| /* |
| * Copyright (c) 2005-2011 Atheros Communications Inc. |
| * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include "hif.h" |
| #include "pci.h" |
| #include "ce.h" |
| #include "debug.h" |
| |
| /* |
| * Support for Copy Engine hardware, which is mainly used for |
| * communication between Host and Target over a PCIe interconnect. |
| */ |
| |
| /* |
| * A single CopyEngine (CE) comprises two "rings": |
| * a source ring |
| * a destination ring |
| * |
| * Each ring consists of a number of descriptors which specify |
| * an address, length, and meta-data. |
| * |
| * Typically, one side of the PCIe interconnect (Host or Target) |
| * controls one ring and the other side controls the other ring. |
| * The source side chooses when to initiate a transfer and it |
| * chooses what to send (buffer address, length). The destination |
| * side keeps a supply of "anonymous receive buffers" available and |
| * it handles incoming data as it arrives (when the destination |
| * recieves an interrupt). |
| * |
| * The sender may send a simple buffer (address/length) or it may |
| * send a small list of buffers. When a small list is sent, hardware |
| * "gathers" these and they end up in a single destination buffer |
| * with a single interrupt. |
| * |
| * There are several "contexts" managed by this layer -- more, it |
| * may seem -- than should be needed. These are provided mainly for |
| * maximum flexibility and especially to facilitate a simpler HIF |
| * implementation. There are per-CopyEngine recv, send, and watermark |
| * contexts. These are supplied by the caller when a recv, send, |
| * or watermark handler is established and they are echoed back to |
| * the caller when the respective callbacks are invoked. There is |
| * also a per-transfer context supplied by the caller when a buffer |
| * (or sendlist) is sent and when a buffer is enqueued for recv. |
| * These per-transfer contexts are echoed back to the caller when |
| * the buffer is sent/received. |
| */ |
| |
| static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar, |
| u32 ce_ctrl_addr, |
| unsigned int n) |
| { |
| ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n); |
| } |
| |
| static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar, |
| u32 ce_ctrl_addr) |
| { |
| return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS); |
| } |
| |
| static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar, |
| u32 ce_ctrl_addr, |
| unsigned int n) |
| { |
| ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n); |
| } |
| |
| static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar, |
| u32 ce_ctrl_addr) |
| { |
| return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS); |
| } |
| |
| static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar, |
| u32 ce_ctrl_addr) |
| { |
| return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS); |
| } |
| |
| static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar, |
| u32 ce_ctrl_addr, |
| unsigned int addr) |
| { |
| ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr); |
| } |
| |
| static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar, |
| u32 ce_ctrl_addr, |
| unsigned int n) |
| { |
| ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n); |
| } |
| |
| static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar, |
| u32 ce_ctrl_addr, |
| unsigned int n) |
| { |
| u32 ctrl1_addr = ath10k_pci_read32((ar), |
| (ce_ctrl_addr) + CE_CTRL1_ADDRESS); |
| |
| ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS, |
| (ctrl1_addr & ~CE_CTRL1_DMAX_LENGTH_MASK) | |
| CE_CTRL1_DMAX_LENGTH_SET(n)); |
| } |
| |
| static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar, |
| u32 ce_ctrl_addr, |
| unsigned int n) |
| { |
| u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS); |
| |
| ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS, |
| (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) | |
| CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n)); |
| } |
| |
| static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar, |
| u32 ce_ctrl_addr, |
| unsigned int n) |
| { |
| u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS); |
| |
| ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS, |
| (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) | |
| CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n)); |
