |
| * Timer function to check if something has gone wrong in automatic mode (so we |
| * don't have to handle so many interrupts just to catch an exception). |
| */ |
| static void img_i2c_check_timer(unsigned long arg) |
| { |
| struct img_i2c *i2c = (struct img_i2c *)arg; |
| unsigned long flags; |
| unsigned int line_status; |
| |
| spin_lock_irqsave(&i2c->lock, flags); |
| line_status = img_i2c_readl(i2c, SCB_STATUS_REG); |
| |
| /* check for an abort condition */ |
| if (line_status & LINESTAT_ABORT_DET) { |
| dev_dbg(i2c->adap.dev.parent, |
| "abort condition detected by check timer\n"); |
| /* enable slave event interrupt mask to trigger irq */ |
| img_i2c_writel(i2c, SCB_INT_MASK_REG, |
| i2c->int_enable | INT_SLAVE_EVENT); |
| } |
| |
| spin_unlock_irqrestore(&i2c->lock, flags); |
| } |
| |
| static unsigned int img_i2c_auto(struct img_i2c *i2c, |
| unsigned int int_status, |
| unsigned int line_status) |
| { |
| if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR)) |
| return ISR_COMPLETE(EIO); |
| |
| if (line_status & LINESTAT_ABORT_DET) { |
| dev_dbg(i2c->adap.dev.parent, "abort condition detected\n"); |
| /* empty the read fifo */ |
| if ((i2c->msg.flags & I2C_M_RD) && |
| (int_status & INT_FIFO_FULL_FILLING)) |
| img_i2c_read_fifo(i2c); |
| /* use atomic mode and try to force a stop bit */ |
| i2c->msg_status = -EIO; |
| img_i2c_stop_start(i2c); |
| return 0; |
| } |
| |
| /* Enable transaction halt on start bit */ |
| if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) { |
| img_i2c_transaction_halt(i2c, !i2c->last_msg); |
| /* we're no longer interested in the slave event */ |
| i2c->int_enable &= ~INT_SLAVE_EVENT; |
| } |
| |
| mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1)); |
| |
| if (int_status & INT_STOP_DETECTED) { |
| /* Drain remaining data in FIFO and complete transaction */ |
| if (i2c->msg.flags & I2C_M_RD) |
| img_i2c_read_fifo(i2c); |
| return ISR_COMPLETE(0); |
| } |
| |
| if (i2c->msg.flags & I2C_M_RD) { |
| if (int_status & (INT_FIFO_FULL_FILLING | INT_MASTER_HALTED)) { |
| img_i2c_read_fifo(i2c); |
| if (i2c->msg.len == 0) |
| return ISR_WAITSTOP; |
| } |
| } else { |
| if (int_status & (INT_FIFO_EMPTY | INT_MASTER_HALTED)) { |
| if ((int_status & INT_FIFO_EMPTY) && |
| i2c->msg.len == 0) |
| return ISR_WAITSTOP; |
| img_i2c_write_fifo(i2c); |
| } |
| } |
| if (int_status & INT_MASTER_HALTED) { |
| /* |
| * Release and then enable transaction halt, to |
| * allow only a single byte to proceed. |
| */ |
| img_i2c_transaction_halt(i2c, false); |
| img_i2c_transaction_halt(i2c, !i2c->last_msg); |
| } |
| |
| return 0; |
| } |
| |
| static irqreturn_t img_i2c_isr(int irq, void *dev_id) |
| { |
| struct img_i2c *i2c = (struct img_i2c *)dev_id; |
| u32 int_status, line_status; |
| /* We handle transaction completion AFTER accessing registers */ |
| unsigned int hret; |
| |
| /* Read interrupt status register. */ |
| int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG); |
| /* Clear detected interrupts. */ |
| img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status); |
| |
| /* |
| * Read line status and clear it until it actually is clear. We have |
| * to be careful not to lose any line status bits that get latched. |
| */ |
| line_status = img_i2c_readl(i2c, SCB_STATUS_REG); |
| if (line_status & LINESTAT_LATCHED) { |
| img_i2c_writel(i2c, SCB_CLEAR_REG, |
| (line_status & LINESTAT_LATCHED) |
| >> LINESTAT_CLEAR_SHIFT); |
| img_i2c_wr_rd_fence(i2c); |
| } |
| |
| spin_lock(&i2c->lock); |
| |
| /* Keep track of line status bits received */ |
| i2c->line_status &= ~LINESTAT_INPUT_DATA; |
| i2c->line_status |= line_status; |
| |
| /* |
| * Certain interrupts indicate that sclk low timeout is not |
