| /* linux/drivers/mtd/nand/s3c2410.c |
| * |
| * Copyright © 2004-2008 Simtec Electronics |
| * http://armlinux.simtec.co.uk/ |
| * Ben Dooks <ben@simtec.co.uk> |
| * |
| * Samsung S3C2410/S3C2440/S3C2412 NAND driver |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG |
| #define DEBUG |
| #endif |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/ioport.h> |
| #include <linux/platform_device.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/slab.h> |
| #include <linux/clk.h> |
| #include <linux/cpufreq.h> |
| |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/nand_ecc.h> |
| #include <linux/mtd/partitions.h> |
| |
| #include <asm/io.h> |
| |
| #include <plat/regs-nand.h> |
| #include <plat/nand.h> |
| |
| #ifdef CONFIG_MTD_NAND_S3C2410_HWECC |
| static int hardware_ecc = 1; |
| #else |
| static int hardware_ecc = 0; |
| #endif |
| |
| #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP |
| static int clock_stop = 1; |
| #else |
| static const int clock_stop = 0; |
| #endif |
| |
| |
| /* new oob placement block for use with hardware ecc generation |
| */ |
| |
| static struct nand_ecclayout nand_hw_eccoob = { |
| .eccbytes = 3, |
| .eccpos = {0, 1, 2}, |
| .oobfree = {{8, 8}} |
| }; |
| |
| /* controller and mtd information */ |
| |
| struct s3c2410_nand_info; |
| |
| /** |
| * struct s3c2410_nand_mtd - driver MTD structure |
| * @mtd: The MTD instance to pass to the MTD layer. |
| * @chip: The NAND chip information. |
| * @set: The platform information supplied for this set of NAND chips. |
| * @info: Link back to the hardware information. |
| * @scan_res: The result from calling nand_scan_ident(). |
| */ |
| struct s3c2410_nand_mtd { |
| struct mtd_info mtd; |
| struct nand_chip chip; |
| struct s3c2410_nand_set *set; |
| struct s3c2410_nand_info *info; |
| int scan_res; |
| }; |
| |
| enum s3c_cpu_type { |
| TYPE_S3C2410, |
| TYPE_S3C2412, |
| TYPE_S3C2440, |
| }; |
| |
| /* overview of the s3c2410 nand state */ |
| |
| /** |
| * struct s3c2410_nand_info - NAND controller state. |
| * @mtds: An array of MTD instances on this controoler. |
| * @platform: The platform data for this board. |
| * @device: The platform device we bound to. |
| * @area: The IO area resource that came from request_mem_region(). |
| * @clk: The clock resource for this controller. |
| * @regs: The area mapped for the hardware registers described by @area. |
| * @sel_reg: Pointer to the register controlling the NAND selection. |
| * @sel_bit: The bit in @sel_reg to select the NAND chip. |
| * @mtd_count: The number of MTDs created from this controller. |
| * @save_sel: The contents of @sel_reg to be saved over suspend. |
| * @clk_rate: The clock rate from @clk. |
| * @cpu_type: The exact type of this controller. |
| */ |
| struct s3c2410_nand_info { |
| /* mtd info */ |
| struct nand_hw_control controller; |
| struct s3c2410_nand_mtd *mtds; |
| struct s3c2410_platform_nand *platform; |
| |
| /* device info */ |
| struct device *device; |
| struct resource *area; |
| struct clk *clk; |
| void __iomem *regs; |
| void __iomem *sel_reg; |
| int sel_bit; |
| int mtd_count; |
| unsigned long save_sel; |
| unsigned long clk_rate; |
| |
| enum s3c_cpu_type cpu_type; |
| |
| #ifdef CONFIG_CPU_FREQ |
| struct notifier_block freq_transition; |
| #endif |
| }; |
| |
| /* conversion functions */ |
| |
| static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd) |
| { |
| return container_of(mtd, struct s3c2410_nand_mtd, mtd); |
| } |
| |
| static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd) |
| { |
| return s3c2410_nand_mtd_toours(mtd)->info; |
| } |
| |
| static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev) |
| { |
| return platform_get_drvdata(dev); |
| } |
| |
| static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev) |
| { |
| return dev->dev.platform_data; |
| } |
| |
