| /* |
| * lib/prio_tree.c - priority search tree |
| * |
| * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu> |
| * |
| * This file is released under the GPL v2. |
| * |
| * Based on the radix priority search tree proposed by Edward M. McCreight |
| * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985 |
| * |
| * 02Feb2004 Initial version |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/prio_tree.h> |
| |
| /* |
| * A clever mix of heap and radix trees forms a radix priority search tree (PST) |
| * which is useful for storing intervals, e.g, we can consider a vma as a closed |
| * interval of file pages [offset_begin, offset_end], and store all vmas that |
| * map a file in a PST. Then, using the PST, we can answer a stabbing query, |
| * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a |
| * given input interval X (a set of consecutive file pages), in "O(log n + m)" |
| * time where 'log n' is the height of the PST, and 'm' is the number of stored |
| * intervals (vmas) that overlap (map) with the input interval X (the set of |
| * consecutive file pages). |
| * |
| * In our implementation, we store closed intervals of the form [radix_index, |
| * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST |
| * is designed for storing intervals with unique radix indices, i.e., each |
| * interval have different radix_index. However, this limitation can be easily |
| * overcome by using the size, i.e., heap_index - radix_index, as part of the |
| * index, so we index the tree using [(radix_index,size), heap_index]. |
| * |
| * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit |
| * machine, the maximum height of a PST can be 64. We can use a balanced version |
| * of the priority search tree to optimize the tree height, but the balanced |
| * tree proposed by McCreight is too complex and memory-hungry for our purpose. |
| */ |
| |
| /* |
| * The following macros are used for implementing prio_tree for i_mmap |
| */ |
| |
| #define RADIX_INDEX(vma) ((vma)->vm_pgoff) |
| #define VMA_SIZE(vma) (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT) |
| /* avoid overflow */ |
| #define HEAP_INDEX(vma) ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1)) |
| |
| |
| static void get_index(const struct prio_tree_root *root, |
| const struct prio_tree_node *node, |
| unsigned long *radix, unsigned long *heap) |
| { |
| if (root->raw) { |
| struct vm_area_struct *vma = prio_tree_entry( |
| node, struct vm_area_struct, shared.prio_tree_node); |
| |
| *radix = RADIX_INDEX(vma); |
| *heap = HEAP_INDEX(vma); |
| } |
| else { |
| *radix = node->start; |
| *heap = node->last; |
| } |
| } |
| |
| static unsigned long index_bits_to_maxindex[BITS_PER_LONG]; |
| |
| void __init prio_tree_init(void) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++) |
| index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1; |
| index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL; |
| } |
| |
| /* |
| * Maximum heap_index that can be stored in a PST with index_bits bits |
| */ |
| static inline unsigned long prio_tree_maxindex(unsigned int bits) |
| { |
| return index_bits_to_maxindex[bits - 1]; |
| } |
| |
| /* |
| * Extend a priority search tree so that it can store a node with heap_index |
| * max_heap_index. In the worst case, this algorithm takes O((log n)^2). |
| * However, this function is used rarely and the common case performance is |
| * not bad. |
| */ |
| static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root, |
| struct prio_tree_node *node, unsigned long max_heap_index) |
| { |
| struct prio_tree_node *first = NULL, *prev, *last = NULL; |
| |
| if (max_heap_index > prio_tree_maxindex(root->index_bits)) |
| root->index_bits++; |
| |
| while (max_heap_index > prio_tree_maxindex(root->index_bits)) { |
| root->index_bits++; |
| |
| if (prio_tree_empty(root)) |
| continue; |
| |
| if (first == NULL) { |
| first = root->prio_tree_node; |
| prio_tree_remove(root, root->prio_tree_node); |
| INIT_PRIO_TREE_NODE(first); |
| last = first; |
| } else { |
| prev = last; |
| last = root->prio_tree_node; |
| prio_tree_remove(root, root->prio_tree_node); |
| INIT_PRIO_TREE_NODE(last); |
| prev->left = last; |
| last->parent = prev; |
| } |
| } |
| |
| INIT_PRIO_TREE_NODE(node); |
| |
| if (first) { |
| node->left = first; |
| first->parent = node; |
| } else |
| last = node; |
| |
| if (!prio_tree_empty(root)) { |