| * a problem. If any of these are set, just continue. |
| */ |
| if ((int_status & INT_SCLK_LOW_TIMEOUT) && |
| !(int_status & (INT_SLAVE_EVENT | |
| INT_FIFO_EMPTY | |
| INT_FIFO_FULL))) { |
| dev_crit(i2c->adap.dev.parent, |
| "fatal: clock low timeout occurred %s addr 0x%02x\n", |
| (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing", |
| i2c->msg.addr); |
| hret = ISR_FATAL(EIO); |
| goto out; |
| } |
| |
| if (i2c->mode == MODE_ATOMIC) |
| hret = img_i2c_atomic(i2c, int_status, line_status); |
| else if (i2c->mode == MODE_AUTOMATIC) |
| hret = img_i2c_auto(i2c, int_status, line_status); |
| else if (i2c->mode == MODE_SEQUENCE) |
| hret = img_i2c_sequence(i2c, int_status); |
| else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) && |
| (line_status & LINESTAT_STOP_BIT_DET)) |
| hret = ISR_COMPLETE(0); |
| else if (i2c->mode == MODE_RAW) |
| hret = img_i2c_raw(i2c, int_status, line_status); |
| else |
| hret = 0; |
| |
| /* Clear detected level interrupts. */ |
| img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL); |
| |
| out: |
| if (hret & ISR_WAITSTOP) { |
| /* |
| * Only wait for stop on last message. |
| * Also we may already have detected the stop bit. |
| */ |
| if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET) |
| hret = ISR_COMPLETE(0); |
| else |
| img_i2c_switch_mode(i2c, MODE_WAITSTOP); |
| } |
| |
| /* now we've finished using regs, handle transaction completion */ |
| if (hret & ISR_COMPLETE_M) { |
| int status = -(hret & ISR_STATUS_M); |
| |
| img_i2c_complete_transaction(i2c, status); |
| if (hret & ISR_FATAL_M) |
| img_i2c_switch_mode(i2c, MODE_FATAL); |
| } |
| |
| /* Enable interrupts (int_enable may be altered by changing mode) */ |
| img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| |
| spin_unlock(&i2c->lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* Force a bus reset sequence and wait for it to complete */ |
| static int img_i2c_reset_bus(struct img_i2c *i2c) |
| { |
| unsigned long flags; |
| unsigned long time_left; |
| |
| spin_lock_irqsave(&i2c->lock, flags); |
| reinit_completion(&i2c->msg_complete); |
| img_i2c_reset_start(i2c); |
| spin_unlock_irqrestore(&i2c->lock, flags); |
| |
| time_left = wait_for_completion_timeout(&i2c->msg_complete, |
| IMG_I2C_TIMEOUT); |
| if (time_left == 0) |
| return -ETIMEDOUT; |
| return 0; |
| } |
| |
| static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, |
| int num) |
| { |
| struct img_i2c *i2c = i2c_get_adapdata(adap); |
| bool atomic = false; |
| int i, ret; |
| unsigned long time_left; |
| |
| if (i2c->mode == MODE_SUSPEND) { |
| WARN(1, "refusing to service transaction in suspended state\n"); |
| return -EIO; |
| } |
| |
| if (i2c->mode == MODE_FATAL) |
| return -EIO; |
| |
| for (i = 0; i < num; i++) { |
| /* |
| * 0 byte reads are not possible because the slave could try |
| * and pull the data line low, preventing a stop bit. |
| */ |
| if (!msgs[i].len && msgs[i].flags & I2C_M_RD) |
| return -EIO; |
| /* |
| * 0 byte writes are possible and used for probing, but we |
| * cannot do them in automatic mode, so use atomic mode |
| * instead. |
| * |
| * Also, the I2C_M_IGNORE_NAK mode can only be implemented |
| * in atomic mode. |
| */ |
| if (!msgs[i].len || |
| (msgs[i].flags & I2C_M_IGNORE_NAK)) |
| atomic = true; |
| } |
| |
| ret = clk_prepare_enable(i2c->scb_clk); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < num; i++) { |
| struct i2c_msg *msg = &msgs[i]; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&i2c->lock, flags); |
| |
| /* |
| * Make a copy of the message struct. We mustn't modify the |
| * original or we'll confuse drivers and i2c-dev. |
| */ |
| i2c->msg = *msg; |
| i2c->msg_status = 0; |
| |
