| /* |
| * mm/kmemleak.c |
| * |
| * Copyright (C) 2008 ARM Limited |
| * Written by Catalin Marinas <catalin.marinas@arm.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| * |
| * For more information on the algorithm and kmemleak usage, please see |
| * Documentation/dev-tools/kmemleak.rst. |
| * |
| * Notes on locking |
| * ---------------- |
| * |
| * The following locks and mutexes are used by kmemleak: |
| * |
| * - kmemleak_lock (rwlock): protects the object_list modifications and |
| * accesses to the object_tree_root. The object_list is the main list |
| * holding the metadata (struct kmemleak_object) for the allocated memory |
| * blocks. The object_tree_root is a red black tree used to look-up |
| * metadata based on a pointer to the corresponding memory block. The |
| * kmemleak_object structures are added to the object_list and |
| * object_tree_root in the create_object() function called from the |
| * kmemleak_alloc() callback and removed in delete_object() called from the |
| * kmemleak_free() callback |
| * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to |
| * the metadata (e.g. count) are protected by this lock. Note that some |
| * members of this structure may be protected by other means (atomic or |
| * kmemleak_lock). This lock is also held when scanning the corresponding |
| * memory block to avoid the kernel freeing it via the kmemleak_free() |
| * callback. This is less heavyweight than holding a global lock like |
| * kmemleak_lock during scanning |
| * - scan_mutex (mutex): ensures that only one thread may scan the memory for |
| * unreferenced objects at a time. The gray_list contains the objects which |
| * are already referenced or marked as false positives and need to be |
| * scanned. This list is only modified during a scanning episode when the |
| * scan_mutex is held. At the end of a scan, the gray_list is always empty. |
| * Note that the kmemleak_object.use_count is incremented when an object is |
| * added to the gray_list and therefore cannot be freed. This mutex also |
| * prevents multiple users of the "kmemleak" debugfs file together with |
| * modifications to the memory scanning parameters including the scan_thread |
| * pointer |
| * |
| * Locks and mutexes are acquired/nested in the following order: |
| * |
| * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) |
| * |
| * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex |
| * regions. |
| * |
| * The kmemleak_object structures have a use_count incremented or decremented |
| * using the get_object()/put_object() functions. When the use_count becomes |
| * 0, this count can no longer be incremented and put_object() schedules the |
| * kmemleak_object freeing via an RCU callback. All calls to the get_object() |
| * function must be protected by rcu_read_lock() to avoid accessing a freed |
| * structure. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/sched/signal.h> |
| #include <linux/jiffies.h> |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| #include <linux/kthread.h> |
| #include <linux/rbtree.h> |
| #include <linux/fs.h> |
| #include <linux/debugfs.h> |
| #include <linux/seq_file.h> |
| #include <linux/cpumask.h> |
| #include <linux/spinlock.h> |
| #include <linux/mutex.h> |
| #include <linux/rcupdate.h> |
| #include <linux/stacktrace.h> |
| #include <linux/cache.h> |
| #include <linux/percpu.h> |
| #include <linux/hardirq.h> |
| #include <linux/bootmem.h> |
| #include <linux/pfn.h> |
| #include <linux/mmzone.h> |
| #include <linux/slab.h> |
| #include <linux/thread_info.h> |
| #include <linux/err.h> |
| #include <linux/uaccess.h> |
| #include <linux/string.h> |
| #include <linux/nodemask.h> |
| #include <linux/mm.h> |
| #include <linux/workqueue.h> |
| #include <linux/crc32.h> |
| |
| #include <asm/sections.h> |
| #include <asm/processor.h> |
| #include <linux/atomic.h> |
| |
| #include <linux/kasan.h> |
| #include <linux/kmemcheck.h> |
| #include <linux/kmemleak.h> |
| #include <linux/memory_hotplug.h> |
| |
| /* |
| * Kmemleak configuration and common defines. |
| */ |
| #define MAX_TRACE 16 /* stack trace length */ |
| #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ |
| #define SECS_FIRST_SCAN 60 /* delay before the first scan */ |
| #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ |
| #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ |
| |
| #define BYTES_PER_POINTER sizeof(void *) |
| |
| /* GFP bitmask for kmemleak internal allocations */ |
| #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ |
| __GFP_NORETRY | __GFP_NOMEMALLOC | \ |
| __GFP_NOWARN) |
| |
| /* scanning area inside a memory block */ |
| struct kmemleak_scan_area { |
| struct hlist_node node; |
| unsigned long start; |
| size_t size; |
| }; |
| |
| #define KMEMLEAK_GREY 0 |
| #define KMEMLEAK_BLACK -1 |
| |
| /* |
| * Structure holding the metadata for each allocated memory block. |
| * Modifications to such objects should be made while holding the |
| * object->lock. Insertions or deletions from object_list, gray_list or |
| * rb_node are already protected by the corresponding locks or mutex (see |
| * the notes on locking above). These objects are reference-counted |
| * (use_count) and freed using the RCU mechanism. |
| */ |
| struct kmemleak_object { |
| spinlock_t lock; |
| unsigned long flags; /* object status flags */ |
| struct list_head object_list; |
| struct list_head gray_list; |
| struct rb_node rb_node; |
| struct rcu_head rcu; /* object_list lockless traversal */ |
| /* object usage count; object freed when use_count == 0 */ |
| atomic_t use_count; |
| unsigned long pointer; |
| size_t size; |
| /* minimum number of a pointers found before it is considered leak */ |
| int min_count; |
| /* the total number of pointers found pointing to this object */ |
| int count; |
| /* checksum for detecting modified objects */ |
| u32 checksum; |
| /* memory ranges to be scanned inside an object (empty for all) */ |
| struct hlist_head area_list; |
| unsigned long trace[MAX_TRACE]; |
| unsigned int trace_len; |
| unsigned long jiffies; /* creation timestamp */ |
| pid_t pid; /* pid of the current task */ |
| char comm[TASK_COMM_LEN]; /* executable name */ |
| }; |
| |
| /* flag representing the memory block allocation status */ |
| #define OBJECT_ALLOCATED (1 << 0) |
| /* flag set after the first reporting of an unreference object */ |
| #define OBJECT_REPORTED (1 << 1) |
| /* flag set to not scan the object */ |
| #define OBJECT_NO_SCAN (1 << 2) |
| |
| /* number of bytes to print per line; must be 16 or 32 */ |
| #define HEX_ROW_SIZE 16 |
| /* number of bytes to print at a time (1, 2, 4, 8) */ |
| #define HEX_GROUP_SIZE 1 |
| /* include ASCII after the hex output */ |
| #define HEX_ASCII 1 |
| /* max number of lines to be printed */ |
| #define HEX_MAX_LINES 2 |
| |
| /* the list of all allocated objects */ |
| static LIST_HEAD(object_list); |
| /* the list of gray-colored objects (see color_gray comment below) */ |
| static LIST_HEAD(gray_list); |
| /* search tree for object boundaries */ |
| static struct rb_root object_tree_root = RB_ROOT; |
| /* rw_lock protecting the access to object_list and object_tree_root */ |
| static DEFINE_RWLOCK(kmemleak_lock); |
| |
| /* allocation caches for kmemleak internal data */ |
| static struct kmem_cache *object_cache; |
| static struct kmem_cache *scan_area_cache; |
| |
| /* set if tracing memory operations is enabled */ |
| static int kmemleak_enabled; |
| /* same as above but only for the kmemleak_free() callback */ |
| static int kmemleak_free_enabled; |
| /* set in the late_initcall if there were no errors */ |
| static int kmemleak_initialized; |