| static inline int allow_clk_stop(struct s3c2410_nand_info *info) |
| { |
| return clock_stop; |
| } |
| |
| /* timing calculations */ |
| |
| #define NS_IN_KHZ 1000000 |
| |
| /** |
| * s3c_nand_calc_rate - calculate timing data. |
| * @wanted: The cycle time in nanoseconds. |
| * @clk: The clock rate in kHz. |
| * @max: The maximum divider value. |
| * |
| * Calculate the timing value from the given parameters. |
| */ |
| static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max) |
| { |
| int result; |
| |
| result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ); |
| |
| pr_debug("result %d from %ld, %d\n", result, clk, wanted); |
| |
| if (result > max) { |
| printk("%d ns is too big for current clock rate %ld\n", wanted, clk); |
| return -1; |
| } |
| |
| if (result < 1) |
| result = 1; |
| |
| return result; |
| } |
| |
| #define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk)) |
| |
| /* controller setup */ |
| |
| /** |
| * s3c2410_nand_setrate - setup controller timing information. |
| * @info: The controller instance. |
| * |
| * Given the information supplied by the platform, calculate and set |
| * the necessary timing registers in the hardware to generate the |
| * necessary timing cycles to the hardware. |
| */ |
| static int s3c2410_nand_setrate(struct s3c2410_nand_info *info) |
| { |
| struct s3c2410_platform_nand *plat = info->platform; |
| int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4; |
| int tacls, twrph0, twrph1; |
| unsigned long clkrate = clk_get_rate(info->clk); |
| unsigned long uninitialized_var(set), cfg, uninitialized_var(mask); |
| unsigned long flags; |
| |
| /* calculate the timing information for the controller */ |
| |
| info->clk_rate = clkrate; |
| clkrate /= 1000; /* turn clock into kHz for ease of use */ |
| |
| if (plat != NULL) { |
| tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max); |
| twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8); |
| twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8); |
| } else { |
| /* default timings */ |
| tacls = tacls_max; |
| twrph0 = 8; |
| twrph1 = 8; |
| } |
| |
| if (tacls < 0 || twrph0 < 0 || twrph1 < 0) { |
| dev_err(info->device, "cannot get suitable timings\n"); |
| return -EINVAL; |
| } |
| |
| dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n", |
| tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate)); |
| |
| switch (info->cpu_type) { |
| case TYPE_S3C2410: |
| mask = (S3C2410_NFCONF_TACLS(3) | |
| S3C2410_NFCONF_TWRPH0(7) | |
| S3C2410_NFCONF_TWRPH1(7)); |
| set = S3C2410_NFCONF_EN; |
| set |= S3C2410_NFCONF_TACLS(tacls - 1); |
| set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1); |
| set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1); |
| break; |
| |
| case TYPE_S3C2440: |
| case TYPE_S3C2412: |
| mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) | |
| S3C2440_NFCONF_TWRPH0(7) | |
| S3C2440_NFCONF_TWRPH1(7)); |
| |
| set = S3C2440_NFCONF_TACLS(tacls - 1); |
| set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1); |
| set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1); |
| break; |
| |
| default: |
| BUG(); |
| } |
| |
| local_irq_save(flags); |
| |
| cfg = readl(info->regs + S3C2410_NFCONF); |
| cfg &= ~mask; |
| cfg |= set; |
| writel(cfg, info->regs + S3C2410_NFCONF); |
| |
| local_irq_restore(flags); |
| |
| dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg); |
| |
| return 0; |
| } |
| |
| /** |
| * s3c2410_nand_inithw - basic hardware initialisation |
| * @info: The hardware state. |
| * |
| * Do the basic initialisation of the hardware, using s3c2410_nand_setrate() |
| * to setup the hardware access speeds and set the controller to be enabled. |
| */ |
| static int s3c2410_nand_inithw(struct s3c2410_nand_info *info) |
| { |
| int ret; |
| |
| ret = s3c2410_nand_setrate(info); |
| if (ret < 0) |