| } |
| |
| static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar, |
| u32 ce_ctrl_addr) |
| { |
| return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS); |
| } |
| |
| static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar, |
| u32 ce_ctrl_addr, |
| u32 addr) |
| { |
| ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr); |
| } |
| |
| static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar, |
| u32 ce_ctrl_addr, |
| unsigned int n) |
| { |
| ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n); |
| } |
| |
| static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar, |
| u32 ce_ctrl_addr, |
| unsigned int n) |
| { |
| u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS); |
| |
| ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS, |
| (addr & ~SRC_WATERMARK_HIGH_MASK) | |
| SRC_WATERMARK_HIGH_SET(n)); |
| } |
| |
| static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar, |
| u32 ce_ctrl_addr, |
| unsigned int n) |
| { |
| u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS); |
| |
| ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS, |
| (addr & ~SRC_WATERMARK_LOW_MASK) | |
| SRC_WATERMARK_LOW_SET(n)); |
| } |
| |
| static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar, |
| u32 ce_ctrl_addr, |
| unsigned int n) |
| { |
| u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS); |
| |
| ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS, |
| (addr & ~DST_WATERMARK_HIGH_MASK) | |
| DST_WATERMARK_HIGH_SET(n)); |
| } |
| |
| static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar, |
| u32 ce_ctrl_addr, |
| unsigned int n) |
| { |
| u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS); |
| |
| ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS, |
| (addr & ~DST_WATERMARK_LOW_MASK) | |
| DST_WATERMARK_LOW_SET(n)); |
| } |
| |
| static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar, |
| u32 ce_ctrl_addr) |
| { |
| u32 host_ie_addr = ath10k_pci_read32(ar, |
| ce_ctrl_addr + HOST_IE_ADDRESS); |
| |
| ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS, |
| host_ie_addr | HOST_IE_COPY_COMPLETE_MASK); |
| } |
| |
| static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar, |
| u32 ce_ctrl_addr) |
| { |
| u32 host_ie_addr = ath10k_pci_read32(ar, |
| ce_ctrl_addr + HOST_IE_ADDRESS); |
| |
| ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS, |
| host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK); |
| } |
| |
| static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar, |
| u32 ce_ctrl_addr) |
| { |
| u32 host_ie_addr = ath10k_pci_read32(ar, |
| ce_ctrl_addr + HOST_IE_ADDRESS); |
| |
| ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS, |
| host_ie_addr & ~CE_WATERMARK_MASK); |
| } |
| |
| static inline void ath10k_ce_error_intr_enable(struct ath10k *ar, |
| u32 ce_ctrl_addr) |
| { |
| u32 misc_ie_addr = ath10k_pci_read32(ar, |
| ce_ctrl_addr + MISC_IE_ADDRESS); |
| |
| ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS, |
| misc_ie_addr | CE_ERROR_MASK); |
| } |
| |
| static inline void ath10k_ce_error_intr_disable(struct ath10k *ar, |
| u32 ce_ctrl_addr) |
| { |
| u32 misc_ie_addr = ath10k_pci_read32(ar, |
| ce_ctrl_addr + MISC_IE_ADDRESS); |
| |
| ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS, |
| misc_ie_addr & ~CE_ERROR_MASK); |
| } |
| |
| static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar, |
| u32 ce_ctrl_addr, |
| unsigned int mask) |
| { |
| ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask); |
| } |
| |
| |
| /* |
| * Guts of ath10k_ce_send, used by both ath10k_ce_send and |
| * ath10k_ce_sendlist_send. |
| * The caller takes responsibility for any needed locking. |
| */ |
| int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state, |
| void *per_transfer_context, |
| u32 buffer, |
| unsigned int nbytes, |
| unsigned int transfer_id, |
| unsigned int flags) |
| { |
| struct ath10k *ar = ce_state->ar; |
| struct ath10k_ce_ring *src_ring = ce_state->src_ring; |
| struct ce_desc *desc, *sdesc; |
| unsigned int nentries_mask = src_ring->nentries_mask; |
| unsigned int sw_index = src_ring->sw_index; |
| unsigned int write_index = src_ring->write_index; |
| u32 ctrl_addr = ce_state->ctrl_addr; |
| u32 desc_flags = 0; |
| int ret = 0; |
| |
| if (nbytes > ce_state->src_sz_max) |
| ath10k_warn("%s: send more we can (nbytes: %d, max: %d)\n", |
