| /* |
| ** SMP Support |
| ** |
| ** Copyright (C) 1999 Walt Drummond <drummond@valinux.com> |
| ** Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com> |
| ** Copyright (C) 2001,2004 Grant Grundler <grundler@parisc-linux.org> |
| ** |
| ** Lots of stuff stolen from arch/alpha/kernel/smp.c |
| ** ...and then parisc stole from arch/ia64/kernel/smp.c. Thanks David! :^) |
| ** |
| ** Thanks to John Curry and Ullas Ponnadi. I learned alot from their work. |
| ** -grant (1/12/2001) |
| ** |
| ** This program is free software; you can redistribute it and/or modify |
| ** it under the terms of the GNU General Public License as published by |
| ** the Free Software Foundation; either version 2 of the License, or |
| ** (at your option) any later version. |
| */ |
| #undef ENTRY_SYS_CPUS /* syscall support for iCOD-like functionality */ |
| |
| #include <linux/config.h> |
| |
| #include <linux/types.h> |
| #include <linux/spinlock.h> |
| #include <linux/slab.h> |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/smp.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/mm.h> |
| #include <linux/delay.h> |
| #include <linux/bitops.h> |
| |
| #include <asm/system.h> |
| #include <asm/atomic.h> |
| #include <asm/current.h> |
| #include <asm/delay.h> |
| #include <asm/pgalloc.h> /* for flush_tlb_all() proto/macro */ |
| |
| #include <asm/io.h> |
| #include <asm/irq.h> /* for CPU_IRQ_REGION and friends */ |
| #include <asm/mmu_context.h> |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/processor.h> |
| #include <asm/ptrace.h> |
| #include <asm/unistd.h> |
| #include <asm/cacheflush.h> |
| |
| #define kDEBUG 0 |
| |
| DEFINE_SPINLOCK(smp_lock); |
| |
| volatile struct task_struct *smp_init_current_idle_task; |
| |
| static volatile int cpu_now_booting = 0; /* track which CPU is booting */ |
| |
| static int parisc_max_cpus = 1; |
| |
| /* online cpus are ones that we've managed to bring up completely |
| * possible cpus are all valid cpu |
| * present cpus are all detected cpu |
| * |
| * On startup we bring up the "possible" cpus. Since we discover |
| * CPUs later, we add them as hotplug, so the possible cpu mask is |
| * empty in the beginning. |
| */ |
| |
| cpumask_t cpu_online_map = CPU_MASK_NONE; /* Bitmap of online CPUs */ |
| cpumask_t cpu_possible_map = CPU_MASK_ALL; /* Bitmap of Present CPUs */ |
| |
| EXPORT_SYMBOL(cpu_online_map); |
| EXPORT_SYMBOL(cpu_possible_map); |
| |
| |
| struct smp_call_struct { |
| void (*func) (void *info); |
| void *info; |
| long wait; |
| atomic_t unstarted_count; |
| atomic_t unfinished_count; |
| }; |
| static volatile struct smp_call_struct *smp_call_function_data; |
| |
| enum ipi_message_type { |
| IPI_NOP=0, |
| IPI_RESCHEDULE=1, |
| IPI_CALL_FUNC, |
| IPI_CPU_START, |
| IPI_CPU_STOP, |
| IPI_CPU_TEST |
| }; |
| |
| |
| /********** SMP inter processor interrupt and communication routines */ |
| |
| #undef PER_CPU_IRQ_REGION |
| #ifdef PER_CPU_IRQ_REGION |
| /* XXX REVISIT Ignore for now. |
| ** *May* need this "hook" to register IPI handler |