| return ret; |
| |
| switch (info->cpu_type) { |
| case TYPE_S3C2410: |
| default: |
| break; |
| |
| case TYPE_S3C2440: |
| case TYPE_S3C2412: |
| /* enable the controller and de-assert nFCE */ |
| |
| writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * s3c2410_nand_select_chip - select the given nand chip |
| * @mtd: The MTD instance for this chip. |
| * @chip: The chip number. |
| * |
| * This is called by the MTD layer to either select a given chip for the |
| * @mtd instance, or to indicate that the access has finished and the |
| * chip can be de-selected. |
| * |
| * The routine ensures that the nFCE line is correctly setup, and any |
| * platform specific selection code is called to route nFCE to the specific |
| * chip. |
| */ |
| static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip) |
| { |
| struct s3c2410_nand_info *info; |
| struct s3c2410_nand_mtd *nmtd; |
| struct nand_chip *this = mtd->priv; |
| unsigned long cur; |
| |
| nmtd = this->priv; |
| info = nmtd->info; |
| |
| if (chip != -1 && allow_clk_stop(info)) |
| clk_enable(info->clk); |
| |
| cur = readl(info->sel_reg); |
| |
| if (chip == -1) { |
| cur |= info->sel_bit; |
| } else { |
| if (nmtd->set != NULL && chip > nmtd->set->nr_chips) { |
| dev_err(info->device, "invalid chip %d\n", chip); |
| return; |
| } |
| |
| if (info->platform != NULL) { |
| if (info->platform->select_chip != NULL) |
| (info->platform->select_chip) (nmtd->set, chip); |
| } |
| |
| cur &= ~info->sel_bit; |
| } |
| |
| writel(cur, info->sel_reg); |
| |
| if (chip == -1 && allow_clk_stop(info)) |
| clk_disable(info->clk); |
| } |
| |
| /* s3c2410_nand_hwcontrol |
| * |
| * Issue command and address cycles to the chip |
| */ |
| |
| static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd, |
| unsigned int ctrl) |
| { |
| struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); |
| |
| if (cmd == NAND_CMD_NONE) |
| return; |
| |
| if (ctrl & NAND_CLE) |
| writeb(cmd, info->regs + S3C2410_NFCMD); |
| else |
| writeb(cmd, info->regs + S3C2410_NFADDR); |
| } |
| |
| /* command and control functions */ |
| |
| static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd, |
| unsigned int ctrl) |
| { |
| struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); |
| |
| if (cmd == NAND_CMD_NONE) |
| return; |
| |
| if (ctrl & NAND_CLE) |
| writeb(cmd, info->regs + S3C2440_NFCMD); |
| else |
| writeb(cmd, info->regs + S3C2440_NFADDR); |
| } |
| |
| /* s3c2410_nand_devready() |
| * |
| * returns 0 if the nand is busy, 1 if it is ready |
| */ |
| |
| static int s3c2410_nand_devready(struct mtd_info *mtd) |
| { |
| struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); |
| return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY; |
| } |
| |
| static int s3c2440_nand_devready(struct mtd_info *mtd) |
| { |
| struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); |
| return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY; |
| } |
| |
| static int s3c2412_nand_devready(struct mtd_info *mtd) |
| { |
| struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); |
| return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY; |
| } |
| |
| /* ECC handling functions */ |
| |
| static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat, |
| u_char *read_ecc, u_char *calc_ecc) |
| { |
| struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); |
| unsigned int diff0, diff1, diff2; |
| unsigned int bit, byte; |
| |
| pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc); |
| |
| diff0 = read_ecc[0] ^ calc_ecc[0]; |
| diff1 = read_ecc[1] ^ calc_ecc[1]; |
| diff2 = read_ecc[2] ^ calc_ecc[2]; |
| |
| pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n", |
| __func__, |
| read_ecc[0], read_ecc[1], read_ecc[2], |
| calc_ecc[0], calc_ecc[1], calc_ecc[2], |
| diff0, diff1, diff2); |
| |
| if (diff0 == 0 && diff1 == 0 && diff2 == 0) |