| __func__, nbytes, ce_state->src_sz_max); |
| |
| ret = ath10k_pci_wake(ar); |
| if (ret) |
| return ret; |
| |
| if (unlikely(CE_RING_DELTA(nentries_mask, |
| write_index, sw_index - 1) <= 0)) { |
| ret = -ENOSR; |
| goto exit; |
| } |
| |
| desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space, |
| write_index); |
| sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index); |
| |
| desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA); |
| |
| if (flags & CE_SEND_FLAG_GATHER) |
| desc_flags |= CE_DESC_FLAGS_GATHER; |
| if (flags & CE_SEND_FLAG_BYTE_SWAP) |
| desc_flags |= CE_DESC_FLAGS_BYTE_SWAP; |
| |
| sdesc->addr = __cpu_to_le32(buffer); |
| sdesc->nbytes = __cpu_to_le16(nbytes); |
| sdesc->flags = __cpu_to_le16(desc_flags); |
| |
| *desc = *sdesc; |
| |
| src_ring->per_transfer_context[write_index] = per_transfer_context; |
| |
| /* Update Source Ring Write Index */ |
| write_index = CE_RING_IDX_INCR(nentries_mask, write_index); |
| |
| /* WORKAROUND */ |
| if (!(flags & CE_SEND_FLAG_GATHER)) |
| ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index); |
| |
| src_ring->write_index = write_index; |
| exit: |
| ath10k_pci_sleep(ar); |
| return ret; |
| } |
| |
| void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe) |
| { |
| struct ath10k *ar = pipe->ar; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_ce_ring *src_ring = pipe->src_ring; |
| u32 ctrl_addr = pipe->ctrl_addr; |
| |
| lockdep_assert_held(&ar_pci->ce_lock); |
| |
| /* |
| * This function must be called only if there is an incomplete |
| * scatter-gather transfer (before index register is updated) |
| * that needs to be cleaned up. |
| */ |
| if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index)) |
| return; |
| |
| if (WARN_ON_ONCE(src_ring->write_index == |
| ath10k_ce_src_ring_write_index_get(ar, ctrl_addr))) |
| return; |
| |
| src_ring->write_index--; |
| src_ring->write_index &= src_ring->nentries_mask; |
| |
| src_ring->per_transfer_context[src_ring->write_index] = NULL; |
| } |
| |
| int ath10k_ce_send(struct ath10k_ce_pipe *ce_state, |
| void *per_transfer_context, |
| u32 buffer, |
| unsigned int nbytes, |
| unsigned int transfer_id, |
| unsigned int flags) |
| { |
| struct ath10k *ar = ce_state->ar; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret; |
| |
| spin_lock_bh(&ar_pci->ce_lock); |
| ret = ath10k_ce_send_nolock(ce_state, per_transfer_context, |
| buffer, nbytes, transfer_id, flags); |
| spin_unlock_bh(&ar_pci->ce_lock); |
| |
| return ret; |
| } |
| |
| int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe) |
| { |
| struct ath10k *ar = pipe->ar; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int delta; |
| |
| spin_lock_bh(&ar_pci->ce_lock); |
| delta = CE_RING_DELTA(pipe->src_ring->nentries_mask, |
| pipe->src_ring->write_index, |
| pipe->src_ring->sw_index - 1); |
| spin_unlock_bh(&ar_pci->ce_lock); |
| |
| return delta; |
| } |
| |
| int ath10k_ce_recv_buf_enqueue(struct ath10k_ce_pipe *ce_state, |
| void *per_recv_context, |
| u32 buffer) |
| { |
| struct ath10k_ce_ring *dest_ring = ce_state->dest_ring; |
| u32 ctrl_addr = ce_state->ctrl_addr; |
| struct ath10k *ar = ce_state->ar; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| unsigned int nentries_mask = dest_ring->nentries_mask; |
| unsigned int write_index; |
| unsigned int sw_index; |
| int ret; |
| |
| spin_lock_bh(&ar_pci->ce_lock); |
| write_index = dest_ring->write_index; |
| sw_index = dest_ring->sw_index; |
| |
| ret = ath10k_pci_wake(ar); |
| if (ret) |
| goto out; |
| |
| if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) > 0) { |
| struct ce_desc *base = dest_ring->base_addr_owner_space; |
| struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index); |
| |
| /* Update destination descriptor */ |
| desc->addr = __cpu_to_le32(buffer); |
| desc->nbytes = 0; |
| |
| dest_ring->per_transfer_context[write_index] = |
| per_recv_context; |
| |
| /* Update Destination Ring Write Index */ |
| write_index = CE_RING_IDX_INCR(nentries_mask, write_index); |
| ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index); |
| dest_ring->write_index = write_index; |
| ret = 0; |
| } else { |
| ret = -EIO; |
| } |
| ath10k_pci_sleep(ar); |
| |
| out: |
| spin_unlock_bh(&ar_pci->ce_lock); |
| |
| return ret; |
| } |
| |
| /* |
| * Guts of ath10k_ce_completed_recv_next. |
| * The caller takes responsibility for any necessary locking. |