| ** once we have perCPU ExtIntr switch tables. |
| */ |
| static void |
| ipi_init(int cpuid) |
| { |
| |
| /* If CPU is present ... */ |
| #ifdef ENTRY_SYS_CPUS |
| /* *and* running (not stopped) ... */ |
| #error iCOD support wants state checked here. |
| #endif |
| |
| #error verify IRQ_OFFSET(IPI_IRQ) is ipi_interrupt() in new IRQ region |
| |
| if(cpu_online(cpuid) ) |
| { |
| switch_to_idle_task(current); |
| } |
| |
| return; |
| } |
| #endif |
| |
| |
| /* |
| ** Yoink this CPU from the runnable list... |
| ** |
| */ |
| static void |
| halt_processor(void) |
| { |
| #ifdef ENTRY_SYS_CPUS |
| #error halt_processor() needs rework |
| /* |
| ** o migrate I/O interrupts off this CPU. |
| ** o leave IPI enabled - __cli() will disable IPI. |
| ** o leave CPU in online map - just change the state |
| */ |
| cpu_data[this_cpu].state = STATE_STOPPED; |
| mark_bh(IPI_BH); |
| #else |
| /* REVISIT : redirect I/O Interrupts to another CPU? */ |
| /* REVISIT : does PM *know* this CPU isn't available? */ |
| cpu_clear(smp_processor_id(), cpu_online_map); |
| local_irq_disable(); |
| for (;;) |
| ; |
| #endif |
| } |
| |
| |
| irqreturn_t |
| ipi_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| int this_cpu = smp_processor_id(); |
| struct cpuinfo_parisc *p = &cpu_data[this_cpu]; |
| unsigned long ops; |
| unsigned long flags; |
| |
| /* Count this now; we may make a call that never returns. */ |
| p->ipi_count++; |
| |
| mb(); /* Order interrupt and bit testing. */ |
| |
| for (;;) { |
| spin_lock_irqsave(&(p->lock),flags); |
| ops = p->pending_ipi; |
| p->pending_ipi = 0; |
| spin_unlock_irqrestore(&(p->lock),flags); |
| |
| mb(); /* Order bit clearing and data access. */ |
| |
| if (!ops) |
| break; |
| |
| while (ops) { |
| unsigned long which = ffz(~ops); |
| |
| switch (which) { |
| case IPI_RESCHEDULE: |
| #if (kDEBUG>=100) |
| printk(KERN_DEBUG "CPU%d IPI_RESCHEDULE\n",this_cpu); |
| #endif /* kDEBUG */ |
| ops &= ~(1 << IPI_RESCHEDULE); |
| /* |
| * Reschedule callback. Everything to be |
| * done is done by the interrupt return path. |
| */ |
| break; |
| |
| case IPI_CALL_FUNC: |
| #if (kDEBUG>=100) |
| printk(KERN_DEBUG "CPU%d IPI_CALL_FUNC\n",this_cpu); |
| #endif /* kDEBUG */ |
| ops &= ~(1 << IPI_CALL_FUNC); |
| { |
| volatile struct smp_call_struct *data; |
| void (*func)(void *info); |
| void *info; |
| int wait; |
| |
| data = smp_call_function_data; |
| func = data->func; |
| info = data->info; |
| wait = data->wait; |
| |
| mb(); |
| atomic_dec ((atomic_t *)&data->unstarted_count); |
| |
| /* At this point, *data can't |
| * be relied upon. |
| */ |
| |
| (*func)(info); |
| |
| /* Notify the sending CPU that the |
| * task is done. |
| */ |
| mb(); |
| if (wait) |
| atomic_dec ((atomic_t *)&data->unfinished_count); |
| } |
| break; |
| |
| case IPI_CPU_START: |
| #if (kDEBUG>=100) |
| printk(KERN_DEBUG "CPU%d IPI_CPU_START\n",this_cpu); |
| #endif /* kDEBUG */ |
| ops &= ~(1 << IPI_CPU_START); |
| #ifdef ENTRY_SYS_CPUS |
| p->state = STATE_RUNNING; |
| #endif |
| break; |