| return 0; /* ECC is ok */ |
| |
| /* sometimes people do not think about using the ECC, so check |
| * to see if we have an 0xff,0xff,0xff read ECC and then ignore |
| * the error, on the assumption that this is an un-eccd page. |
| */ |
| if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff |
| && info->platform->ignore_unset_ecc) |
| return 0; |
| |
| /* Can we correct this ECC (ie, one row and column change). |
| * Note, this is similar to the 256 error code on smartmedia */ |
| |
| if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 && |
| ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 && |
| ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) { |
| /* calculate the bit position of the error */ |
| |
| bit = ((diff2 >> 3) & 1) | |
| ((diff2 >> 4) & 2) | |
| ((diff2 >> 5) & 4); |
| |
| /* calculate the byte position of the error */ |
| |
| byte = ((diff2 << 7) & 0x100) | |
| ((diff1 << 0) & 0x80) | |
| ((diff1 << 1) & 0x40) | |
| ((diff1 << 2) & 0x20) | |
| ((diff1 << 3) & 0x10) | |
| ((diff0 >> 4) & 0x08) | |
| ((diff0 >> 3) & 0x04) | |
| ((diff0 >> 2) & 0x02) | |
| ((diff0 >> 1) & 0x01); |
| |
| dev_dbg(info->device, "correcting error bit %d, byte %d\n", |
| bit, byte); |
| |
| dat[byte] ^= (1 << bit); |
| return 1; |
| } |
| |
| /* if there is only one bit difference in the ECC, then |
| * one of only a row or column parity has changed, which |
| * means the error is most probably in the ECC itself */ |
| |
| diff0 |= (diff1 << 8); |
| diff0 |= (diff2 << 16); |
| |
| if ((diff0 & ~(1<<fls(diff0))) == 0) |
| return 1; |
| |
| return -1; |
| } |
| |
| /* ECC functions |
| * |
| * These allow the s3c2410 and s3c2440 to use the controller's ECC |
| * generator block to ECC the data as it passes through] |
| */ |
| |
| static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode) |
| { |
| struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); |
| unsigned long ctrl; |
| |
| ctrl = readl(info->regs + S3C2410_NFCONF); |
| ctrl |= S3C2410_NFCONF_INITECC; |
| writel(ctrl, info->regs + S3C2410_NFCONF); |
| } |
| |
| static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode) |
| { |
| struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); |
| unsigned long ctrl; |
| |
| ctrl = readl(info->regs + S3C2440_NFCONT); |
| writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT); |
| } |
| |
| static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode) |
| { |
| struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); |
| unsigned long ctrl; |
| |
| ctrl = readl(info->regs + S3C2440_NFCONT); |
| writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT); |
| } |
| |
| static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) |
| { |
| struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); |
| |
| ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0); |
| ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1); |
| ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2); |
| |
| pr_debug("%s: returning ecc %02x%02x%02x\n", __func__, |
| ecc_code[0], ecc_code[1], ecc_code[2]); |
| |
| return 0; |
| } |
| |
| static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) |
| { |
| struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); |
| unsigned long ecc = readl(info->regs + S3C2412_NFMECC0); |
| |
| ecc_code[0] = ecc; |
| ecc_code[1] = ecc >> 8; |
| ecc_code[2] = ecc >> 16; |
| |
| pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]); |
| |
| return 0; |
| } |
| |
| static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) |
| { |
| struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); |
| unsigned long ecc = readl(info->regs + S3C2440_NFMECC0); |
| |
| ecc_code[0] = ecc; |
| ecc_code[1] = ecc >> 8; |
| ecc_code[2] = ecc >> 16; |
| |
| pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff); |
| |