| /* enables or disables early logging of the memory operations */ |
| static int kmemleak_early_log = 1; |
| /* set if a kmemleak warning was issued */ |
| static int kmemleak_warning; |
| /* set if a fatal kmemleak error has occurred */ |
| static int kmemleak_error; |
| |
| /* minimum and maximum address that may be valid pointers */ |
| static unsigned long min_addr = ULONG_MAX; |
| static unsigned long max_addr; |
| |
| static struct task_struct *scan_thread; |
| /* used to avoid reporting of recently allocated objects */ |
| static unsigned long jiffies_min_age; |
| static unsigned long jiffies_last_scan; |
| /* delay between automatic memory scannings */ |
| static signed long jiffies_scan_wait; |
| /* enables or disables the task stacks scanning */ |
| static int kmemleak_stack_scan = 1; |
| /* protects the memory scanning, parameters and debug/kmemleak file access */ |
| static DEFINE_MUTEX(scan_mutex); |
| /* setting kmemleak=on, will set this var, skipping the disable */ |
| static int kmemleak_skip_disable; |
| /* If there are leaks that can be reported */ |
| static bool kmemleak_found_leaks; |
| |
| /* |
| * Early object allocation/freeing logging. Kmemleak is initialized after the |
| * kernel allocator. However, both the kernel allocator and kmemleak may |
| * allocate memory blocks which need to be tracked. Kmemleak defines an |
| * arbitrary buffer to hold the allocation/freeing information before it is |
| * fully initialized. |
| */ |
| |
| /* kmemleak operation type for early logging */ |
| enum { |
| KMEMLEAK_ALLOC, |
| KMEMLEAK_ALLOC_PERCPU, |
| KMEMLEAK_FREE, |
| KMEMLEAK_FREE_PART, |
| KMEMLEAK_FREE_PERCPU, |
| KMEMLEAK_NOT_LEAK, |
| KMEMLEAK_IGNORE, |
| KMEMLEAK_SCAN_AREA, |
| KMEMLEAK_NO_SCAN |
| }; |
| |
| /* |
| * Structure holding the information passed to kmemleak callbacks during the |
| * early logging. |
| */ |
| struct early_log { |
| int op_type; /* kmemleak operation type */ |
| const void *ptr; /* allocated/freed memory block */ |
| size_t size; /* memory block size */ |
| int min_count; /* minimum reference count */ |
| unsigned long trace[MAX_TRACE]; /* stack trace */ |
| unsigned int trace_len; /* stack trace length */ |
| }; |
| |
| /* early logging buffer and current position */ |
| static struct early_log |
| early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; |
| static int crt_early_log __initdata; |
| |
| static void kmemleak_disable(void); |
| |
| /* |
| * Print a warning and dump the stack trace. |
| */ |
| #define kmemleak_warn(x...) do { \ |
| pr_warn(x); \ |
| dump_stack(); \ |
| kmemleak_warning = 1; \ |
| } while (0) |
| |
| /* |
| * Macro invoked when a serious kmemleak condition occurred and cannot be |
| * recovered from. Kmemleak will be disabled and further allocation/freeing |
| * tracing no longer available. |
| */ |
| #define kmemleak_stop(x...) do { \ |
| kmemleak_warn(x); \ |
| kmemleak_disable(); \ |
| } while (0) |
| |
| /* |
| * Printing of the objects hex dump to the seq file. The number of lines to be |
| * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The |
| * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called |
| * with the object->lock held. |
| */ |
| static void hex_dump_object(struct seq_file *seq, |
| struct kmemleak_object *object) |
| { |
| const u8 *ptr = (const u8 *)object->pointer; |
| size_t len; |
| |
| /* limit the number of lines to HEX_MAX_LINES */ |
| len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); |
| |
| seq_printf(seq, " hex dump (first %zu bytes):\n", len); |
| kasan_disable_current(); |
| seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE, |
| HEX_GROUP_SIZE, ptr, len, HEX_ASCII); |
| kasan_enable_current(); |
| } |
| |
| /* |
| * Object colors, encoded with count and min_count: |
| * - white - orphan object, not enough references to it (count < min_count) |
| * - gray - not orphan, not marked as false positive (min_count == 0) or |
| * sufficient references to it (count >= min_count) |
| * - black - ignore, it doesn't contain references (e.g. text section) |
| * (min_count == -1). No function defined for this color. |
| * Newly created objects don't have any color assigned (object->count == -1) |
| * before the next memory scan when they become white. |
| */ |
| static bool color_white(const struct kmemleak_object *object) |
| { |
| return object->count != KMEMLEAK_BLACK && |
| object->count < object->min_count; |
| } |
| |
| static bool color_gray(const struct kmemleak_object *object) |
| { |
| return object->min_count != KMEMLEAK_BLACK && |
| object->count >= object->min_count; |
| } |
| |
| /* |
| * Objects are considered unreferenced only if their color is white, they have |
| * not be deleted and have a minimum age to avoid false positives caused by |
| * pointers temporarily stored in CPU registers. |
| */ |
| static bool unreferenced_object(struct kmemleak_object *object) |
| { |
| return (color_white(object) && object->flags & OBJECT_ALLOCATED) && |
| time_before_eq(object->jiffies + jiffies_min_age, |
| jiffies_last_scan); |
| } |
| |
| /* |
| * Printing of the unreferenced objects information to the seq file. The |
| * print_unreferenced function must be called with the object->lock held. |
| */ |
| static void print_unreferenced(struct seq_file *seq, |
| struct kmemleak_object *object) |
| { |
| int i; |
| unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); |
| |
| seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", |
| object->pointer, object->size); |
| seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", |
| object->comm, object->pid, object->jiffies, |
| msecs_age / 1000, msecs_age % 1000); |
| hex_dump_object(seq, object); |
| seq_printf(seq, " backtrace:\n"); |
| |
| for (i = 0; i < object->trace_len; i++) { |
| void *ptr = (void *)object->trace[i]; |
| seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); |
| } |
| } |
| |
| /* |
| * Print the kmemleak_object information. This function is used mainly for |
| * debugging special cases when kmemleak operations. It must be called with |
| * the object->lock held. |
| */ |
| static void dump_object_info(struct kmemleak_object *object) |
| { |
| struct stack_trace trace; |
| |
| trace.nr_entries = object->trace_len; |
| trace.entries = object->trace; |
| |
| pr_notice("Object 0x%08lx (size %zu):\n", |
| object->pointer, object->size); |
| pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", |
| object->comm, object->pid, object->jiffies); |
| pr_notice(" min_count = %d\n", object->min_count); |
| pr_notice(" count = %d\n", object->count); |
| pr_notice(" flags = 0x%lx\n", object->flags); |
| pr_notice(" checksum = %u\n", object->checksum); |
| pr_notice(" backtrace:\n"); |
| print_stack_trace(&trace, 4); |
| } |
| |
| /* |
| * Look-up a memory block metadata (kmemleak_object) in the object search |
| * tree based on a pointer value. If alias is 0, only values pointing to the |
| * beginning of the memory block are allowed. The kmemleak_lock must be held |
| * when calling this function. |
| */ |
| static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) |
| { |
| struct rb_node *rb = object_tree_root.rb_node; |
| |
| while (rb) { |
| struct kmemleak_object *object = |
| rb_entry(rb, struct kmemleak_object, rb_node); |
| if (ptr < object->pointer) |
| rb = object->rb_node.rb_left; |
| else if (object->pointer + object->size <= ptr) |
| rb = object->rb_node.rb_right; |
| else if (object->pointer == ptr || alias) |
| return object; |
| else { |
| kmemleak_warn("Found object by alias at 0x%08lx\n", |
| ptr); |
| dump_object_info(object); |
| break; |
| } |
| } |
| return NULL; |
| } |
| |
| /* |