| |
| case IPI_CPU_STOP: |
| #if (kDEBUG>=100) |
| printk(KERN_DEBUG "CPU%d IPI_CPU_STOP\n",this_cpu); |
| #endif /* kDEBUG */ |
| ops &= ~(1 << IPI_CPU_STOP); |
| #ifdef ENTRY_SYS_CPUS |
| #else |
| halt_processor(); |
| #endif |
| break; |
| |
| case IPI_CPU_TEST: |
| #if (kDEBUG>=100) |
| printk(KERN_DEBUG "CPU%d is alive!\n",this_cpu); |
| #endif /* kDEBUG */ |
| ops &= ~(1 << IPI_CPU_TEST); |
| break; |
| |
| default: |
| printk(KERN_CRIT "Unknown IPI num on CPU%d: %lu\n", |
| this_cpu, which); |
| ops &= ~(1 << which); |
| return IRQ_NONE; |
| } /* Switch */ |
| } /* while (ops) */ |
| } |
| return IRQ_HANDLED; |
| } |
| |
| |
| static inline void |
| ipi_send(int cpu, enum ipi_message_type op) |
| { |
| struct cpuinfo_parisc *p = &cpu_data[cpu]; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&(p->lock),flags); |
| p->pending_ipi |= 1 << op; |
| gsc_writel(IPI_IRQ - CPU_IRQ_BASE, cpu_data[cpu].hpa); |
| spin_unlock_irqrestore(&(p->lock),flags); |
| } |
| |
| |
| static inline void |
| send_IPI_single(int dest_cpu, enum ipi_message_type op) |
| { |
| if (dest_cpu == NO_PROC_ID) { |
| BUG(); |
| return; |
| } |
| |
| ipi_send(dest_cpu, op); |
| } |
| |
| static inline void |
| send_IPI_allbutself(enum ipi_message_type op) |
| { |
| int i; |
| |
| for (i = 0; i < NR_CPUS; i++) { |
| if (cpu_online(i) && i != smp_processor_id()) |
| send_IPI_single(i, op); |
| } |
| } |
| |
| |
| inline void |
| smp_send_stop(void) { send_IPI_allbutself(IPI_CPU_STOP); } |
| |
| static inline void |
| smp_send_start(void) { send_IPI_allbutself(IPI_CPU_START); } |
| |
| void |
| smp_send_reschedule(int cpu) { send_IPI_single(cpu, IPI_RESCHEDULE); } |
| |
| |
| /** |
| * Run a function on all other CPUs. |
| * <func> The function to run. This must be fast and non-blocking. |
| * <info> An arbitrary pointer to pass to the function. |
| * <retry> If true, keep retrying until ready. |
| * <wait> If true, wait until function has completed on other CPUs. |
| * [RETURNS] 0 on success, else a negative status code. |
| * |
| * Does not return until remote CPUs are nearly ready to execute <func> |
| * or have executed. |
| */ |
| |
| int |
| smp_call_function (void (*func) (void *info), void *info, int retry, int wait) |
| { |
| struct smp_call_struct data; |
| unsigned long timeout; |
| static DEFINE_SPINLOCK(lock); |
| int retries = 0; |
| |
| if (num_online_cpus() < 2) |
| return 0; |
| |
| /* Can deadlock when called with interrupts disabled */ |
| WARN_ON(irqs_disabled()); |
| |
| data.func = func; |
| data.info = info; |
| data.wait = wait; |
| atomic_set(&data.unstarted_count, num_online_cpus() - 1); |
| atomic_set(&data.unfinished_count, num_online_cpus() - 1); |
| |
| if (retry) { |
| spin_lock (&lock); |
| while (smp_call_function_data != 0) |
| barrier(); |
| } |
| else { |
| spin_lock (&lock); |
| if (smp_call_function_data) { |
| spin_unlock (&lock); |
| return -EBUSY; |
| } |
| } |
| |
| smp_call_function_data = &data; |
| spin_unlock (&lock); |
| |
| /* Send a message to all other CPUs and wait for them to respond */ |