| /* |
| * After the last message we must have waited for a stop bit. |
| * Not waiting can cause problems when the clock is disabled |
| * before the stop bit is sent, and the linux I2C interface |
| * requires separate transfers not to joined with repeated |
| * start. |
| */ |
| i2c->last_msg = (i == num - 1); |
| reinit_completion(&i2c->msg_complete); |
| |
| /* |
| * Clear line status and all interrupts before starting a |
| * transfer, as we may have unserviced interrupts from |
| * previous transfers that might be handled in the context |
| * of the new transfer. |
| */ |
| img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0); |
| img_i2c_writel(i2c, SCB_CLEAR_REG, ~0); |
| |
| if (atomic) { |
| img_i2c_atomic_start(i2c); |
| } else { |
| /* |
| * Enable transaction halt if not the last message in |
| * the queue so that we can control repeated starts. |
| */ |
| img_i2c_transaction_halt(i2c, !i2c->last_msg); |
| |
| if (msg->flags & I2C_M_RD) |
| img_i2c_read(i2c); |
| else |
| img_i2c_write(i2c); |
| |
| /* |
| * Release and then enable transaction halt, to |
| * allow only a single byte to proceed. |
| * This doesn't have an effect on the initial transfer |
| * but will allow the following transfers to start |
| * processing if the previous transfer was marked as |
| * complete while the i2c block was halted. |
| */ |
| img_i2c_transaction_halt(i2c, false); |
| img_i2c_transaction_halt(i2c, !i2c->last_msg); |
| } |
| spin_unlock_irqrestore(&i2c->lock, flags); |
| |
| time_left = wait_for_completion_timeout(&i2c->msg_complete, |
| IMG_I2C_TIMEOUT); |
| del_timer_sync(&i2c->check_timer); |
| |
| if (time_left == 0) { |
| dev_err(adap->dev.parent, "i2c transfer timed out\n"); |
| i2c->msg_status = -ETIMEDOUT; |
| break; |
| } |
| |
| if (i2c->msg_status) |
| break; |
| } |
| |
| clk_disable_unprepare(i2c->scb_clk); |
| |
| return i2c->msg_status ? i2c->msg_status : num; |
| } |
| |
| static u32 img_i2c_func(struct i2c_adapter *adap) |
| { |
| return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; |
| } |
| |
| static const struct i2c_algorithm img_i2c_algo = { |
| .master_xfer = img_i2c_xfer, |
| .functionality = img_i2c_func, |
| }; |
| |
| static int img_i2c_init(struct img_i2c *i2c) |
| { |
| unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh; |
| unsigned int i, ret, data, prescale, inc, int_bitrate, filt; |
| struct img_i2c_timings timing; |
| u32 rev; |
| |
| ret = clk_prepare_enable(i2c->scb_clk); |
| if (ret) |
| return ret; |
| |
| rev = img_i2c_readl(i2c, SCB_CORE_REV_REG); |
| if ((rev & 0x00ffffff) < 0x00020200) { |
| dev_info(i2c->adap.dev.parent, |
| "Unknown hardware revision (%d.%d.%d.%d)\n", |
| (rev >> 24) & 0xff, (rev >> 16) & 0xff, |
| (rev >> 8) & 0xff, rev & 0xff); |
| clk_disable_unprepare(i2c->scb_clk); |
| return -EINVAL; |
| } |
| |
| /* Fencing enabled by default. */ |
| i2c->need_wr_rd_fence = true; |
| |
| /* Determine what mode we're in from the bitrate */ |
| timing = timings[0]; |
| for (i = 0; i < ARRAY_SIZE(timings); i++) { |
| if (i2c->bitrate <= timings[i].max_bitrate) { |
| timing = timings[i]; |
| break; |
| } |
| } |
| if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) { |
| dev_warn(i2c->adap.dev.parent, |
| "requested bitrate (%u) is higher than the max bitrate supported (%u)\n", |
| i2c->bitrate, |
| timings[ARRAY_SIZE(timings) - 1].max_bitrate); |
| timing = timings[ARRAY_SIZE(timings) - 1]; |
| i2c->bitrate = timing.max_bitrate; |
| } |
| |
| bitrate_khz = i2c->bitrate / 1000; |
| clk_khz = clk_get_rate(i2c->scb_clk) / 1000; |
| |
| /* Find the prescale that would give us that inc (approx delay = 0) */ |
| prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz); |