| * Increment the object use_count. Return 1 if successful or 0 otherwise. Note |
| * that once an object's use_count reached 0, the RCU freeing was already |
| * registered and the object should no longer be used. This function must be |
| * called under the protection of rcu_read_lock(). |
| */ |
| static int get_object(struct kmemleak_object *object) |
| { |
| return atomic_inc_not_zero(&object->use_count); |
| } |
| |
| /* |
| * RCU callback to free a kmemleak_object. |
| */ |
| static void free_object_rcu(struct rcu_head *rcu) |
| { |
| struct hlist_node *tmp; |
| struct kmemleak_scan_area *area; |
| struct kmemleak_object *object = |
| container_of(rcu, struct kmemleak_object, rcu); |
| |
| /* |
| * Once use_count is 0 (guaranteed by put_object), there is no other |
| * code accessing this object, hence no need for locking. |
| */ |
| hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { |
| hlist_del(&area->node); |
| kmem_cache_free(scan_area_cache, area); |
| } |
| kmem_cache_free(object_cache, object); |
| } |
| |
| /* |
| * Decrement the object use_count. Once the count is 0, free the object using |
| * an RCU callback. Since put_object() may be called via the kmemleak_free() -> |
| * delete_object() path, the delayed RCU freeing ensures that there is no |
| * recursive call to the kernel allocator. Lock-less RCU object_list traversal |
| * is also possible. |
| */ |
| static void put_object(struct kmemleak_object *object) |
| { |
| if (!atomic_dec_and_test(&object->use_count)) |
| return; |
| |
| /* should only get here after delete_object was called */ |
| WARN_ON(object->flags & OBJECT_ALLOCATED); |
| |
| call_rcu(&object->rcu, free_object_rcu); |
| } |
| |
| /* |
| * Look up an object in the object search tree and increase its use_count. |
| */ |
| static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object; |
| |
| rcu_read_lock(); |
| read_lock_irqsave(&kmemleak_lock, flags); |
| object = lookup_object(ptr, alias); |
| read_unlock_irqrestore(&kmemleak_lock, flags); |
| |
| /* check whether the object is still available */ |
| if (object && !get_object(object)) |
| object = NULL; |
| rcu_read_unlock(); |
| |
| return object; |
| } |
| |
| /* |
| * Look up an object in the object search tree and remove it from both |
| * object_tree_root and object_list. The returned object's use_count should be |
| * at least 1, as initially set by create_object(). |
| */ |
| static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object; |
| |
| write_lock_irqsave(&kmemleak_lock, flags); |
| object = lookup_object(ptr, alias); |
| if (object) { |
| rb_erase(&object->rb_node, &object_tree_root); |
| list_del_rcu(&object->object_list); |
| } |
| write_unlock_irqrestore(&kmemleak_lock, flags); |
| |
| return object; |
| } |
| |
| /* |
| * Save stack trace to the given array of MAX_TRACE size. |
| */ |
| static int __save_stack_trace(unsigned long *trace) |
| { |
| struct stack_trace stack_trace; |
| |
| stack_trace.max_entries = MAX_TRACE; |
| stack_trace.nr_entries = 0; |
| stack_trace.entries = trace; |
| stack_trace.skip = 2; |
| save_stack_trace(&stack_trace); |
| |
| return stack_trace.nr_entries; |
| } |
| |
| /* |
| * Create the metadata (struct kmemleak_object) corresponding to an allocated |
| * memory block and add it to the object_list and object_tree_root. |
| */ |
| static struct kmemleak_object *create_object(unsigned long ptr, size_t size, |
| int min_count, gfp_t gfp) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object, *parent; |
| struct rb_node **link, *rb_parent; |
| |
| object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); |
| if (!object) { |
| pr_warn("Cannot allocate a kmemleak_object structure\n"); |
| kmemleak_disable(); |
| return NULL; |
| } |
| |
| INIT_LIST_HEAD(&object->object_list); |
| INIT_LIST_HEAD(&object->gray_list); |
| INIT_HLIST_HEAD(&object->area_list); |
| spin_lock_init(&object->lock); |
| atomic_set(&object->use_count, 1); |
| object->flags = OBJECT_ALLOCATED; |
| object->pointer = ptr; |
| object->size = size; |
| object->min_count = min_count; |
| object->count = 0; /* white color initially */ |
| object->jiffies = jiffies; |
| object->checksum = 0; |
| |
| /* task information */ |
| if (in_irq()) { |
| object->pid = 0; |
| strncpy(object->comm, "hardirq", sizeof(object->comm)); |
| } else if (in_softirq()) { |
| object->pid = 0; |
| strncpy(object->comm, "softirq", sizeof(object->comm)); |
| } else { |
| object->pid = current->pid; |
| /* |
| * There is a small chance of a race with set_task_comm(), |
| * however using get_task_comm() here may cause locking |
| * dependency issues with current->alloc_lock. In the worst |
| * case, the command line is not correct. |
| */ |
| strncpy(object->comm, current->comm, sizeof(object->comm)); |
| } |
| |
| /* kernel backtrace */ |
| object->trace_len = __save_stack_trace(object->trace); |
| |
| write_lock_irqsave(&kmemleak_lock, flags); |
| |
| min_addr = min(min_addr, ptr); |
| max_addr = max(max_addr, ptr + size); |
| link = &object_tree_root.rb_node; |
| rb_parent = NULL; |
| while (*link) { |
| rb_parent = *link; |
| parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); |
| if (ptr + size <= parent->pointer) |
| link = &parent->rb_node.rb_left; |
| else if (parent->pointer + parent->size <= ptr) |
| link = &parent->rb_node.rb_right; |
| else { |
| kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", |
| ptr); |
| /* |
| * No need for parent->lock here since "parent" cannot |
| * be freed while the kmemleak_lock is held. |
| */ |
| dump_object_info(parent); |
| kmem_cache_free(object_cache, object); |
| object = NULL; |
| goto out; |
| } |
| } |
| rb_link_node(&object->rb_node, rb_parent, link); |
| rb_insert_color(&object->rb_node, &object_tree_root); |
| |
| list_add_tail_rcu(&object->object_list, &object_list); |
| out: |
| write_unlock_irqrestore(&kmemleak_lock, flags); |
| return object; |
| } |
| |
| /* |
| * Mark the object as not allocated and schedule RCU freeing via put_object(). |
| */ |
| static void __delete_object(struct kmemleak_object *object) |
| { |
| unsigned long flags; |
| |
| WARN_ON(!(object->flags & OBJECT_ALLOCATED)); |
| WARN_ON(atomic_read(&object->use_count) < 1); |
| |
| /* |
| * Locking here also ensures that the corresponding memory block |
| * cannot be freed when it is being scanned. |
| */ |
| spin_lock_irqsave(&object->lock, flags); |
| object->flags &= ~OBJECT_ALLOCATED; |
| spin_unlock_irqrestore(&object->lock, flags); |
| put_object(object); |
| } |
| |
| /* |
| * Look up the metadata (struct kmemleak_object) corresponding to ptr and |
| * delete it. |
| */ |
| static void delete_object_full(unsigned long ptr) |
| { |
| struct kmemleak_object *object; |
| |
| object = find_and_remove_object(ptr, 0); |
| if (!object) { |
| #ifdef DEBUG |
| kmemleak_warn("Freeing unknown object at 0x%08lx\n", |
| ptr); |
| #endif |
| return; |
| } |
| __delete_object(object); |
| } |
| |
| /* |
| * Look up the metadata (struct kmemleak_object) corresponding to ptr and |
| * delete it. If the memory block is partially freed, the function may create |
| * additional metadata for the remaining parts of the block. |
| */ |
| static void delete_object_part(unsigned long ptr, size_t size) |
| { |
| struct kmemleak_object *object; |
| unsigned long start, end; |
| |
| object = find_and_remove_object(ptr, 1); |
| if (!object) { |
| #ifdef DEBUG |
| kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", |
| ptr, size); |
| #endif |
| return; |
| } |
| |
| /* |
| * Create one or two objects that may result from the memory block |
| * split. Note that partial freeing is only done by free_bootmem() and |