| */ |
| static int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state, |
| void **per_transfer_contextp, |
| u32 *bufferp, |
| unsigned int *nbytesp, |
| unsigned int *transfer_idp, |
| unsigned int *flagsp) |
| { |
| struct ath10k_ce_ring *dest_ring = ce_state->dest_ring; |
| unsigned int nentries_mask = dest_ring->nentries_mask; |
| unsigned int sw_index = dest_ring->sw_index; |
| |
| struct ce_desc *base = dest_ring->base_addr_owner_space; |
| struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index); |
| struct ce_desc sdesc; |
| u16 nbytes; |
| |
| /* Copy in one go for performance reasons */ |
| sdesc = *desc; |
| |
| nbytes = __le16_to_cpu(sdesc.nbytes); |
| if (nbytes == 0) { |
| /* |
| * This closes a relatively unusual race where the Host |
| * sees the updated DRRI before the update to the |
| * corresponding descriptor has completed. We treat this |
| * as a descriptor that is not yet done. |
| */ |
| return -EIO; |
| } |
| |
| desc->nbytes = 0; |
| |
| /* Return data from completed destination descriptor */ |
| *bufferp = __le32_to_cpu(sdesc.addr); |
| *nbytesp = nbytes; |
| *transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA); |
| |
| if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP) |
| *flagsp = CE_RECV_FLAG_SWAPPED; |
| else |
| *flagsp = 0; |
| |
| if (per_transfer_contextp) |
| *per_transfer_contextp = |
| dest_ring->per_transfer_context[sw_index]; |
| |
| /* sanity */ |
| dest_ring->per_transfer_context[sw_index] = NULL; |
| |
| /* Update sw_index */ |
| sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); |
| dest_ring->sw_index = sw_index; |
| |
| return 0; |
| } |
| |
| int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state, |
| void **per_transfer_contextp, |
| u32 *bufferp, |
| unsigned int *nbytesp, |
| unsigned int *transfer_idp, |
| unsigned int *flagsp) |
| { |
| struct ath10k *ar = ce_state->ar; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret; |
| |
| spin_lock_bh(&ar_pci->ce_lock); |
| ret = ath10k_ce_completed_recv_next_nolock(ce_state, |
| per_transfer_contextp, |
| bufferp, nbytesp, |
| transfer_idp, flagsp); |
| spin_unlock_bh(&ar_pci->ce_lock); |
| |
| return ret; |
| } |
| |
| int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state, |
| void **per_transfer_contextp, |
| u32 *bufferp) |
| { |
| struct ath10k_ce_ring *dest_ring; |
| unsigned int nentries_mask; |
| unsigned int sw_index; |
| unsigned int write_index; |
| int ret; |
| struct ath10k *ar; |
| struct ath10k_pci *ar_pci; |
| |
| dest_ring = ce_state->dest_ring; |
| |
| if (!dest_ring) |
| return -EIO; |
| |
| ar = ce_state->ar; |
| ar_pci = ath10k_pci_priv(ar); |
| |
| spin_lock_bh(&ar_pci->ce_lock); |
| |
| nentries_mask = dest_ring->nentries_mask; |
| sw_index = dest_ring->sw_index; |
| write_index = dest_ring->write_index; |
| if (write_index != sw_index) { |
| struct ce_desc *base = dest_ring->base_addr_owner_space; |
| struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index); |
| |
| /* Return data from completed destination descriptor */ |
| *bufferp = __le32_to_cpu(desc->addr); |
| |
| if (per_transfer_contextp) |
| *per_transfer_contextp = |
| dest_ring->per_transfer_context[sw_index]; |
| |
| /* sanity */ |
| dest_ring->per_transfer_context[sw_index] = NULL; |
| |
| /* Update sw_index */ |
| sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); |
| dest_ring->sw_index = sw_index; |
| ret = 0; |
| } else { |
| ret = -EIO; |
| } |
| |
| spin_unlock_bh(&ar_pci->ce_lock); |
| |
| return ret; |
| } |
| |
| /* |
| * Guts of ath10k_ce_completed_send_next. |
| * The caller takes responsibility for any necessary locking. |
| */ |
| static int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state, |
| void **per_transfer_contextp, |
| u32 *bufferp, |
| unsigned int *nbytesp, |
| unsigned int *transfer_idp) |
| { |
| struct ath10k_ce_ring *src_ring = ce_state->src_ring; |
| u32 ctrl_addr = ce_state->ctrl_addr; |
| struct ath10k *ar = ce_state->ar; |
| unsigned int nentries_mask = src_ring->nentries_mask; |
| unsigned int sw_index = src_ring->sw_index; |
| struct ce_desc *sdesc, *sbase; |
| unsigned int read_index; |
| int ret; |
| |
| if (src_ring->hw_index == sw_index) { |
| /* |
| * The SW completion index has caught up with the cached |
| * version of the HW completion index. |