| return 0; |
| } |
| |
| /* over-ride the standard functions for a little more speed. We can |
| * use read/write block to move the data buffers to/from the controller |
| */ |
| |
| static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| struct nand_chip *this = mtd->priv; |
| readsb(this->IO_ADDR_R, buf, len); |
| } |
| |
| static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); |
| |
| readsl(info->regs + S3C2440_NFDATA, buf, len >> 2); |
| |
| /* cleanup if we've got less than a word to do */ |
| if (len & 3) { |
| buf += len & ~3; |
| |
| for (; len & 3; len--) |
| *buf++ = readb(info->regs + S3C2440_NFDATA); |
| } |
| } |
| |
| static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) |
| { |
| struct nand_chip *this = mtd->priv; |
| writesb(this->IO_ADDR_W, buf, len); |
| } |
| |
| static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) |
| { |
| struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); |
| |
| writesl(info->regs + S3C2440_NFDATA, buf, len >> 2); |
| |
| /* cleanup any fractional write */ |
| if (len & 3) { |
| buf += len & ~3; |
| |
| for (; len & 3; len--, buf++) |
| writeb(*buf, info->regs + S3C2440_NFDATA); |
| } |
| } |
| |
| /* cpufreq driver support */ |
| |
| #ifdef CONFIG_CPU_FREQ |
| |
| static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb, |
| unsigned long val, void *data) |
| { |
| struct s3c2410_nand_info *info; |
| unsigned long newclk; |
| |
| info = container_of(nb, struct s3c2410_nand_info, freq_transition); |
| newclk = clk_get_rate(info->clk); |
| |
| if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) || |
| (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) { |
| s3c2410_nand_setrate(info); |
| } |
| |
| return 0; |
| } |
| |
| static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) |
| { |
| info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition; |
| |
| return cpufreq_register_notifier(&info->freq_transition, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| } |
| |
| static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) |
| { |
| cpufreq_unregister_notifier(&info->freq_transition, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| } |
| |
| #else |
| static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) |
| { |
| return 0; |
| } |
| |
| static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) |
| { |
| } |
| #endif |
| |
| /* device management functions */ |
| |
| static int s3c24xx_nand_remove(struct platform_device *pdev) |
| { |
| struct s3c2410_nand_info *info = to_nand_info(pdev); |
| |
| platform_set_drvdata(pdev, NULL); |
| |
| if (info == NULL) |
| return 0; |
| |
| s3c2410_nand_cpufreq_deregister(info); |
| |
| /* Release all our mtds and their partitions, then go through |
| * freeing the resources used |
| */ |
| |
| if (info->mtds != NULL) { |
| struct s3c2410_nand_mtd *ptr = info->mtds; |
| int mtdno; |
| |
| for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) { |
| pr_debug("releasing mtd %d (%p)\n", mtdno, ptr); |
| nand_release(&ptr->mtd); |
| } |
| |
| kfree(info->mtds); |
| } |
| |
| /* free the common resources */ |
| |
| if (info->clk != NULL && !IS_ERR(info->clk)) { |
| if (!allow_clk_stop(info)) |
| clk_disable(info->clk); |
| clk_put(info->clk); |
| } |
| |
| if (info->regs != NULL) { |
| iounmap(info->regs); |
| info->regs = NULL; |
| } |
| |
| if (info->area != NULL) { |
| release_resource(info->area); |
| kfree(info->area); |
| info->area = NULL; |
| } |
| |
| kfree(info); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_MTD_PARTITIONS |
| const char *part_probes[] = { "cmdlinepart", NULL }; |
| static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info, |
| struct s3c2410_nand_mtd *mtd, |
| struct s3c2410_nand_set *set) |
| { |
| struct mtd_partition *part_info; |
| int nr_part = 0; |
| |
| if (set == NULL) |