| * this happens before kmemleak_init() is called. The path below is |
| * only executed during early log recording in kmemleak_init(), so |
| * GFP_KERNEL is enough. |
| */ |
| start = object->pointer; |
| end = object->pointer + object->size; |
| if (ptr > start) |
| create_object(start, ptr - start, object->min_count, |
| GFP_KERNEL); |
| if (ptr + size < end) |
| create_object(ptr + size, end - ptr - size, object->min_count, |
| GFP_KERNEL); |
| |
| __delete_object(object); |
| } |
| |
| static void __paint_it(struct kmemleak_object *object, int color) |
| { |
| object->min_count = color; |
| if (color == KMEMLEAK_BLACK) |
| object->flags |= OBJECT_NO_SCAN; |
| } |
| |
| static void paint_it(struct kmemleak_object *object, int color) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&object->lock, flags); |
| __paint_it(object, color); |
| spin_unlock_irqrestore(&object->lock, flags); |
| } |
| |
| static void paint_ptr(unsigned long ptr, int color) |
| { |
| struct kmemleak_object *object; |
| |
| object = find_and_get_object(ptr, 0); |
| if (!object) { |
| kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", |
| ptr, |
| (color == KMEMLEAK_GREY) ? "Grey" : |
| (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); |
| return; |
| } |
| paint_it(object, color); |
| put_object(object); |
| } |
| |
| /* |
| * Mark an object permanently as gray-colored so that it can no longer be |
| * reported as a leak. This is used in general to mark a false positive. |
| */ |
| static void make_gray_object(unsigned long ptr) |
| { |
| paint_ptr(ptr, KMEMLEAK_GREY); |
| } |
| |
| /* |
| * Mark the object as black-colored so that it is ignored from scans and |
| * reporting. |
| */ |
| static void make_black_object(unsigned long ptr) |
| { |
| paint_ptr(ptr, KMEMLEAK_BLACK); |
| } |
| |
| /* |
| * Add a scanning area to the object. If at least one such area is added, |
| * kmemleak will only scan these ranges rather than the whole memory block. |
| */ |
| static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object; |
| struct kmemleak_scan_area *area; |
| |
| object = find_and_get_object(ptr, 1); |
| if (!object) { |
| kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", |
| ptr); |
| return; |
| } |
| |
| area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); |
| if (!area) { |
| pr_warn("Cannot allocate a scan area\n"); |
| goto out; |
| } |
| |
| spin_lock_irqsave(&object->lock, flags); |
| if (size == SIZE_MAX) { |
| size = object->pointer + object->size - ptr; |
| } else if (ptr + size > object->pointer + object->size) { |
| kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); |
| dump_object_info(object); |
| kmem_cache_free(scan_area_cache, area); |
| goto out_unlock; |
| } |
| |
| INIT_HLIST_NODE(&area->node); |
| area->start = ptr; |
| area->size = size; |
| |
| hlist_add_head(&area->node, &object->area_list); |
| out_unlock: |
| spin_unlock_irqrestore(&object->lock, flags); |
| out: |
| put_object(object); |
| } |
| |
| /* |
| * Set the OBJECT_NO_SCAN flag for the object corresponding to the give |
| * pointer. Such object will not be scanned by kmemleak but references to it |
| * are searched. |
| */ |
| static void object_no_scan(unsigned long ptr) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object; |
| |
| object = find_and_get_object(ptr, 0); |
| if (!object) { |
| kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); |
| return; |
| } |
| |
| spin_lock_irqsave(&object->lock, flags); |
| object->flags |= OBJECT_NO_SCAN; |
| spin_unlock_irqrestore(&object->lock, flags); |
| put_object(object); |
| } |
| |
| /* |
| * Log an early kmemleak_* call to the early_log buffer. These calls will be |
| * processed later once kmemleak is fully initialized. |
| */ |
| static void __init log_early(int op_type, const void *ptr, size_t size, |
| int min_count) |
| { |
| unsigned long flags; |
| struct early_log *log; |
| |
| if (kmemleak_error) { |
| /* kmemleak stopped recording, just count the requests */ |
| crt_early_log++; |
| return; |
| } |
| |
| if (crt_early_log >= ARRAY_SIZE(early_log)) { |
| crt_early_log++; |
| kmemleak_disable(); |
| return; |
| } |
| |
| /* |
| * There is no need for locking since the kernel is still in UP mode |
| * at this stage. Disabling the IRQs is enough. |
| */ |
| local_irq_save(flags); |
| log = &early_log[crt_early_log]; |
| log->op_type = op_type; |
| log->ptr = ptr; |
| log->size = size; |
| log->min_count = min_count; |
| log->trace_len = __save_stack_trace(log->trace); |
| crt_early_log++; |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Log an early allocated block and populate the stack trace. |
| */ |
| static void early_alloc(struct early_log *log) |
| { |
| struct kmemleak_object *object; |
| unsigned long flags; |
| int i; |
| |
| if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr)) |
| return; |
| |
| /* |
| * RCU locking needed to ensure object is not freed via put_object(). |
| */ |
| rcu_read_lock(); |
| object = create_object((unsigned long)log->ptr, log->size, |
| log->min_count, GFP_ATOMIC); |
| if (!object) |
| goto out; |
| spin_lock_irqsave(&object->lock, flags); |
| for (i = 0; i < log->trace_len; i++) |
| object->trace[i] = log->trace[i]; |
| object->trace_len = log->trace_len; |
| spin_unlock_irqrestore(&object->lock, flags); |
| out: |
| rcu_read_unlock(); |
| } |
| |
| /* |
| * Log an early allocated block and populate the stack trace. |
| */ |
| static void early_alloc_percpu(struct early_log *log) |
| { |
| unsigned int cpu; |
| const void __percpu *ptr = log->ptr; |
| |
| for_each_possible_cpu(cpu) { |
| log->ptr = per_cpu_ptr(ptr, cpu); |
| early_alloc(log); |
| } |
| } |
| |
| /** |
| * kmemleak_alloc - register a newly allocated object |
| * @ptr: pointer to beginning of the object |
| * @size: size of the object |
| * @min_count: minimum number of references to this object. If during memory |
| * scanning a number of references less than @min_count is found, |
| * the object is reported as a memory leak. If @min_count is 0, |
| * the object is never reported as a leak. If @min_count is -1, |
| * the object is ignored (not scanned and not reported as a leak) |
| * @gfp: kmalloc() flags used for kmemleak internal memory allocations |
| * |
| * This function is called from the kernel allocators when a new object |
| * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.). |
| */ |
| void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, |
| gfp_t gfp) |
| { |
| pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); |
| |
| if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
| create_object((unsigned long)ptr, size, min_count, gfp); |
| else if (kmemleak_early_log) |
| log_early(KMEMLEAK_ALLOC, ptr, size, min_count); |
| } |
| EXPORT_SYMBOL_GPL(kmemleak_alloc); |
| |
| /** |
| * kmemleak_alloc_percpu - register a newly allocated __percpu object |
| * @ptr: __percpu pointer to beginning of the object |
| * @size: size of the object |
| * @gfp: flags used for kmemleak internal memory allocations |
| * |
| * This function is called from the kernel percpu allocator when a new object |
| * (memory block) is allocated (alloc_percpu). |
| */ |
| void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, |
| gfp_t gfp) |
| { |
| unsigned int cpu; |
| |
| pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); |
| |
| /* |
| * Percpu allocations are only scanned and not reported as leaks |
| * (min_count is set to 0). |
| */ |
| if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
| for_each_possible_cpu(cpu) |
| create_object((unsigned long)per_cpu_ptr(ptr, cpu), |
| size, 0, gfp); |
| else if (kmemleak_early_log) |
| log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0); |