| prescale = clamp_t(unsigned int, prescale, 1, 8); |
| clk_khz /= prescale; |
| |
| /* Setup the clock increment value */ |
| inc = (256 * 16 * bitrate_khz) / clk_khz; |
| |
| /* |
| * The clock generation logic allows to filter glitches on the bus. |
| * This filter is able to remove bus glitches shorter than 50ns. |
| * If the clock enable rate is greater than 20 MHz, no filtering |
| * is required, so we need to disable it. |
| * If it's between the 20-40 MHz range, there's no need to divide |
| * the clock to get a filter. |
| */ |
| if (clk_khz < 20000) { |
| filt = SCB_FILT_DISABLE; |
| } else if (clk_khz < 40000) { |
| filt = SCB_FILT_BYPASS; |
| } else { |
| /* Calculate filter clock */ |
| filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH)); |
| |
| /* Scale up if needed */ |
| if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH)) |
| inc++; |
| |
| if (filt > SCB_FILT_INC_MASK) |
| filt = SCB_FILT_INC_MASK; |
| |
| filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT; |
| } |
| data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1); |
| img_i2c_writel(i2c, SCB_CLK_SET_REG, data); |
| |
| /* Obtain the clock period of the fx16 clock in ns */ |
| clk_period = (256 * 1000000) / (clk_khz * inc); |
| |
| /* Calculate the bitrate in terms of internal clock pulses */ |
| int_bitrate = 1000000 / (bitrate_khz * clk_period); |
| if ((1000000 % (bitrate_khz * clk_period)) >= |
| ((bitrate_khz * clk_period) / 2)) |
| int_bitrate++; |
| |
| /* |
| * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL |
| * values from there if they don't meet minimum timing requirements |
| */ |
| tckh = int_bitrate / 2; |
| tckl = int_bitrate - tckh; |
| |
| /* Adjust TCKH and TCKL values */ |
| data = DIV_ROUND_UP(timing.tckl, clk_period); |
| |
| if (tckl < data) { |
| tckl = data; |
| tckh = int_bitrate - tckl; |
| } |
| |
| if (tckh > 0) |
| --tckh; |
| |
| if (tckl > 0) |
| --tckl; |
| |
| img_i2c_writel(i2c, SCB_TIME_TCKH_REG, tckh); |
| img_i2c_writel(i2c, SCB_TIME_TCKL_REG, tckl); |
| |
| /* Setup TSDH value */ |
| tsdh = DIV_ROUND_UP(timing.tsdh, clk_period); |
| |
| if (tsdh > 1) |
| data = tsdh - 1; |
| else |
| data = 0x01; |
| img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data); |
| |
| /* This value is used later */ |
| tsdh = data; |
| |
| /* Setup TPL value */ |
| data = timing.tpl / clk_period; |
| if (data > 0) |
| --data; |
| img_i2c_writel(i2c, SCB_TIME_TPL_REG, data); |
| |
| /* Setup TPH value */ |
| data = timing.tph / clk_period; |
| if (data > 0) |
| --data; |
| img_i2c_writel(i2c, SCB_TIME_TPH_REG, data); |
| |
| /* Setup TSDL value to TPL + TSDH + 2 */ |
| img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2); |
| |
| /* Setup TP2S value */ |
| data = timing.tp2s / clk_period; |
| if (data > 0) |
| --data; |
| img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data); |
| |
| img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI); |
| img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL); |
| img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL); |
| |
| /* Take module out of soft reset and enable clocks */ |
| img_i2c_soft_reset(i2c); |
| |
| /* Disable all interrupts */ |
| img_i2c_writel(i2c, SCB_INT_MASK_REG, 0); |
| |
| /* Clear all interrupts */ |
| img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0); |
| |
| /* Clear the scb_line_status events */ |
| img_i2c_writel(i2c, SCB_CLEAR_REG, ~0); |
| |
| /* Enable interrupts */ |
| img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable); |
| |
| /* Perform a synchronous sequence to reset the bus */ |
| ret = img_i2c_reset_bus(i2c); |
| |
| clk_disable_unprepare(i2c->scb_clk); |
| |
| return ret; |
| } |
| |
| static int img_i2c_probe(struct platform_device *pdev) |