| last->left = root->prio_tree_node; |
| last->left->parent = last; |
| } |
| |
| root->prio_tree_node = node; |
| return node; |
| } |
| |
| /* |
| * Replace a prio_tree_node with a new node and return the old node |
| */ |
| struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root, |
| struct prio_tree_node *old, struct prio_tree_node *node) |
| { |
| INIT_PRIO_TREE_NODE(node); |
| |
| if (prio_tree_root(old)) { |
| BUG_ON(root->prio_tree_node != old); |
| /* |
| * We can reduce root->index_bits here. However, it is complex |
| * and does not help much to improve performance (IMO). |
| */ |
| root->prio_tree_node = node; |
| } else { |
| node->parent = old->parent; |
| if (old->parent->left == old) |
| old->parent->left = node; |
| else |
| old->parent->right = node; |
| } |
| |
| if (!prio_tree_left_empty(old)) { |
| node->left = old->left; |
| old->left->parent = node; |
| } |
| |
| if (!prio_tree_right_empty(old)) { |
| node->right = old->right; |
| old->right->parent = node; |
| } |
| |
| return old; |
| } |
| |
| /* |
| * Insert a prio_tree_node @node into a radix priority search tree @root. The |
| * algorithm typically takes O(log n) time where 'log n' is the number of bits |
| * required to represent the maximum heap_index. In the worst case, the algo |
| * can take O((log n)^2) - check prio_tree_expand. |
| * |
| * If a prior node with same radix_index and heap_index is already found in |
| * the tree, then returns the address of the prior node. Otherwise, inserts |
| * @node into the tree and returns @node. |
| */ |
| struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root, |
| struct prio_tree_node *node) |
| { |
| struct prio_tree_node *cur, *res = node; |
| unsigned long radix_index, heap_index; |
| unsigned long r_index, h_index, index, mask; |
| int size_flag = 0; |
| |
| get_index(root, node, &radix_index, &heap_index); |
| |
| if (prio_tree_empty(root) || |
| heap_index > prio_tree_maxindex(root->index_bits)) |
| return prio_tree_expand(root, node, heap_index); |
| |
| cur = root->prio_tree_node; |
| mask = 1UL << (root->index_bits - 1); |
| |
| while (mask) { |
| get_index(root, cur, &r_index, &h_index); |
| |
| if (r_index == radix_index && h_index == heap_index) |
| return cur; |
| |
| if (h_index < heap_index || |
| (h_index == heap_index && r_index > radix_index)) { |
| struct prio_tree_node *tmp = node; |
| node = prio_tree_replace(root, cur, node); |
| cur = tmp; |
| /* swap indices */ |
| index = r_index; |
| r_index = radix_index; |
| radix_index = index; |
| index = h_index; |
| h_index = heap_index; |
| heap_index = index; |
| } |
| |
| if (size_flag) |
| index = heap_index - radix_index; |
| else |
| index = radix_index; |
| |
| if (index & mask) { |
| if (prio_tree_right_empty(cur)) { |
| INIT_PRIO_TREE_NODE(node); |
| cur->right = node; |
| node->parent = cur; |
| return res; |
| } else |
| cur = cur->right; |
| } else { |
| if (prio_tree_left_empty(cur)) { |
| INIT_PRIO_TREE_NODE(node); |
| cur->left = node; |
| node->parent = cur; |
| return res; |
| } else |
| cur = cur->left; |
| } |
| |
| mask >>= 1; |
| |
| if (!mask) { |
| mask = 1UL << (BITS_PER_LONG - 1); |
| size_flag = 1; |
| } |
| } |
| /* Should not reach here */ |
| BUG(); |
| return NULL; |
| } |
| |
| /* |
| * Remove a prio_tree_node @node from a radix priority search tree @root. The |
| * algorithm takes O(log n) time where 'log n' is the number of bits required |
| * to represent the maximum heap_index. |
| */ |
| void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node) |
| { |
| struct prio_tree_node *cur; |
| unsigned long r_index, h_index_right, h_index_left; |
| |
| cur = node; |
| |
| while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) { |
| if (!prio_tree_left_empty(cur)) |
| get_index(root, cur->left, &r_index, &h_index_left); |
| else { |
| cur = cur->right; |
| continue; |
| } |
| |
| if (!prio_tree_right_empty(cur)) |
| get_index(root, cur->right, &r_index, &h_index_right); |
| else { |
| cur = cur->left; |
| continue; |
| } |
| |
| /* both h_index_left and h_index_right cannot be 0 */ |
| if (h_index_left >= h_index_right) |
| cur = cur->left; |
| else |
| cur = cur->right; |
| } |
| |
| if (prio_tree_root(cur)) { |
| BUG_ON(root->prio_tree_node != cur); |
| __INIT_PRIO_TREE_ROOT(root, root->raw); |
| return; |
| } |
| |
| if (cur->parent->right == cur) |
| cur->parent->right = cur->parent; |
| else |
| cur->parent->left = cur->parent; |