| } |
| EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); |
| |
| /** |
| * kmemleak_free - unregister a previously registered object |
| * @ptr: pointer to beginning of the object |
| * |
| * This function is called from the kernel allocators when an object (memory |
| * block) is freed (kmem_cache_free, kfree, vfree etc.). |
| */ |
| void __ref kmemleak_free(const void *ptr) |
| { |
| pr_debug("%s(0x%p)\n", __func__, ptr); |
| |
| if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) |
| delete_object_full((unsigned long)ptr); |
| else if (kmemleak_early_log) |
| log_early(KMEMLEAK_FREE, ptr, 0, 0); |
| } |
| EXPORT_SYMBOL_GPL(kmemleak_free); |
| |
| /** |
| * kmemleak_free_part - partially unregister a previously registered object |
| * @ptr: pointer to the beginning or inside the object. This also |
| * represents the start of the range to be freed |
| * @size: size to be unregistered |
| * |
| * This function is called when only a part of a memory block is freed |
| * (usually from the bootmem allocator). |
| */ |
| void __ref kmemleak_free_part(const void *ptr, size_t size) |
| { |
| pr_debug("%s(0x%p)\n", __func__, ptr); |
| |
| if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
| delete_object_part((unsigned long)ptr, size); |
| else if (kmemleak_early_log) |
| log_early(KMEMLEAK_FREE_PART, ptr, size, 0); |
| } |
| EXPORT_SYMBOL_GPL(kmemleak_free_part); |
| |
| /** |
| * kmemleak_free_percpu - unregister a previously registered __percpu object |
| * @ptr: __percpu pointer to beginning of the object |
| * |
| * This function is called from the kernel percpu allocator when an object |
| * (memory block) is freed (free_percpu). |
| */ |
| void __ref kmemleak_free_percpu(const void __percpu *ptr) |
| { |
| unsigned int cpu; |
| |
| pr_debug("%s(0x%p)\n", __func__, ptr); |
| |
| if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) |
| for_each_possible_cpu(cpu) |
| delete_object_full((unsigned long)per_cpu_ptr(ptr, |
| cpu)); |
| else if (kmemleak_early_log) |
| log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0); |
| } |
| EXPORT_SYMBOL_GPL(kmemleak_free_percpu); |
| |
| /** |
| * kmemleak_update_trace - update object allocation stack trace |
| * @ptr: pointer to beginning of the object |
| * |
| * Override the object allocation stack trace for cases where the actual |
| * allocation place is not always useful. |
| */ |
| void __ref kmemleak_update_trace(const void *ptr) |
| { |
| struct kmemleak_object *object; |
| unsigned long flags; |
| |
| pr_debug("%s(0x%p)\n", __func__, ptr); |
| |
| if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) |
| return; |
| |
| object = find_and_get_object((unsigned long)ptr, 1); |
| if (!object) { |
| #ifdef DEBUG |
| kmemleak_warn("Updating stack trace for unknown object at %p\n", |
| ptr); |
| #endif |
| return; |
| } |
| |
| spin_lock_irqsave(&object->lock, flags); |
| object->trace_len = __save_stack_trace(object->trace); |
| spin_unlock_irqrestore(&object->lock, flags); |
| |
| put_object(object); |
| } |
| EXPORT_SYMBOL(kmemleak_update_trace); |
| |
| /** |
| * kmemleak_not_leak - mark an allocated object as false positive |
| * @ptr: pointer to beginning of the object |
| * |
| * Calling this function on an object will cause the memory block to no longer |
| * be reported as leak and always be scanned. |
| */ |
| void __ref kmemleak_not_leak(const void *ptr) |
| { |
| pr_debug("%s(0x%p)\n", __func__, ptr); |
| |
| if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
| make_gray_object((unsigned long)ptr); |
| else if (kmemleak_early_log) |
| log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0); |
| } |
| EXPORT_SYMBOL(kmemleak_not_leak); |
| |
| /** |
| * kmemleak_ignore - ignore an allocated object |
| * @ptr: pointer to beginning of the object |
| * |
| * Calling this function on an object will cause the memory block to be |
| * ignored (not scanned and not reported as a leak). This is usually done when |
| * it is known that the corresponding block is not a leak and does not contain |
| * any references to other allocated memory blocks. |
| */ |
| void __ref kmemleak_ignore(const void *ptr) |
| { |
| pr_debug("%s(0x%p)\n", __func__, ptr); |
| |
| if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
| make_black_object((unsigned long)ptr); |
| else if (kmemleak_early_log) |
| log_early(KMEMLEAK_IGNORE, ptr, 0, 0); |
| } |
| EXPORT_SYMBOL(kmemleak_ignore); |
| |
| /** |
| * kmemleak_scan_area - limit the range to be scanned in an allocated object |
| * @ptr: pointer to beginning or inside the object. This also |
| * represents the start of the scan area |
| * @size: size of the scan area |
| * @gfp: kmalloc() flags used for kmemleak internal memory allocations |
| * |
| * This function is used when it is known that only certain parts of an object |
| * contain references to other objects. Kmemleak will only scan these areas |
| * reducing the number false negatives. |
| */ |
| void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) |
| { |
| pr_debug("%s(0x%p)\n", __func__, ptr); |
| |
| if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) |
| add_scan_area((unsigned long)ptr, size, gfp); |
| else if (kmemleak_early_log) |
| log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0); |
| } |
| EXPORT_SYMBOL(kmemleak_scan_area); |
| |
| /** |
| * kmemleak_no_scan - do not scan an allocated object |
| * @ptr: pointer to beginning of the object |
| * |
| * This function notifies kmemleak not to scan the given memory block. Useful |
| * in situations where it is known that the given object does not contain any |
| * references to other objects. Kmemleak will not scan such objects reducing |
| * the number of false negatives. |
| */ |
| void __ref kmemleak_no_scan(const void *ptr) |
| { |
| pr_debug("%s(0x%p)\n", __func__, ptr); |
| |
| if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
| object_no_scan((unsigned long)ptr); |
| else if (kmemleak_early_log) |
| log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0); |
| } |
| EXPORT_SYMBOL(kmemleak_no_scan); |
| |
| /** |
| * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical |
| * address argument |
| */ |
| void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count, |
| gfp_t gfp) |
| { |
| if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) |
| kmemleak_alloc(__va(phys), size, min_count, gfp); |
| } |
| EXPORT_SYMBOL(kmemleak_alloc_phys); |
| |
| /** |
| * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a |
| * physical address argument |
| */ |
| void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) |
| { |
| if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) |
| kmemleak_free_part(__va(phys), size); |
| } |
| EXPORT_SYMBOL(kmemleak_free_part_phys); |
| |
| /** |
| * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical |
| * address argument |
| */ |
| void __ref kmemleak_not_leak_phys(phys_addr_t phys) |
| { |
| if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) |
| kmemleak_not_leak(__va(phys)); |
| } |
| EXPORT_SYMBOL(kmemleak_not_leak_phys); |
| |
| /** |
| * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical |
| * address argument |
| */ |
| void __ref kmemleak_ignore_phys(phys_addr_t phys) |
| { |
| if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) |
| kmemleak_ignore(__va(phys)); |
| } |
| EXPORT_SYMBOL(kmemleak_ignore_phys); |
| |
| /* |
| * Update an object's checksum and return true if it was modified. |
| */ |
| static bool update_checksum(struct kmemleak_object *object) |
| { |
| u32 old_csum = object->checksum; |
| |
| if (!kmemcheck_is_obj_initialized(object->pointer, object->size)) |
| return false; |