| send_IPI_allbutself(IPI_CALL_FUNC); |
| |
| retry: |
| /* Wait for response */ |
| timeout = jiffies + HZ; |
| while ( (atomic_read (&data.unstarted_count) > 0) && |
| time_before (jiffies, timeout) ) |
| barrier (); |
| |
| if (atomic_read (&data.unstarted_count) > 0) { |
| printk(KERN_CRIT "SMP CALL FUNCTION TIMED OUT! (cpu=%d), try %d\n", |
| smp_processor_id(), ++retries); |
| goto retry; |
| } |
| /* We either got one or timed out. Release the lock */ |
| |
| mb(); |
| smp_call_function_data = NULL; |
| |
| while (wait && atomic_read (&data.unfinished_count) > 0) |
| barrier (); |
| |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(smp_call_function); |
| |
| /* |
| * Flush all other CPU's tlb and then mine. Do this with on_each_cpu() |
| * as we want to ensure all TLB's flushed before proceeding. |
| */ |
| |
| extern void flush_tlb_all_local(void); |
| |
| void |
| smp_flush_tlb_all(void) |
| { |
| on_each_cpu((void (*)(void *))flush_tlb_all_local, NULL, 1, 1); |
| } |
| |
| |
| void |
| smp_do_timer(struct pt_regs *regs) |
| { |
| int cpu = smp_processor_id(); |
| struct cpuinfo_parisc *data = &cpu_data[cpu]; |
| |
| if (!--data->prof_counter) { |
| data->prof_counter = data->prof_multiplier; |
| update_process_times(user_mode(regs)); |
| } |
| } |
| |
| /* |
| * Called by secondaries to update state and initialize CPU registers. |
| */ |
| static void __init |
| smp_cpu_init(int cpunum) |
| { |
| extern int init_per_cpu(int); /* arch/parisc/kernel/setup.c */ |
| extern void init_IRQ(void); /* arch/parisc/kernel/irq.c */ |
| |
| /* Set modes and Enable floating point coprocessor */ |
| (void) init_per_cpu(cpunum); |
| |
| disable_sr_hashing(); |
| |
| mb(); |
| |
| /* Well, support 2.4 linux scheme as well. */ |
| if (cpu_test_and_set(cpunum, cpu_online_map)) |
| { |
| extern void machine_halt(void); /* arch/parisc.../process.c */ |
| |
| printk(KERN_CRIT "CPU#%d already initialized!\n", cpunum); |
| machine_halt(); |
| } |
| |
| /* Initialise the idle task for this CPU */ |
| atomic_inc(&init_mm.mm_count); |
| current->active_mm = &init_mm; |
| if(current->mm) |
| BUG(); |
| enter_lazy_tlb(&init_mm, current); |
| |
| init_IRQ(); /* make sure no IRQ's are enabled or pending */ |
| } |
| |
| |
| /* |
| * Slaves start using C here. Indirectly called from smp_slave_stext. |
| * Do what start_kernel() and main() do for boot strap processor (aka monarch) |
| */ |
| void __init smp_callin(void) |
| { |
| int slave_id = cpu_now_booting; |
| #if 0 |
| void *istack; |
| #endif |
| |
| smp_cpu_init(slave_id); |
| |
| #if 0 /* NOT WORKING YET - see entry.S */ |
| istack = (void *)__get_free_pages(GFP_KERNEL,ISTACK_ORDER); |
| if (istack == NULL) { |
| printk(KERN_CRIT "Failed to allocate interrupt stack for cpu %d\n",slave_id); |
| BUG(); |
| } |
| mtctl(istack,31); |
| #endif |
| |
| flush_cache_all_local(); /* start with known state */ |
| flush_tlb_all_local(); |
| |
| local_irq_enable(); /* Interrupts have been off until now */ |
| |