| return add_mtd_device(&mtd->mtd); |
| |
| if (set->nr_partitions == 0) { |
| mtd->mtd.name = set->name; |
| nr_part = parse_mtd_partitions(&mtd->mtd, part_probes, |
| &part_info, 0); |
| } else { |
| if (set->nr_partitions > 0 && set->partitions != NULL) { |
| nr_part = set->nr_partitions; |
| part_info = set->partitions; |
| } |
| } |
| |
| if (nr_part > 0 && part_info) |
| return add_mtd_partitions(&mtd->mtd, part_info, nr_part); |
| |
| return add_mtd_device(&mtd->mtd); |
| } |
| #else |
| static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info, |
| struct s3c2410_nand_mtd *mtd, |
| struct s3c2410_nand_set *set) |
| { |
| return add_mtd_device(&mtd->mtd); |
| } |
| #endif |
| |
| /** |
| * s3c2410_nand_init_chip - initialise a single instance of an chip |
| * @info: The base NAND controller the chip is on. |
| * @nmtd: The new controller MTD instance to fill in. |
| * @set: The information passed from the board specific platform data. |
| * |
| * Initialise the given @nmtd from the information in @info and @set. This |
| * readies the structure for use with the MTD layer functions by ensuring |
| * all pointers are setup and the necessary control routines selected. |
| */ |
| static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info, |
| struct s3c2410_nand_mtd *nmtd, |
| struct s3c2410_nand_set *set) |
| { |
| struct nand_chip *chip = &nmtd->chip; |
| void __iomem *regs = info->regs; |
| |
| chip->write_buf = s3c2410_nand_write_buf; |
| chip->read_buf = s3c2410_nand_read_buf; |
| chip->select_chip = s3c2410_nand_select_chip; |
| chip->chip_delay = 50; |
| chip->priv = nmtd; |
| chip->options = 0; |
| chip->controller = &info->controller; |
| |
| switch (info->cpu_type) { |
| case TYPE_S3C2410: |
| chip->IO_ADDR_W = regs + S3C2410_NFDATA; |
| info->sel_reg = regs + S3C2410_NFCONF; |
| info->sel_bit = S3C2410_NFCONF_nFCE; |
| chip->cmd_ctrl = s3c2410_nand_hwcontrol; |
| chip->dev_ready = s3c2410_nand_devready; |
| break; |
| |
| case TYPE_S3C2440: |
| chip->IO_ADDR_W = regs + S3C2440_NFDATA; |
| info->sel_reg = regs + S3C2440_NFCONT; |
| info->sel_bit = S3C2440_NFCONT_nFCE; |
| chip->cmd_ctrl = s3c2440_nand_hwcontrol; |
| chip->dev_ready = s3c2440_nand_devready; |
| chip->read_buf = s3c2440_nand_read_buf; |
| chip->write_buf = s3c2440_nand_write_buf; |
| break; |
| |
| case TYPE_S3C2412: |
| chip->IO_ADDR_W = regs + S3C2440_NFDATA; |
| info->sel_reg = regs + S3C2440_NFCONT; |
| info->sel_bit = S3C2412_NFCONT_nFCE0; |
| chip->cmd_ctrl = s3c2440_nand_hwcontrol; |
| chip->dev_ready = s3c2412_nand_devready; |
| |
| if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT) |
| dev_info(info->device, "System booted from NAND\n"); |
| |
| break; |
| } |
| |
| chip->IO_ADDR_R = chip->IO_ADDR_W; |
| |
| nmtd->info = info; |
| nmtd->mtd.priv = chip; |
| nmtd->mtd.owner = THIS_MODULE; |
| nmtd->set = set; |
| |
| if (hardware_ecc) { |
| chip->ecc.calculate = s3c2410_nand_calculate_ecc; |
| chip->ecc.correct = s3c2410_nand_correct_data; |
| chip->ecc.mode = NAND_ECC_HW; |
| |
| switch (info->cpu_type) { |
| case TYPE_S3C2410: |
| chip->ecc.hwctl = s3c2410_nand_enable_hwecc; |
| chip->ecc.calculate = s3c2410_nand_calculate_ecc; |
| break; |
| |
| case TYPE_S3C2412: |
| chip->ecc.hwctl = s3c2412_nand_enable_hwecc; |
| chip->ecc.calculate = s3c2412_nand_calculate_ecc; |
| break; |
| |
| case TYPE_S3C2440: |
| chip->ecc.hwctl = s3c2440_nand_enable_hwecc; |
| chip->ecc.calculate = s3c2440_nand_calculate_ecc; |
| break; |
| |
| } |
| } else { |
| chip->ecc.mode = NAND_ECC_SOFT; |
| } |
| |
| if (set->ecc_layout != NULL) |
| chip->ecc.layout = set->ecc_layout; |
| |
| if (set->disable_ecc) |
| chip->ecc.mode = NAND_ECC_NONE; |
| |
| switch (chip->ecc.mode) { |
| case NAND_ECC_NONE: |
| dev_info(info->device, "NAND ECC disabled\n"); |
| break; |
| case NAND_ECC_SOFT: |
| dev_info(info->device, "NAND soft ECC\n"); |