| |
| kasan_disable_current(); |
| object->checksum = crc32(0, (void *)object->pointer, object->size); |
| kasan_enable_current(); |
| |
| return object->checksum != old_csum; |
| } |
| |
| /* |
| * Memory scanning is a long process and it needs to be interruptable. This |
| * function checks whether such interrupt condition occurred. |
| */ |
| static int scan_should_stop(void) |
| { |
| if (!kmemleak_enabled) |
| return 1; |
| |
| /* |
| * This function may be called from either process or kthread context, |
| * hence the need to check for both stop conditions. |
| */ |
| if (current->mm) |
| return signal_pending(current); |
| else |
| return kthread_should_stop(); |
| |
| return 0; |
| } |
| |
| /* |
| * Scan a memory block (exclusive range) for valid pointers and add those |
| * found to the gray list. |
| */ |
| static void scan_block(void *_start, void *_end, |
| struct kmemleak_object *scanned) |
| { |
| unsigned long *ptr; |
| unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); |
| unsigned long *end = _end - (BYTES_PER_POINTER - 1); |
| unsigned long flags; |
| |
| read_lock_irqsave(&kmemleak_lock, flags); |
| for (ptr = start; ptr < end; ptr++) { |
| struct kmemleak_object *object; |
| unsigned long pointer; |
| |
| if (scan_should_stop()) |
| break; |
| |
| /* don't scan uninitialized memory */ |
| if (!kmemcheck_is_obj_initialized((unsigned long)ptr, |
| BYTES_PER_POINTER)) |
| continue; |
| |
| kasan_disable_current(); |
| pointer = *ptr; |
| kasan_enable_current(); |
| |
| if (pointer < min_addr || pointer >= max_addr) |
| continue; |
| |
| /* |
| * No need for get_object() here since we hold kmemleak_lock. |
| * object->use_count cannot be dropped to 0 while the object |
| * is still present in object_tree_root and object_list |
| * (with updates protected by kmemleak_lock). |
| */ |
| object = lookup_object(pointer, 1); |
| if (!object) |
| continue; |
| if (object == scanned) |
| /* self referenced, ignore */ |
| continue; |
| |
| /* |
| * Avoid the lockdep recursive warning on object->lock being |
| * previously acquired in scan_object(). These locks are |
| * enclosed by scan_mutex. |
| */ |
| spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); |
| if (!color_white(object)) { |
| /* non-orphan, ignored or new */ |
| spin_unlock(&object->lock); |
| continue; |
| } |
| |
| /* |
| * Increase the object's reference count (number of pointers |
| * to the memory block). If this count reaches the required |
| * minimum, the object's color will become gray and it will be |
| * added to the gray_list. |
| */ |
| object->count++; |
| if (color_gray(object)) { |
| /* put_object() called when removing from gray_list */ |
| WARN_ON(!get_object(object)); |
| list_add_tail(&object->gray_list, &gray_list); |
| } |
| spin_unlock(&object->lock); |
| } |
| read_unlock_irqrestore(&kmemleak_lock, flags); |
| } |
| |
| /* |
| * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. |
| */ |
| static void scan_large_block(void *start, void *end) |
| { |
| void *next; |
| |
| while (start < end) { |
| next = min(start + MAX_SCAN_SIZE, end); |
| scan_block(start, next, NULL); |
| start = next; |
| cond_resched(); |
| } |
| } |
| |
| /* |
| * Scan a memory block corresponding to a kmemleak_object. A condition is |
| * that object->use_count >= 1. |
| */ |
| static void scan_object(struct kmemleak_object *object) |
| { |
| struct kmemleak_scan_area *area; |
| unsigned long flags; |
| |
| /* |
| * Once the object->lock is acquired, the corresponding memory block |
| * cannot be freed (the same lock is acquired in delete_object). |
| */ |
| spin_lock_irqsave(&object->lock, flags); |
| if (object->flags & OBJECT_NO_SCAN) |
| goto out; |
| if (!(object->flags & OBJECT_ALLOCATED)) |
| /* already freed object */ |
| goto out; |
| if (hlist_empty(&object->area_list)) { |
| void *start = (void *)object->pointer; |
| void *end = (void *)(object->pointer + object->size); |
| void *next; |
| |
| do { |
| next = min(start + MAX_SCAN_SIZE, end); |
| scan_block(start, next, object); |
| |
| start = next; |
| if (start >= end) |
| break; |
| |
| spin_unlock_irqrestore(&object->lock, flags); |
| cond_resched(); |
| spin_lock_irqsave(&object->lock, flags); |
| } while (object->flags & OBJECT_ALLOCATED); |
| } else |
| hlist_for_each_entry(area, &object->area_list, node) |
| scan_block((void *)area->start, |
| (void *)(area->start + area->size), |
| object); |
| out: |
| spin_unlock_irqrestore(&object->lock, flags); |
| } |
| |
| /* |
| * Scan the objects already referenced (gray objects). More objects will be |
| * referenced and, if there are no memory leaks, all the objects are scanned. |
| */ |
| static void scan_gray_list(void) |
| { |
| struct kmemleak_object *object, *tmp; |
| |
| /* |
| * The list traversal is safe for both tail additions and removals |
| * from inside the loop. The kmemleak objects cannot be freed from |
| * outside the loop because their use_count was incremented. |
| */ |
| object = list_entry(gray_list.next, typeof(*object), gray_list); |
| while (&object->gray_list != &gray_list) { |
| cond_resched(); |
| |
| /* may add new objects to the list */ |
| if (!scan_should_stop()) |
| scan_object(object); |
| |
| tmp = list_entry(object->gray_list.next, typeof(*object), |
| gray_list); |
| |
| /* remove the object from the list and release it */ |
| list_del(&object->gray_list); |
| put_object(object); |
| |
| object = tmp; |
| } |
| WARN_ON(!list_empty(&gray_list)); |
| } |
| |
| /* |
| * Scan data sections and all the referenced memory blocks allocated via the |
| * kernel's standard allocators. This function must be called with the |
| * scan_mutex held. |
| */ |
| static void kmemleak_scan(void) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object; |
| int i; |
| int new_leaks = 0; |
| |
| jiffies_last_scan = jiffies; |
| |
| /* prepare the kmemleak_object's */ |
| rcu_read_lock(); |
| list_for_each_entry_rcu(object, &object_list, object_list) { |
| spin_lock_irqsave(&object->lock, flags); |
| #ifdef DEBUG |
| /* |
| * With a few exceptions there should be a maximum of |
| * 1 reference to any object at this point. |
| */ |
| if (atomic_read(&object->use_count) > 1) { |
| pr_debug("object->use_count = %d\n", |
| atomic_read(&object->use_count)); |
| dump_object_info(object); |
| } |
| #endif |
| /* reset the reference count (whiten the object) */ |
| object->count = 0; |
| if (color_gray(object) && get_object(object)) |
| list_add_tail(&object->gray_list, &gray_list); |
| |
| spin_unlock_irqrestore(&object->lock, flags); |
| } |
| rcu_read_unlock(); |
| |
| /* data/bss scanning */ |
| scan_large_block(_sdata, _edata); |
| scan_large_block(__bss_start, __bss_stop); |
| scan_large_block(__start_data_ro_after_init, __end_data_ro_after_init); |
| |
| #ifdef CONFIG_SMP |
| /* per-cpu sections scanning */ |
| for_each_possible_cpu(i) |
| scan_large_block(__per_cpu_start + per_cpu_offset(i), |
| __per_cpu_end + per_cpu_offset(i)); |
| #endif |
| |
| /* |
| * Struct page scanning for each node. |
| */ |
| get_online_mems(); |
| for_each_online_node(i) { |
| unsigned long start_pfn = node_start_pfn(i); |
| unsigned long end_pfn = node_end_pfn(i); |
| unsigned long pfn; |
| |
| for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
| struct page *page; |
| |
| if (!pfn_valid(pfn)) |
| continue; |
| page = pfn_to_page(pfn); |
| /* only scan if page is in use */ |
| if (page_count(page) == 0) |
| continue; |
| scan_block(page, page + 1, NULL); |
| } |
| } |
| put_online_mems(); |
| |
| /* |
| * Scanning the task stacks (may introduce false negatives). |
| */ |
| if (kmemleak_stack_scan) { |
| struct task_struct *p, *g; |