| { |
| struct device_node *node = pdev->dev.of_node; |
| struct img_i2c *i2c; |
| struct resource *res; |
| int irq, ret; |
| u32 val; |
| |
| i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL); |
| if (!i2c) |
| return -ENOMEM; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| i2c->base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(i2c->base)) |
| return PTR_ERR(i2c->base); |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) { |
| dev_err(&pdev->dev, "can't get irq number\n"); |
| return irq; |
| } |
| |
| i2c->sys_clk = devm_clk_get(&pdev->dev, "sys"); |
| if (IS_ERR(i2c->sys_clk)) { |
| dev_err(&pdev->dev, "can't get system clock\n"); |
| return PTR_ERR(i2c->sys_clk); |
| } |
| |
| i2c->scb_clk = devm_clk_get(&pdev->dev, "scb"); |
| if (IS_ERR(i2c->scb_clk)) { |
| dev_err(&pdev->dev, "can't get core clock\n"); |
| return PTR_ERR(i2c->scb_clk); |
| } |
| |
| ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0, |
| pdev->name, i2c); |
| if (ret) { |
| dev_err(&pdev->dev, "can't request irq %d\n", irq); |
| return ret; |
| } |
| |
| /* Set up the exception check timer */ |
| init_timer(&i2c->check_timer); |
| i2c->check_timer.function = img_i2c_check_timer; |
| i2c->check_timer.data = (unsigned long)i2c; |
| |
| i2c->bitrate = timings[0].max_bitrate; |
| if (!of_property_read_u32(node, "clock-frequency", &val)) |
| i2c->bitrate = val; |
| |
| i2c_set_adapdata(&i2c->adap, i2c); |
| i2c->adap.dev.parent = &pdev->dev; |
| i2c->adap.dev.of_node = node; |
| i2c->adap.owner = THIS_MODULE; |
| i2c->adap.algo = &img_i2c_algo; |
| i2c->adap.retries = 5; |
| i2c->adap.nr = pdev->id; |
| snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C"); |
| |
| img_i2c_switch_mode(i2c, MODE_INACTIVE); |
| spin_lock_init(&i2c->lock); |
| init_completion(&i2c->msg_complete); |
| |
| platform_set_drvdata(pdev, i2c); |
| |
| ret = clk_prepare_enable(i2c->sys_clk); |
| if (ret) |
| return ret; |
| |
| ret = img_i2c_init(i2c); |
| if (ret) |
| goto disable_clk; |
| |
| ret = i2c_add_numbered_adapter(&i2c->adap); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "failed to add adapter\n"); |
| goto disable_clk; |
| } |
| |
| return 0; |
| |
| disable_clk: |
| clk_disable_unprepare(i2c->sys_clk); |
| return ret; |
| } |
| |
| static int img_i2c_remove(struct platform_device *dev) |
| { |
| struct img_i2c *i2c = platform_get_drvdata(dev); |
| |
| i2c_del_adapter(&i2c->adap); |
| clk_disable_unprepare(i2c->sys_clk); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int img_i2c_suspend(struct device *dev) |
| { |
| struct img_i2c *i2c = dev_get_drvdata(dev); |
| |
| img_i2c_switch_mode(i2c, MODE_SUSPEND); |
| |
| clk_disable_unprepare(i2c->sys_clk); |
| |
| return 0; |
| } |
| |
| static int img_i2c_resume(struct device *dev) |
| { |
| struct img_i2c *i2c = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = clk_prepare_enable(i2c->sys_clk); |
| if (ret) |
| return ret; |
| |
| img_i2c_init(i2c); |
| |
| return 0; |
| } |
| #endif /* CONFIG_PM_SLEEP */ |
| |
| static SIMPLE_DEV_PM_OPS(img_i2c_pm, img_i2c_suspend, img_i2c_resume); |
| |
| static const struct of_device_id img_scb_i2c_match[] = { |
| { .compatible = "img,scb-i2c" }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, img_scb_i2c_match); |
| |
| static struct platform_driver img_scb_i2c_driver = { |
| .driver = { |
| .name = "img-i2c-scb", |
| .of_match_table = img_scb_i2c_match, |
| .pm = &img_i2c_pm, |
| }, |
| .probe = img_i2c_probe, |
| .remove = img_i2c_remove, |
| }; |
| module_platform_driver(img_scb_i2c_driver); |
| |
| MODULE_AUTHOR("James Hogan <james.hogan@imgtec.com>"); |
| MODULE_DESCRIPTION("IMG host I2C driver"); |
| MODULE_LICENSE("GPL v2"); |