| * Update the cached HW completion index to see whether |
| * the SW has really caught up to the HW, or if the cached |
| * value of the HW index has become stale. |
| */ |
| |
| ret = ath10k_pci_wake(ar); |
| if (ret) |
| return ret; |
| |
| read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr); |
| if (read_index == 0xffffffff) |
| return -ENODEV; |
| |
| read_index &= nentries_mask; |
| src_ring->hw_index = read_index; |
| |
| ath10k_pci_sleep(ar); |
| } |
| |
| read_index = src_ring->hw_index; |
| |
| if (read_index == sw_index) |
| return -EIO; |
| |
| sbase = src_ring->shadow_base; |
| sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index); |
| |
| /* Return data from completed source descriptor */ |
| *bufferp = __le32_to_cpu(sdesc->addr); |
| *nbytesp = __le16_to_cpu(sdesc->nbytes); |
| *transfer_idp = MS(__le16_to_cpu(sdesc->flags), |
| CE_DESC_FLAGS_META_DATA); |
| |
| if (per_transfer_contextp) |
| *per_transfer_contextp = |
| src_ring->per_transfer_context[sw_index]; |
| |
| /* sanity */ |
| src_ring->per_transfer_context[sw_index] = NULL; |
| |
| /* Update sw_index */ |
| sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); |
| src_ring->sw_index = sw_index; |
| |
| return 0; |
| } |
| |
| /* NB: Modeled after ath10k_ce_completed_send_next */ |
| int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state, |
| void **per_transfer_contextp, |
| u32 *bufferp, |
| unsigned int *nbytesp, |
| unsigned int *transfer_idp) |
| { |
| struct ath10k_ce_ring *src_ring; |
| unsigned int nentries_mask; |
| unsigned int sw_index; |
| unsigned int write_index; |
| int ret; |
| struct ath10k *ar; |
| struct ath10k_pci *ar_pci; |
| |
| src_ring = ce_state->src_ring; |
| |
| if (!src_ring) |
| return -EIO; |
| |
| ar = ce_state->ar; |
| ar_pci = ath10k_pci_priv(ar); |
| |
| spin_lock_bh(&ar_pci->ce_lock); |
| |
| nentries_mask = src_ring->nentries_mask; |
| sw_index = src_ring->sw_index; |
| write_index = src_ring->write_index; |
| |
| if (write_index != sw_index) { |
| struct ce_desc *base = src_ring->base_addr_owner_space; |
| struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index); |
| |
| /* Return data from completed source descriptor */ |
| *bufferp = __le32_to_cpu(desc->addr); |
| *nbytesp = __le16_to_cpu(desc->nbytes); |
| *transfer_idp = MS(__le16_to_cpu(desc->flags), |
| CE_DESC_FLAGS_META_DATA); |
| |
| if (per_transfer_contextp) |
| *per_transfer_contextp = |
| src_ring->per_transfer_context[sw_index]; |
| |
| /* sanity */ |
| src_ring->per_transfer_context[sw_index] = NULL; |
| |
| /* Update sw_index */ |
| sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); |
| src_ring->sw_index = sw_index; |
| ret = 0; |
| } else { |
| ret = -EIO; |
| } |
| |
| spin_unlock_bh(&ar_pci->ce_lock); |
| |
| return ret; |
| } |
| |
| int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state, |
| void **per_transfer_contextp, |
| u32 *bufferp, |
| unsigned int *nbytesp, |
| unsigned int *transfer_idp) |
| { |
| struct ath10k *ar = ce_state->ar; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| int ret; |
| |
| spin_lock_bh(&ar_pci->ce_lock); |
| ret = ath10k_ce_completed_send_next_nolock(ce_state, |
| per_transfer_contextp, |
| bufferp, nbytesp, |
| transfer_idp); |
| spin_unlock_bh(&ar_pci->ce_lock); |
| |
| return ret; |
| } |
| |
| /* |
| * Guts of interrupt handler for per-engine interrupts on a particular CE. |
| * |
| * Invokes registered callbacks for recv_complete, |
| * send_complete, and watermarks. |
| */ |
| void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id]; |
| u32 ctrl_addr = ce_state->ctrl_addr; |
| int ret; |
| |
| ret = ath10k_pci_wake(ar); |
| if (ret) |
| return; |
| |
| spin_lock_bh(&ar_pci->ce_lock); |
| |
| /* Clear the copy-complete interrupts that will be handled here. */ |
| ath10k_ce_engine_int_status_clear(ar, ctrl_addr, |
| HOST_IS_COPY_COMPLETE_MASK); |
| |
| spin_unlock_bh(&ar_pci->ce_lock); |
| |
| if (ce_state->recv_cb) |
| ce_state->recv_cb(ce_state); |
| |
| if (ce_state->send_cb) |
| ce_state->send_cb(ce_state); |
| |
| spin_lock_bh(&ar_pci->ce_lock); |
| |
| /* |
| * Misc CE interrupts are not being handled, but still need |
| * to be cleared. |
| */ |
| ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK); |
| |
| spin_unlock_bh(&ar_pci->ce_lock); |
| ath10k_pci_sleep(ar); |
| } |
| |
| /* |
| * Handler for per-engine interrupts on ALL active CEs. |