| break; |
| case NAND_ECC_HW: |
| dev_info(info->device, "NAND hardware ECC\n"); |
| break; |
| default: |
| dev_info(info->device, "NAND ECC UNKNOWN\n"); |
| break; |
| } |
| |
| /* If you use u-boot BBT creation code, specifying this flag will |
| * let the kernel fish out the BBT from the NAND, and also skip the |
| * full NAND scan that can take 1/2s or so. Little things... */ |
| if (set->flash_bbt) |
| chip->options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN; |
| } |
| |
| /** |
| * s3c2410_nand_update_chip - post probe update |
| * @info: The controller instance. |
| * @nmtd: The driver version of the MTD instance. |
| * |
| * This routine is called after the chip probe has successfully completed |
| * and the relevant per-chip information updated. This call ensure that |
| * we update the internal state accordingly. |
| * |
| * The internal state is currently limited to the ECC state information. |
| */ |
| static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info, |
| struct s3c2410_nand_mtd *nmtd) |
| { |
| struct nand_chip *chip = &nmtd->chip; |
| |
| dev_dbg(info->device, "chip %p => page shift %d\n", |
| chip, chip->page_shift); |
| |
| if (chip->ecc.mode != NAND_ECC_HW) |
| return; |
| |
| /* change the behaviour depending on wether we are using |
| * the large or small page nand device */ |
| |
| if (chip->page_shift > 10) { |
| chip->ecc.size = 256; |
| chip->ecc.bytes = 3; |
| } else { |
| chip->ecc.size = 512; |
| chip->ecc.bytes = 3; |
| chip->ecc.layout = &nand_hw_eccoob; |
| } |
| } |
| |
| /* s3c24xx_nand_probe |
| * |
| * called by device layer when it finds a device matching |
| * one our driver can handled. This code checks to see if |
| * it can allocate all necessary resources then calls the |
| * nand layer to look for devices |
| */ |
| static int s3c24xx_nand_probe(struct platform_device *pdev) |
| { |
| struct s3c2410_platform_nand *plat = to_nand_plat(pdev); |
| enum s3c_cpu_type cpu_type; |
| struct s3c2410_nand_info *info; |
| struct s3c2410_nand_mtd *nmtd; |
| struct s3c2410_nand_set *sets; |
| struct resource *res; |
| int err = 0; |
| int size; |
| int nr_sets; |
| int setno; |
| |
| cpu_type = platform_get_device_id(pdev)->driver_data; |
| |
| pr_debug("s3c2410_nand_probe(%p)\n", pdev); |
| |
| info = kmalloc(sizeof(*info), GFP_KERNEL); |
| if (info == NULL) { |
| dev_err(&pdev->dev, "no memory for flash info\n"); |
| err = -ENOMEM; |
| goto exit_error; |
| } |
| |
| memset(info, 0, sizeof(*info)); |
| platform_set_drvdata(pdev, info); |
| |
| spin_lock_init(&info->controller.lock); |
| init_waitqueue_head(&info->controller.wq); |
| |
| /* get the clock source and enable it */ |
| |
| info->clk = clk_get(&pdev->dev, "nand"); |
| if (IS_ERR(info->clk)) { |
| dev_err(&pdev->dev, "failed to get clock\n"); |
| err = -ENOENT; |
| goto exit_error; |
| } |
| |
| clk_enable(info->clk); |
| |
| /* allocate and map the resource */ |
| |
| /* currently we assume we have the one resource */ |
| res = pdev->resource; |
| size = res->end - res->start + 1; |
| |
| info->area = request_mem_region(res->start, size, pdev->name); |
| |
| if (info->area == NULL) { |
| dev_err(&pdev->dev, "cannot reserve register region\n"); |
| err = -ENOENT; |
| goto exit_error; |
| } |
| |
| info->device = &pdev->dev; |
| info->platform = plat; |
| info->regs = ioremap(res->start, size); |
| info->cpu_type = cpu_type; |
| |
| if (info->regs == NULL) { |
| dev_err(&pdev->dev, "cannot reserve register region\n"); |
| err = -EIO; |
| goto exit_error; |
| } |
| |
| dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs); |
| |
| /* initialise the hardware */ |
| |
| err = s3c2410_nand_inithw(info); |
| if (err != 0) |
| goto exit_error; |
| |
| sets = (plat != NULL) ? plat->sets : NULL; |
| nr_sets = (plat != NULL) ? plat->nr_sets : 1; |
| |