| cpu_idle(); /* Wait for timer to schedule some work */ |
| |
| /* NOTREACHED */ |
| panic("smp_callin() AAAAaaaaahhhh....\n"); |
| } |
| |
| /* |
| * Bring one cpu online. |
| */ |
| int __init smp_boot_one_cpu(int cpuid) |
| { |
| struct task_struct *idle; |
| long timeout; |
| |
| /* |
| * Create an idle task for this CPU. Note the address wed* give |
| * to kernel_thread is irrelevant -- it's going to start |
| * where OS_BOOT_RENDEVZ vector in SAL says to start. But |
| * this gets all the other task-y sort of data structures set |
| * up like we wish. We need to pull the just created idle task |
| * off the run queue and stuff it into the init_tasks[] array. |
| * Sheesh . . . |
| */ |
| |
| idle = fork_idle(cpuid); |
| if (IS_ERR(idle)) |
| panic("SMP: fork failed for CPU:%d", cpuid); |
| |
| idle->thread_info->cpu = cpuid; |
| |
| /* Let _start know what logical CPU we're booting |
| ** (offset into init_tasks[],cpu_data[]) |
| */ |
| cpu_now_booting = cpuid; |
| |
| /* |
| ** boot strap code needs to know the task address since |
| ** it also contains the process stack. |
| */ |
| smp_init_current_idle_task = idle ; |
| mb(); |
| |
| printk("Releasing cpu %d now, hpa=%lx\n", cpuid, cpu_data[cpuid].hpa); |
| |
| /* |
| ** This gets PDC to release the CPU from a very tight loop. |
| ** |
| ** From the PA-RISC 2.0 Firmware Architecture Reference Specification: |
| ** "The MEM_RENDEZ vector specifies the location of OS_RENDEZ which |
| ** is executed after receiving the rendezvous signal (an interrupt to |
| ** EIR{0}). MEM_RENDEZ is valid only when it is nonzero and the |
| ** contents of memory are valid." |
| */ |
| gsc_writel(TIMER_IRQ - CPU_IRQ_BASE, cpu_data[cpuid].hpa); |
| mb(); |
| |
| /* |
| * OK, wait a bit for that CPU to finish staggering about. |
| * Slave will set a bit when it reaches smp_cpu_init(). |
| * Once the "monarch CPU" sees the bit change, it can move on. |
| */ |
| for (timeout = 0; timeout < 10000; timeout++) { |
| if(cpu_online(cpuid)) { |
| /* Which implies Slave has started up */ |
| cpu_now_booting = 0; |
| smp_init_current_idle_task = NULL; |
| goto alive ; |
| } |
| udelay(100); |
| barrier(); |
| } |
| |
| put_task_struct(idle); |
| idle = NULL; |
| |
| printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid); |
| return -1; |
| |
| alive: |
| /* Remember the Slave data */ |
| #if (kDEBUG>=100) |
| printk(KERN_DEBUG "SMP: CPU:%d came alive after %ld _us\n", |
| cpuid, timeout * 100); |
| #endif /* kDEBUG */ |
| #ifdef ENTRY_SYS_CPUS |
| cpu_data[cpuid].state = STATE_RUNNING; |
| #endif |
| return 0; |
| } |
| |
| void __devinit smp_prepare_boot_cpu(void) |
| { |
| int bootstrap_processor=cpu_data[0].cpuid; /* CPU ID of BSP */ |
| |
| #ifdef ENTRY_SYS_CPUS |
| cpu_data[0].state = STATE_RUNNING; |
| #endif |
| |
| /* Setup BSP mappings */ |
| printk("SMP: bootstrap CPU ID is %d\n",bootstrap_processor); |
| |
| cpu_set(bootstrap_processor, cpu_online_map); |
| cpu_set(bootstrap_processor, cpu_present_map); |
| } |
| |
| |
| |
| /* |
| ** inventory.c:do_inventory() hasn't yet been run and thus we |