| * This is used in cases where the system is sharing a |
| * single interrput for all CEs |
| */ |
| |
| void ath10k_ce_per_engine_service_any(struct ath10k *ar) |
| { |
| int ce_id, ret; |
| u32 intr_summary; |
| |
| ret = ath10k_pci_wake(ar); |
| if (ret) |
| return; |
| |
| intr_summary = CE_INTERRUPT_SUMMARY(ar); |
| |
| for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) { |
| if (intr_summary & (1 << ce_id)) |
| intr_summary &= ~(1 << ce_id); |
| else |
| /* no intr pending on this CE */ |
| continue; |
| |
| ath10k_ce_per_engine_service(ar, ce_id); |
| } |
| |
| ath10k_pci_sleep(ar); |
| } |
| |
| /* |
| * Adjust interrupts for the copy complete handler. |
| * If it's needed for either send or recv, then unmask |
| * this interrupt; otherwise, mask it. |
| * |
| * Called with ce_lock held. |
| */ |
| static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state, |
| int disable_copy_compl_intr) |
| { |
| u32 ctrl_addr = ce_state->ctrl_addr; |
| struct ath10k *ar = ce_state->ar; |
| int ret; |
| |
| ret = ath10k_pci_wake(ar); |
| if (ret) |
| return; |
| |
| if ((!disable_copy_compl_intr) && |
| (ce_state->send_cb || ce_state->recv_cb)) |
| ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr); |
| else |
| ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr); |
| |
| ath10k_ce_watermark_intr_disable(ar, ctrl_addr); |
| |
| ath10k_pci_sleep(ar); |
| } |
| |
| int ath10k_ce_disable_interrupts(struct ath10k *ar) |
| { |
| int ce_id, ret; |
| |
| ret = ath10k_pci_wake(ar); |
| if (ret) |
| return ret; |
| |
| for (ce_id = 0; ce_id < CE_COUNT; ce_id++) { |
| u32 ctrl_addr = ath10k_ce_base_address(ce_id); |
| |
| ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr); |
| ath10k_ce_error_intr_disable(ar, ctrl_addr); |
| ath10k_ce_watermark_intr_disable(ar, ctrl_addr); |
| } |
| |
| ath10k_pci_sleep(ar); |
| |
| return 0; |
| } |
| |
| void ath10k_ce_send_cb_register(struct ath10k_ce_pipe *ce_state, |
| void (*send_cb)(struct ath10k_ce_pipe *), |
| int disable_interrupts) |
| { |
| struct ath10k *ar = ce_state->ar; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| spin_lock_bh(&ar_pci->ce_lock); |
| ce_state->send_cb = send_cb; |
| ath10k_ce_per_engine_handler_adjust(ce_state, disable_interrupts); |
| spin_unlock_bh(&ar_pci->ce_lock); |
| } |
| |
| void ath10k_ce_recv_cb_register(struct ath10k_ce_pipe *ce_state, |
| void (*recv_cb)(struct ath10k_ce_pipe *)) |
| { |
| struct ath10k *ar = ce_state->ar; |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| |
| spin_lock_bh(&ar_pci->ce_lock); |
| ce_state->recv_cb = recv_cb; |
| ath10k_ce_per_engine_handler_adjust(ce_state, 0); |
| spin_unlock_bh(&ar_pci->ce_lock); |
| } |
| |
| static int ath10k_ce_init_src_ring(struct ath10k *ar, |
| unsigned int ce_id, |
| const struct ce_attr *attr) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id]; |
| struct ath10k_ce_ring *src_ring = ce_state->src_ring; |
| u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id); |
| |
| nentries = roundup_pow_of_two(attr->src_nentries); |
| |
| memset(src_ring->per_transfer_context, 0, |
| nentries * sizeof(*src_ring->per_transfer_context)); |
| |
| src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr); |
| src_ring->sw_index &= src_ring->nentries_mask; |
| src_ring->hw_index = src_ring->sw_index; |
| |
| src_ring->write_index = |
| ath10k_ce_src_ring_write_index_get(ar, ctrl_addr); |
| src_ring->write_index &= src_ring->nentries_mask; |
| |
| ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, |
| src_ring->base_addr_ce_space); |
| ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries); |
| ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max); |
| ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0); |
| ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0); |
| ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries); |
| |
| ath10k_dbg(ATH10K_DBG_BOOT, |
| "boot init ce src ring id %d entries %d base_addr %p\n", |
| ce_id, nentries, src_ring->base_addr_owner_space); |
| |
| return 0; |
| } |
| |
| static int ath10k_ce_init_dest_ring(struct ath10k *ar, |
| unsigned int ce_id, |
| const struct ce_attr *attr) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id]; |
| struct ath10k_ce_ring *dest_ring = ce_state->dest_ring; |
| u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id); |
| |