| info->mtd_count = nr_sets; |
| |
| /* allocate our information */ |
| |
| size = nr_sets * sizeof(*info->mtds); |
| info->mtds = kmalloc(size, GFP_KERNEL); |
| if (info->mtds == NULL) { |
| dev_err(&pdev->dev, "failed to allocate mtd storage\n"); |
| err = -ENOMEM; |
| goto exit_error; |
| } |
| |
| memset(info->mtds, 0, size); |
| |
| /* initialise all possible chips */ |
| |
| nmtd = info->mtds; |
| |
| for (setno = 0; setno < nr_sets; setno++, nmtd++) { |
| pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info); |
| |
| s3c2410_nand_init_chip(info, nmtd, sets); |
| |
| nmtd->scan_res = nand_scan_ident(&nmtd->mtd, |
| (sets) ? sets->nr_chips : 1); |
| |
| if (nmtd->scan_res == 0) { |
| s3c2410_nand_update_chip(info, nmtd); |
| nand_scan_tail(&nmtd->mtd); |
| s3c2410_nand_add_partition(info, nmtd, sets); |
| } |
| |
| if (sets != NULL) |
| sets++; |
| } |
| |
| err = s3c2410_nand_cpufreq_register(info); |
| if (err < 0) { |
| dev_err(&pdev->dev, "failed to init cpufreq support\n"); |
| goto exit_error; |
| } |
| |
| if (allow_clk_stop(info)) { |
| dev_info(&pdev->dev, "clock idle support enabled\n"); |
| clk_disable(info->clk); |
| } |
| |
| pr_debug("initialised ok\n"); |
| return 0; |
| |
| exit_error: |
| s3c24xx_nand_remove(pdev); |
| |
| if (err == 0) |
| err = -EINVAL; |
| return err; |
| } |
| |
| /* PM Support */ |
| #ifdef CONFIG_PM |
| |
| static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm) |
| { |
| struct s3c2410_nand_info *info = platform_get_drvdata(dev); |
| |
| if (info) { |
| info->save_sel = readl(info->sel_reg); |
| |
| /* For the moment, we must ensure nFCE is high during |
| * the time we are suspended. This really should be |
| * handled by suspending the MTDs we are using, but |
| * that is currently not the case. */ |
| |
| writel(info->save_sel | info->sel_bit, info->sel_reg); |
| |
| if (!allow_clk_stop(info)) |
| clk_disable(info->clk); |
| } |
| |
| return 0; |
| } |
| |
| static int s3c24xx_nand_resume(struct platform_device *dev) |
| { |
| struct s3c2410_nand_info *info = platform_get_drvdata(dev); |
| unsigned long sel; |
| |
| if (info) { |
| clk_enable(info->clk); |
| s3c2410_nand_inithw(info); |
| |
| /* Restore the state of the nFCE line. */ |
| |
| sel = readl(info->sel_reg); |
| sel &= ~info->sel_bit; |
| sel |= info->save_sel & info->sel_bit; |
| writel(sel, info->sel_reg); |
| |
| if (allow_clk_stop(info)) |
| clk_disable(info->clk); |
| } |
| |
| return 0; |
| } |
| |
| #else |
| #define s3c24xx_nand_suspend NULL |
| #define s3c24xx_nand_resume NULL |
| #endif |
| |
| /* driver device registration */ |
| |
| static struct platform_device_id s3c24xx_driver_ids[] = { |
| { |
| .name = "s3c2410-nand", |
| .driver_data = TYPE_S3C2410, |
| }, { |
| .name = "s3c2440-nand", |
| .driver_data = TYPE_S3C2440, |
| }, { |
| .name = "s3c2412-nand", |
| .driver_data = TYPE_S3C2412, |
| }, { |
| .name = "s3c6400-nand", |
| .driver_data = TYPE_S3C2412, /* compatible with 2412 */ |
| }, |
| { } |
| }; |
| |
| MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids); |
| |
| static struct platform_driver s3c24xx_nand_driver = { |
| .probe = s3c24xx_nand_probe, |
| .remove = s3c24xx_nand_remove, |
| .suspend = s3c24xx_nand_suspend, |
| .resume = s3c24xx_nand_resume, |
| .id_table = s3c24xx_driver_ids, |
| .driver = { |
| .name = "s3c24xx-nand", |
| .owner = THIS_MODULE, |
| }, |
| }; |
| |
| static int __init s3c2410_nand_init(void) |
| { |
| printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n"); |
| |
| return platform_driver_register(&s3c24xx_nand_driver); |
| } |
| |
| static void __exit s3c2410_nand_exit(void) |
| { |
| platform_driver_unregister(&s3c24xx_nand_driver); |
| } |
| |
| module_init(s3c2410_nand_init); |
| module_exit(s3c2410_nand_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); |
| MODULE_DESCRIPTION("S3C24XX MTD NAND driver"); |