| ** don't 'discover' the additional CPU's until later. |
| */ |
| void __init smp_prepare_cpus(unsigned int max_cpus) |
| { |
| cpus_clear(cpu_present_map); |
| cpu_set(0, cpu_present_map); |
| |
| parisc_max_cpus = max_cpus; |
| if (!max_cpus) |
| printk(KERN_INFO "SMP mode deactivated.\n"); |
| } |
| |
| |
| void smp_cpus_done(unsigned int cpu_max) |
| { |
| return; |
| } |
| |
| |
| int __devinit __cpu_up(unsigned int cpu) |
| { |
| if (cpu != 0 && cpu < parisc_max_cpus) |
| smp_boot_one_cpu(cpu); |
| |
| return cpu_online(cpu) ? 0 : -ENOSYS; |
| } |
| |
| |
| |
| #ifdef ENTRY_SYS_CPUS |
| /* Code goes along with: |
| ** entry.s: ENTRY_NAME(sys_cpus) / * 215, for cpu stat * / |
| */ |
| int sys_cpus(int argc, char **argv) |
| { |
| int i,j=0; |
| extern int current_pid(int cpu); |
| |
| if( argc > 2 ) { |
| printk("sys_cpus:Only one argument supported\n"); |
| return (-1); |
| } |
| if ( argc == 1 ){ |
| |
| #ifdef DUMP_MORE_STATE |
| for(i=0; i<NR_CPUS; i++) { |
| int cpus_per_line = 4; |
| if(cpu_online(i)) { |
| if (j++ % cpus_per_line) |
| printk(" %3d",i); |
| else |
| printk("\n %3d",i); |
| } |
| } |
| printk("\n"); |
| #else |
| printk("\n 0\n"); |
| #endif |
| } else if((argc==2) && !(strcmp(argv[1],"-l"))) { |
| printk("\nCPUSTATE TASK CPUNUM CPUID HARDCPU(HPA)\n"); |
| #ifdef DUMP_MORE_STATE |
| for(i=0;i<NR_CPUS;i++) { |
| if (!cpu_online(i)) |
| continue; |
| if (cpu_data[i].cpuid != NO_PROC_ID) { |
| switch(cpu_data[i].state) { |
| case STATE_RENDEZVOUS: |
| printk("RENDEZVS "); |
| break; |
| case STATE_RUNNING: |
| printk((current_pid(i)!=0) ? "RUNNING " : "IDLING "); |
| break; |
| case STATE_STOPPED: |
| printk("STOPPED "); |
| break; |
| case STATE_HALTED: |
| printk("HALTED "); |
| break; |
| default: |
| printk("%08x?", cpu_data[i].state); |
| break; |
| } |
| if(cpu_online(i)) { |
| printk(" %4d",current_pid(i)); |
| } |
| printk(" %6d",cpu_number_map(i)); |
| printk(" %5d",i); |
| printk(" 0x%lx\n",cpu_data[i].hpa); |
| } |
| } |
| #else |
| printk("\n%s %4d 0 0 --------", |
| (current->pid)?"RUNNING ": "IDLING ",current->pid); |
| #endif |
| } else if ((argc==2) && !(strcmp(argv[1],"-s"))) { |
| #ifdef DUMP_MORE_STATE |
| printk("\nCPUSTATE CPUID\n"); |
| for (i=0;i<NR_CPUS;i++) { |
| if (!cpu_online(i)) |
| continue; |
| if (cpu_data[i].cpuid != NO_PROC_ID) { |
| switch(cpu_data[i].state) { |
| case STATE_RENDEZVOUS: |
| printk("RENDEZVS");break; |
| case STATE_RUNNING: |
| printk((current_pid(i)!=0) ? "RUNNING " : "IDLING"); |
| break; |
| case STATE_STOPPED: |
| printk("STOPPED ");break; |
| case STATE_HALTED: |
| printk("HALTED ");break; |
| default: |
| } |
| printk(" %5d\n",i); |
| } |
| } |
| #else |
| printk("\n%s CPU0",(current->pid==0)?"RUNNING ":"IDLING "); |
| #endif |
| } else { |
| printk("sys_cpus:Unknown request\n"); |
| return (-1); |
| } |
| return 0; |
| } |
| #endif /* ENTRY_SYS_CPUS */ |
| |
| #ifdef CONFIG_PROC_FS |
| int __init |
| setup_profiling_timer(unsigned int multiplier) |
| { |
| return -EINVAL; |
| } |
| #endif |