| nentries = roundup_pow_of_two(attr->dest_nentries); |
| |
| memset(dest_ring->per_transfer_context, 0, |
| nentries * sizeof(*dest_ring->per_transfer_context)); |
| |
| dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr); |
| dest_ring->sw_index &= dest_ring->nentries_mask; |
| dest_ring->write_index = |
| ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr); |
| dest_ring->write_index &= dest_ring->nentries_mask; |
| |
| ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, |
| dest_ring->base_addr_ce_space); |
| ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries); |
| ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0); |
| ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0); |
| ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries); |
| |
| ath10k_dbg(ATH10K_DBG_BOOT, |
| "boot ce dest ring id %d entries %d base_addr %p\n", |
| ce_id, nentries, dest_ring->base_addr_owner_space); |
| |
| return 0; |
| } |
| |
| static struct ath10k_ce_ring * |
| ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id, |
| const struct ce_attr *attr) |
| { |
| struct ath10k_ce_ring *src_ring; |
| u32 nentries = attr->src_nentries; |
| dma_addr_t base_addr; |
| |
| nentries = roundup_pow_of_two(nentries); |
| |
| src_ring = kzalloc(sizeof(*src_ring) + |
| (nentries * |
| sizeof(*src_ring->per_transfer_context)), |
| GFP_KERNEL); |
| if (src_ring == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| src_ring->nentries = nentries; |
| src_ring->nentries_mask = nentries - 1; |
| |
| /* |
| * Legacy platforms that do not support cache |
| * coherent DMA are unsupported |
| */ |
| src_ring->base_addr_owner_space_unaligned = |
| dma_alloc_coherent(ar->dev, |
| (nentries * sizeof(struct ce_desc) + |
| CE_DESC_RING_ALIGN), |
| &base_addr, GFP_KERNEL); |
| if (!src_ring->base_addr_owner_space_unaligned) { |
| kfree(src_ring); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| src_ring->base_addr_ce_space_unaligned = base_addr; |
| |
| src_ring->base_addr_owner_space = PTR_ALIGN( |
| src_ring->base_addr_owner_space_unaligned, |
| CE_DESC_RING_ALIGN); |
| src_ring->base_addr_ce_space = ALIGN( |
| src_ring->base_addr_ce_space_unaligned, |
| CE_DESC_RING_ALIGN); |
| |
| /* |
| * Also allocate a shadow src ring in regular |
| * mem to use for faster access. |
| */ |
| src_ring->shadow_base_unaligned = |
| kmalloc((nentries * sizeof(struct ce_desc) + |
| CE_DESC_RING_ALIGN), GFP_KERNEL); |
| if (!src_ring->shadow_base_unaligned) { |
| dma_free_coherent(ar->dev, |
| (nentries * sizeof(struct ce_desc) + |
| CE_DESC_RING_ALIGN), |
| src_ring->base_addr_owner_space, |
| src_ring->base_addr_ce_space); |
| kfree(src_ring); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| src_ring->shadow_base = PTR_ALIGN( |
| src_ring->shadow_base_unaligned, |
| CE_DESC_RING_ALIGN); |
| |
| return src_ring; |
| } |
| |
| static struct ath10k_ce_ring * |
| ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id, |
| const struct ce_attr *attr) |
| { |
| struct ath10k_ce_ring *dest_ring; |
| u32 nentries; |
| dma_addr_t base_addr; |
| |
| nentries = roundup_pow_of_two(attr->dest_nentries); |
| |
| dest_ring = kzalloc(sizeof(*dest_ring) + |
| (nentries * |
| sizeof(*dest_ring->per_transfer_context)), |
| GFP_KERNEL); |
| if (dest_ring == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| dest_ring->nentries = nentries; |
| dest_ring->nentries_mask = nentries - 1; |
| |
| /* |
| * Legacy platforms that do not support cache |
| * coherent DMA are unsupported |
| */ |
| dest_ring->base_addr_owner_space_unaligned = |
| dma_alloc_coherent(ar->dev, |
| (nentries * sizeof(struct ce_desc) + |
| CE_DESC_RING_ALIGN), |
| &base_addr, GFP_KERNEL); |
| if (!dest_ring->base_addr_owner_space_unaligned) { |
| kfree(dest_ring); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| dest_ring->base_addr_ce_space_unaligned = base_addr; |
| |
| /* |
| * Correctly initialize memory to 0 to prevent garbage |
| * data crashing system when download firmware |
| */ |
| memset(dest_ring->base_addr_owner_space_unaligned, 0, |
| nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN); |
| |
| dest_ring->base_addr_owner_space = PTR_ALIGN( |
| dest_ring->base_addr_owner_space_unaligned, |
| CE_DESC_RING_ALIGN); |
| dest_ring->base_addr_ce_space = ALIGN( |
| dest_ring->base_addr_ce_space_unaligned, |
| CE_DESC_RING_ALIGN); |
| |
| return dest_ring; |
| } |
| |
| /* |