| |
| while (cur != node) |
| cur = prio_tree_replace(root, cur->parent, cur); |
| } |
| |
| static void iter_walk_down(struct prio_tree_iter *iter) |
| { |
| iter->mask >>= 1; |
| if (iter->mask) { |
| if (iter->size_level) |
| iter->size_level++; |
| return; |
| } |
| |
| if (iter->size_level) { |
| BUG_ON(!prio_tree_left_empty(iter->cur)); |
| BUG_ON(!prio_tree_right_empty(iter->cur)); |
| iter->size_level++; |
| iter->mask = ULONG_MAX; |
| } else { |
| iter->size_level = 1; |
| iter->mask = 1UL << (BITS_PER_LONG - 1); |
| } |
| } |
| |
| static void iter_walk_up(struct prio_tree_iter *iter) |
| { |
| if (iter->mask == ULONG_MAX) |
| iter->mask = 1UL; |
| else if (iter->size_level == 1) |
| iter->mask = 1UL; |
| else |
| iter->mask <<= 1; |
| if (iter->size_level) |
| iter->size_level--; |
| if (!iter->size_level && (iter->value & iter->mask)) |
| iter->value ^= iter->mask; |
| } |
| |
| /* |
| * Following functions help to enumerate all prio_tree_nodes in the tree that |
| * overlap with the input interval X [radix_index, heap_index]. The enumeration |
| * takes O(log n + m) time where 'log n' is the height of the tree (which is |
| * proportional to # of bits required to represent the maximum heap_index) and |
| * 'm' is the number of prio_tree_nodes that overlap the interval X. |
| */ |
| |
| static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter, |
| unsigned long *r_index, unsigned long *h_index) |
| { |
| if (prio_tree_left_empty(iter->cur)) |
| return NULL; |
| |
| get_index(iter->root, iter->cur->left, r_index, h_index); |
| |
| if (iter->r_index <= *h_index) { |
| iter->cur = iter->cur->left; |
| iter_walk_down(iter); |
| return iter->cur; |
| } |
| |
| return NULL; |
| } |
| |
| static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter, |
| unsigned long *r_index, unsigned long *h_index) |
| { |
| unsigned long value; |
| |
| if (prio_tree_right_empty(iter->cur)) |
| return NULL; |
| |
| if (iter->size_level) |
| value = iter->value; |
| else |
| value = iter->value | iter->mask; |
| |
| if (iter->h_index < value) |
| return NULL; |
| |
| get_index(iter->root, iter->cur->right, r_index, h_index); |
| |
| if (iter->r_index <= *h_index) { |
| iter->cur = iter->cur->right; |
| iter_walk_down(iter); |
| return iter->cur; |
| } |
| |
| return NULL; |
| } |
| |
| static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter) |
| { |
| iter->cur = iter->cur->parent; |
| iter_walk_up(iter); |
| return iter->cur; |
| } |
| |
| static inline int overlap(struct prio_tree_iter *iter, |
| unsigned long r_index, unsigned long h_index) |
| { |
| return iter->h_index >= r_index && iter->r_index <= h_index; |
| } |
| |
| /* |
| * prio_tree_first: |
| * |
| * Get the first prio_tree_node that overlaps with the interval [radix_index, |
| * heap_index]. Note that always radix_index <= heap_index. We do a pre-order |
| * traversal of the tree. |
| */ |
| static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter) |
| { |
| struct prio_tree_root *root; |
| unsigned long r_index, h_index; |
| |
| INIT_PRIO_TREE_ITER(iter); |
| |
| root = iter->root; |
| if (prio_tree_empty(root)) |
| return NULL; |
| |
| get_index(root, root->prio_tree_node, &r_index, &h_index); |
| |
| if (iter->r_index > h_index) |
| return NULL; |
| |
| iter->mask = 1UL << (root->index_bits - 1); |
| iter->cur = root->prio_tree_node; |
| |
| while (1) { |
| if (overlap(iter, r_index, h_index)) |
| return iter->cur; |
| |
| if (prio_tree_left(iter, &r_index, &h_index)) |
| continue; |
| |
| if (prio_tree_right(iter, &r_index, &h_index)) |
| continue; |
| |
| break; |
| } |
| return NULL; |
| } |
| |
| /* |
| * prio_tree_next: |
| * |
| * Get the next prio_tree_node that overlaps with the input interval in iter |
| */ |
| struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter) |
| { |
| unsigned long r_index, h_index; |
| |
| if (iter->cur == NULL) |
| return prio_tree_first(iter); |
| |
| repeat: |
| while (prio_tree_left(iter, &r_index, &h_index)) |
| if (overlap(iter, r_index, h_index)) |
| return iter->cur; |
| |
| while (!prio_tree_right(iter, &r_index, &h_index)) { |
| while (!prio_tree_root(iter->cur) && |
| iter->cur->parent->right == iter->cur) |
| prio_tree_parent(iter); |
| |
| if (prio_tree_root(iter->cur)) |
| return NULL; |
| |
| prio_tree_parent(iter); |
| } |
| |
| if (overlap(iter, r_index, h_index)) |
| return iter->cur; |
| |
| goto repeat; |
| } |