| |
| read_lock(&tasklist_lock); |
| do_each_thread(g, p) { |
| void *stack = try_get_task_stack(p); |
| if (stack) { |
| scan_block(stack, stack + THREAD_SIZE, NULL); |
| put_task_stack(p); |
| } |
| } while_each_thread(g, p); |
| read_unlock(&tasklist_lock); |
| } |
| |
| /* |
| * Scan the objects already referenced from the sections scanned |
| * above. |
| */ |
| scan_gray_list(); |
| |
| /* |
| * Check for new or unreferenced objects modified since the previous |
| * scan and color them gray until the next scan. |
| */ |
| rcu_read_lock(); |
| list_for_each_entry_rcu(object, &object_list, object_list) { |
| spin_lock_irqsave(&object->lock, flags); |
| if (color_white(object) && (object->flags & OBJECT_ALLOCATED) |
| && update_checksum(object) && get_object(object)) { |
| /* color it gray temporarily */ |
| object->count = object->min_count; |
| list_add_tail(&object->gray_list, &gray_list); |
| } |
| spin_unlock_irqrestore(&object->lock, flags); |
| } |
| rcu_read_unlock(); |
| |
| /* |
| * Re-scan the gray list for modified unreferenced objects. |
| */ |
| scan_gray_list(); |
| |
| /* |
| * If scanning was stopped do not report any new unreferenced objects. |
| */ |
| if (scan_should_stop()) |
| return; |
| |
| /* |
| * Scanning result reporting. |
| */ |
| rcu_read_lock(); |
| list_for_each_entry_rcu(object, &object_list, object_list) { |
| spin_lock_irqsave(&object->lock, flags); |
| if (unreferenced_object(object) && |
| !(object->flags & OBJECT_REPORTED)) { |
| object->flags |= OBJECT_REPORTED; |
| new_leaks++; |
| } |
| spin_unlock_irqrestore(&object->lock, flags); |
| } |
| rcu_read_unlock(); |
| |
| if (new_leaks) { |
| kmemleak_found_leaks = true; |
| |
| pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", |
| new_leaks); |
| } |
| |
| } |
| |
| /* |
| * Thread function performing automatic memory scanning. Unreferenced objects |
| * at the end of a memory scan are reported but only the first time. |
| */ |
| static int kmemleak_scan_thread(void *arg) |
| { |
| static int first_run = 1; |
| |
| pr_info("Automatic memory scanning thread started\n"); |
| set_user_nice(current, 10); |
| |
| /* |
| * Wait before the first scan to allow the system to fully initialize. |
| */ |
| if (first_run) { |
| signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); |
| first_run = 0; |
| while (timeout && !kthread_should_stop()) |
| timeout = schedule_timeout_interruptible(timeout); |
| } |
| |
| while (!kthread_should_stop()) { |
| signed long timeout = jiffies_scan_wait; |
| |
| mutex_lock(&scan_mutex); |
| kmemleak_scan(); |
| mutex_unlock(&scan_mutex); |
| |
| /* wait before the next scan */ |
| while (timeout && !kthread_should_stop()) |
| timeout = schedule_timeout_interruptible(timeout); |
| } |
| |
| pr_info("Automatic memory scanning thread ended\n"); |
| |
| return 0; |
| } |
| |
| /* |
| * Start the automatic memory scanning thread. This function must be called |
| * with the scan_mutex held. |
| */ |
| static void start_scan_thread(void) |
| { |
| if (scan_thread) |
| return; |
| scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); |
| if (IS_ERR(scan_thread)) { |
| pr_warn("Failed to create the scan thread\n"); |
| scan_thread = NULL; |
| } |
| } |
| |
| /* |
| * Stop the automatic memory scanning thread. This function must be called |
| * with the scan_mutex held. |
| */ |
| static void stop_scan_thread(void) |
| { |
| if (scan_thread) { |
| kthread_stop(scan_thread); |
| scan_thread = NULL; |
| } |
| } |
| |
| /* |
| * Iterate over the object_list and return the first valid object at or after |
| * the required position with its use_count incremented. The function triggers |
| * a memory scanning when the pos argument points to the first position. |
| */ |
| static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) |
| { |
| struct kmemleak_object *object; |
| loff_t n = *pos; |
| int err; |
| |
| err = mutex_lock_interruptible(&scan_mutex); |
| if (err < 0) |
| return ERR_PTR(err); |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(object, &object_list, object_list) { |
| if (n-- > 0) |
| continue; |
| if (get_object(object)) |
| goto out; |
| } |
| object = NULL; |
| out: |
| return object; |
| } |
| |
| /* |
| * Return the next object in the object_list. The function decrements the |
| * use_count of the previous object and increases that of the next one. |
| */ |
| static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| struct kmemleak_object *prev_obj = v; |
| struct kmemleak_object *next_obj = NULL; |
| struct kmemleak_object *obj = prev_obj; |
| |
| ++(*pos); |
| |
| list_for_each_entry_continue_rcu(obj, &object_list, object_list) { |
| if (get_object(obj)) { |
| next_obj = obj; |
| break; |
| } |
| } |
| |
| put_object(prev_obj); |
| return next_obj; |
| } |
| |
| /* |
| * Decrement the use_count of the last object required, if any. |
| */ |
| static void kmemleak_seq_stop(struct seq_file *seq, void *v) |
| { |
| if (!IS_ERR(v)) { |
| /* |
| * kmemleak_seq_start may return ERR_PTR if the scan_mutex |
| * waiting was interrupted, so only release it if !IS_ERR. |
| */ |
| rcu_read_unlock(); |
| mutex_unlock(&scan_mutex); |
| if (v) |
| put_object(v); |
| } |
| } |
| |
| /* |
| * Print the information for an unreferenced object to the seq file. |
| */ |
| static int kmemleak_seq_show(struct seq_file *seq, void *v) |
| { |
| struct kmemleak_object *object = v; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&object->lock, flags); |
| if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) |
| print_unreferenced(seq, object); |
| spin_unlock_irqrestore(&object->lock, flags); |
| return 0; |
| } |
| |
| static const struct seq_operations kmemleak_seq_ops = { |
| .start = kmemleak_seq_start, |
| .next = kmemleak_seq_next, |
| .stop = kmemleak_seq_stop, |
| .show = kmemleak_seq_show, |
| }; |
| |
| static int kmemleak_open(struct inode *inode, struct file *file) |
| { |
| return seq_open(file, &kmemleak_seq_ops); |
| } |
| |
| static int dump_str_object_info(const char *str) |
| { |
| unsigned long flags; |
| struct kmemleak_object *object; |
| unsigned long addr; |
| |
| if (kstrtoul(str, 0, &addr)) |
| return -EINVAL; |
| object = find_and_get_object(addr, 0); |
| if (!object) { |
| pr_info("Unknown object at 0x%08lx\n", addr); |
| return -EINVAL; |
| } |
| |
| spin_lock_irqsave(&object->lock, flags); |
| dump_object_info(object); |
| spin_unlock_irqrestore(&object->lock, flags); |
| |
| put_object(object); |
| return 0; |
| } |
| |
| /* |
| * We use grey instead of black to ensure we can do future scans on the same |
| * objects. If we did not do future scans these black objects could |
| * potentially contain references to newly allocated objects in the future and |
| * we'd end up with false positives. |
| */ |
| static void kmemleak_clear(void) |
| { |
| struct kmemleak_object *object; |
| unsigned long flags; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(object, &object_list, object_list) { |
| spin_lock_irqsave(&object->lock, flags); |
| if ((object->flags & OBJECT_REPORTED) && |
| unreferenced_object(object)) |
| __paint_it(object, KMEMLEAK_GREY); |
| spin_unlock_irqrestore(&object->lock, flags); |
| } |
| rcu_read_unlock(); |
| |
| kmemleak_found_leaks = false; |
| } |
| |
| static void __kmemleak_do_cleanup(void); |
| |
| /* |
| * File write operation to configure kmemleak at run-time. The following |
| * commands can be written to the /sys/kernel/debug/kmemleak file: |
| * off - disable kmemleak (irreversible) |
| * stack=on - enable the task stacks scanning |
| * stack=off - disable the tasks stacks scanning |
| * scan=on - start the automatic memory scanning thread |