| * Initialize a Copy Engine based on caller-supplied attributes. |
| * This may be called once to initialize both source and destination |
| * rings or it may be called twice for separate source and destination |
| * initialization. It may be that only one side or the other is |
| * initialized by software/firmware. |
| */ |
| int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id, |
| const struct ce_attr *attr) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id]; |
| int ret; |
| |
| /* |
| * Make sure there's enough CE ringbuffer entries for HTT TX to avoid |
| * additional TX locking checks. |
| * |
| * For the lack of a better place do the check here. |
| */ |
| BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC > |
| (CE_HTT_H2T_MSG_SRC_NENTRIES - 1)); |
| BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC > |
| (CE_HTT_H2T_MSG_SRC_NENTRIES - 1)); |
| |
| ret = ath10k_pci_wake(ar); |
| if (ret) |
| return ret; |
| |
| spin_lock_bh(&ar_pci->ce_lock); |
| ce_state->ar = ar; |
| ce_state->id = ce_id; |
| ce_state->ctrl_addr = ath10k_ce_base_address(ce_id); |
| ce_state->attr_flags = attr->flags; |
| ce_state->src_sz_max = attr->src_sz_max; |
| spin_unlock_bh(&ar_pci->ce_lock); |
| |
| if (attr->src_nentries) { |
| ret = ath10k_ce_init_src_ring(ar, ce_id, attr); |
| if (ret) { |
| ath10k_err("Failed to initialize CE src ring for ID: %d (%d)\n", |
| ce_id, ret); |
| goto out; |
| } |
| } |
| |
| if (attr->dest_nentries) { |
| ret = ath10k_ce_init_dest_ring(ar, ce_id, attr); |
| if (ret) { |
| ath10k_err("Failed to initialize CE dest ring for ID: %d (%d)\n", |
| ce_id, ret); |
| goto out; |
| } |
| } |
| |
| out: |
| ath10k_pci_sleep(ar); |
| return ret; |
| } |
| |
| static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id) |
| { |
| u32 ctrl_addr = ath10k_ce_base_address(ce_id); |
| |
| ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0); |
| ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0); |
| ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0); |
| ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0); |
| } |
| |
| static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id) |
| { |
| u32 ctrl_addr = ath10k_ce_base_address(ce_id); |
| |
| ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0); |
| ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0); |
| ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0); |
| } |
| |
| void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id) |
| { |
| int ret; |
| |
| ret = ath10k_pci_wake(ar); |
| if (ret) |
| return; |
| |
| ath10k_ce_deinit_src_ring(ar, ce_id); |
| ath10k_ce_deinit_dest_ring(ar, ce_id); |
| |
| ath10k_pci_sleep(ar); |
| } |
| |
| int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id, |
| const struct ce_attr *attr) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id]; |
| int ret; |
| |
| if (attr->src_nentries) { |
| ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr); |
| if (IS_ERR(ce_state->src_ring)) { |
| ret = PTR_ERR(ce_state->src_ring); |
| ath10k_err("failed to allocate copy engine source ring %d: %d\n", |
| ce_id, ret); |
| ce_state->src_ring = NULL; |
| return ret; |
| } |
| } |
| |
| if (attr->dest_nentries) { |
| ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id, |
| attr); |
| if (IS_ERR(ce_state->dest_ring)) { |
| ret = PTR_ERR(ce_state->dest_ring); |
| ath10k_err("failed to allocate copy engine destination ring %d: %d\n", |
| ce_id, ret); |
| ce_state->dest_ring = NULL; |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id) |
| { |
| struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); |
| struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id]; |
| |
| if (ce_state->src_ring) { |
| kfree(ce_state->src_ring->shadow_base_unaligned); |
| dma_free_coherent(ar->dev, |
| (ce_state->src_ring->nentries * |
| sizeof(struct ce_desc) + |
| CE_DESC_RING_ALIGN), |
| ce_state->src_ring->base_addr_owner_space, |
| ce_state->src_ring->base_addr_ce_space); |
| kfree(ce_state->src_ring); |
| } |
| |
| if (ce_state->dest_ring) { |
| dma_free_coherent(ar->dev, |
| (ce_state->dest_ring->nentries * |
| sizeof(struct ce_desc) + |
| CE_DESC_RING_ALIGN), |
| ce_state->dest_ring->base_addr_owner_space, |
| ce_state->dest_ring->base_addr_ce_space); |
| kfree(ce_state->dest_ring); |
| } |
| |
| ce_state->src_ring = NULL; |
| ce_state->dest_ring = NULL; |
| } |