| * scan=off - stop the automatic memory scanning thread |
| * scan=... - set the automatic memory scanning period in seconds (0 to |
| * disable it) |
| * scan - trigger a memory scan |
| * clear - mark all current reported unreferenced kmemleak objects as |
| * grey to ignore printing them, or free all kmemleak objects |
| * if kmemleak has been disabled. |
| * dump=... - dump information about the object found at the given address |
| */ |
| static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, |
| size_t size, loff_t *ppos) |
| { |
| char buf[64]; |
| int buf_size; |
| int ret; |
| |
| buf_size = min(size, (sizeof(buf) - 1)); |
| if (strncpy_from_user(buf, user_buf, buf_size) < 0) |
| return -EFAULT; |
| buf[buf_size] = 0; |
| |
| ret = mutex_lock_interruptible(&scan_mutex); |
| if (ret < 0) |
| return ret; |
| |
| if (strncmp(buf, "clear", 5) == 0) { |
| if (kmemleak_enabled) |
| kmemleak_clear(); |
| else |
| __kmemleak_do_cleanup(); |
| goto out; |
| } |
| |
| if (!kmemleak_enabled) { |
| ret = -EBUSY; |
| goto out; |
| } |
| |
| if (strncmp(buf, "off", 3) == 0) |
| kmemleak_disable(); |
| else if (strncmp(buf, "stack=on", 8) == 0) |
| kmemleak_stack_scan = 1; |
| else if (strncmp(buf, "stack=off", 9) == 0) |
| kmemleak_stack_scan = 0; |
| else if (strncmp(buf, "scan=on", 7) == 0) |
| start_scan_thread(); |
| else if (strncmp(buf, "scan=off", 8) == 0) |
| stop_scan_thread(); |
| else if (strncmp(buf, "scan=", 5) == 0) { |
| unsigned long secs; |
| |
| ret = kstrtoul(buf + 5, 0, &secs); |
| if (ret < 0) |
| goto out; |
| stop_scan_thread(); |
| if (secs) { |
| jiffies_scan_wait = msecs_to_jiffies(secs * 1000); |
| start_scan_thread(); |
| } |
| } else if (strncmp(buf, "scan", 4) == 0) |
| kmemleak_scan(); |
| else if (strncmp(buf, "dump=", 5) == 0) |
| ret = dump_str_object_info(buf + 5); |
| else |
| ret = -EINVAL; |
| |
| out: |
| mutex_unlock(&scan_mutex); |
| if (ret < 0) |
| return ret; |
| |
| /* ignore the rest of the buffer, only one command at a time */ |
| *ppos += size; |
| return size; |
| } |
| |
| static const struct file_operations kmemleak_fops = { |
| .owner = THIS_MODULE, |
| .open = kmemleak_open, |
| .read = seq_read, |
| .write = kmemleak_write, |
| .llseek = seq_lseek, |
| .release = seq_release, |
| }; |
| |
| static void __kmemleak_do_cleanup(void) |
| { |
| struct kmemleak_object *object; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(object, &object_list, object_list) |
| delete_object_full(object->pointer); |
| rcu_read_unlock(); |
| } |
| |
| /* |
| * Stop the memory scanning thread and free the kmemleak internal objects if |
| * no previous scan thread (otherwise, kmemleak may still have some useful |
| * information on memory leaks). |
| */ |
| static void kmemleak_do_cleanup(struct work_struct *work) |
| { |
| stop_scan_thread(); |
| |
| /* |
| * Once the scan thread has stopped, it is safe to no longer track |
| * object freeing. Ordering of the scan thread stopping and the memory |
| * accesses below is guaranteed by the kthread_stop() function. |
| */ |
| kmemleak_free_enabled = 0; |
| |
| if (!kmemleak_found_leaks) |
| __kmemleak_do_cleanup(); |
| else |
| pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); |
| } |
| |
| static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); |
| |
| /* |
| * Disable kmemleak. No memory allocation/freeing will be traced once this |
| * function is called. Disabling kmemleak is an irreversible operation. |
| */ |
| static void kmemleak_disable(void) |
| { |
| /* atomically check whether it was already invoked */ |
| if (cmpxchg(&kmemleak_error, 0, 1)) |
| return; |
| |
| /* stop any memory operation tracing */ |
| kmemleak_enabled = 0; |
| |
| /* check whether it is too early for a kernel thread */ |
| if (kmemleak_initialized) |
| schedule_work(&cleanup_work); |
| else |
| kmemleak_free_enabled = 0; |
| |
| pr_info("Kernel memory leak detector disabled\n"); |
| } |
| |
| /* |
| * Allow boot-time kmemleak disabling (enabled by default). |
| */ |
| static int kmemleak_boot_config(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| if (strcmp(str, "off") == 0) |
| kmemleak_disable(); |
| else if (strcmp(str, "on") == 0) |
| kmemleak_skip_disable = 1; |
| else |
| return -EINVAL; |
| return 0; |
| } |
| early_param("kmemleak", kmemleak_boot_config); |
| |
| static void __init print_log_trace(struct early_log *log) |
| { |
| struct stack_trace trace; |
| |
| trace.nr_entries = log->trace_len; |
| trace.entries = log->trace; |
| |
| pr_notice("Early log backtrace:\n"); |
| print_stack_trace(&trace, 2); |
| } |
| |
| /* |
| * Kmemleak initialization. |
| */ |
| void __init kmemleak_init(void) |
| { |
| int i; |
| unsigned long flags; |
| |
| #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF |
| if (!kmemleak_skip_disable) { |
| kmemleak_early_log = 0; |
| kmemleak_disable(); |
| return; |
| } |
| #endif |
| |
| jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); |
| jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); |
| |
| object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); |
| scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); |
| |
| if (crt_early_log > ARRAY_SIZE(early_log)) |
| pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", |
| crt_early_log); |
| |
| /* the kernel is still in UP mode, so disabling the IRQs is enough */ |
| local_irq_save(flags); |
| kmemleak_early_log = 0; |
| if (kmemleak_error) { |
| local_irq_restore(flags); |
| return; |
| } else { |
| kmemleak_enabled = 1; |
| kmemleak_free_enabled = 1; |
| } |
| local_irq_restore(flags); |
| |
| /* |
| * This is the point where tracking allocations is safe. Automatic |
| * scanning is started during the late initcall. Add the early logged |
| * callbacks to the kmemleak infrastructure. |
| */ |
| for (i = 0; i < crt_early_log; i++) { |
| struct early_log *log = &early_log[i]; |
| |
| switch (log->op_type) { |
| case KMEMLEAK_ALLOC: |
| early_alloc(log); |
| break; |
| case KMEMLEAK_ALLOC_PERCPU: |
| early_alloc_percpu(log); |
| break; |
| case KMEMLEAK_FREE: |
| kmemleak_free(log->ptr); |
| break; |
| case KMEMLEAK_FREE_PART: |
| kmemleak_free_part(log->ptr, log->size); |
| break; |
| case KMEMLEAK_FREE_PERCPU: |
| kmemleak_free_percpu(log->ptr); |
| break; |
| case KMEMLEAK_NOT_LEAK: |
| kmemleak_not_leak(log->ptr); |
| break; |
| case KMEMLEAK_IGNORE: |
| kmemleak_ignore(log->ptr); |
| break; |
| case KMEMLEAK_SCAN_AREA: |
| kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL); |
| break; |
| case KMEMLEAK_NO_SCAN: |
| kmemleak_no_scan(log->ptr); |
| break; |
| default: |
| kmemleak_warn("Unknown early log operation: %d\n", |
| log->op_type); |
| } |
| |
| if (kmemleak_warning) { |
| print_log_trace(log); |
| kmemleak_warning = 0; |
| } |
| } |
| } |
| |
| /* |
| * Late initialization function. |
| */ |
| static int __init kmemleak_late_init(void) |
| { |
| struct dentry *dentry; |
| |
| kmemleak_initialized = 1; |
| |
| if (kmemleak_error) { |
| /* |
| * Some error occurred and kmemleak was disabled. There is a |
| * small chance that kmemleak_disable() was called immediately |
| * after setting kmemleak_initialized and we may end up with |
| * two clean-up threads but serialized by scan_mutex. |
| */ |
| schedule_work(&cleanup_work); |
| return -ENOMEM; |
| } |
| |
| dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL, |
| &kmemleak_fops); |
| if (!dentry) |
| pr_warn("Failed to create the debugfs kmemleak file\n"); |
| mutex_lock(&scan_mutex); |
| start_scan_thread(); |
| mutex_unlock(&scan_mutex); |
| |
| pr_info("Kernel memory leak detector initialized\n"); |
| |
| return 0; |
| } |
| late_initcall(kmemleak_late_init); |