blob: c6259a8295441a8a6cc81fb8bd828dd052398570 [file] [log] [blame]
/*
* linux/drivers/mmc/host/omap.c
*
* Copyright (C) 2004 Nokia Corporation
* Written by Tuukka Tikkanen and Juha Yrjölä<juha.yrjola@nokia.com>
* Misc hacks here and there by Tony Lindgren <tony@atomide.com>
* Other hacks (DMA, SD, etc) by David Brownell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/timer.h>
#include <linux/omap-dma.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/clk.h>
#include <linux/scatterlist.h>
#include <linux/i2c/tps65010.h>
#include <linux/slab.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <plat/mmc.h>
#include <asm/gpio.h>
#include <plat/dma.h>
#include <plat/fpga.h>
#define OMAP_MMC_REG_CMD 0x00
#define OMAP_MMC_REG_ARGL 0x01
#define OMAP_MMC_REG_ARGH 0x02
#define OMAP_MMC_REG_CON 0x03
#define OMAP_MMC_REG_STAT 0x04
#define OMAP_MMC_REG_IE 0x05
#define OMAP_MMC_REG_CTO 0x06
#define OMAP_MMC_REG_DTO 0x07
#define OMAP_MMC_REG_DATA 0x08
#define OMAP_MMC_REG_BLEN 0x09
#define OMAP_MMC_REG_NBLK 0x0a
#define OMAP_MMC_REG_BUF 0x0b
#define OMAP_MMC_REG_SDIO 0x0d
#define OMAP_MMC_REG_REV 0x0f
#define OMAP_MMC_REG_RSP0 0x10
#define OMAP_MMC_REG_RSP1 0x11
#define OMAP_MMC_REG_RSP2 0x12
#define OMAP_MMC_REG_RSP3 0x13
#define OMAP_MMC_REG_RSP4 0x14
#define OMAP_MMC_REG_RSP5 0x15
#define OMAP_MMC_REG_RSP6 0x16
#define OMAP_MMC_REG_RSP7 0x17
#define OMAP_MMC_REG_IOSR 0x18
#define OMAP_MMC_REG_SYSC 0x19
#define OMAP_MMC_REG_SYSS 0x1a
#define OMAP_MMC_STAT_CARD_ERR (1 << 14)
#define OMAP_MMC_STAT_CARD_IRQ (1 << 13)
#define OMAP_MMC_STAT_OCR_BUSY (1 << 12)
#define OMAP_MMC_STAT_A_EMPTY (1 << 11)
#define OMAP_MMC_STAT_A_FULL (1 << 10)
#define OMAP_MMC_STAT_CMD_CRC (1 << 8)
#define OMAP_MMC_STAT_CMD_TOUT (1 << 7)
#define OMAP_MMC_STAT_DATA_CRC (1 << 6)
#define OMAP_MMC_STAT_DATA_TOUT (1 << 5)
#define OMAP_MMC_STAT_END_BUSY (1 << 4)
#define OMAP_MMC_STAT_END_OF_DATA (1 << 3)
#define OMAP_MMC_STAT_CARD_BUSY (1 << 2)
#define OMAP_MMC_STAT_END_OF_CMD (1 << 0)
#define OMAP_MMC_REG(host, reg) (OMAP_MMC_REG_##reg << (host)->reg_shift)
#define OMAP_MMC_READ(host, reg) __raw_readw((host)->virt_base + OMAP_MMC_REG(host, reg))
#define OMAP_MMC_WRITE(host, reg, val) __raw_writew((val), (host)->virt_base + OMAP_MMC_REG(host, reg))
/*
* Command types
*/
#define OMAP_MMC_CMDTYPE_BC 0
#define OMAP_MMC_CMDTYPE_BCR 1
#define OMAP_MMC_CMDTYPE_AC 2
#define OMAP_MMC_CMDTYPE_ADTC 3
#define DRIVER_NAME "mmci-omap"
/* Specifies how often in millisecs to poll for card status changes
* when the cover switch is open */
#define OMAP_MMC_COVER_POLL_DELAY 500
struct mmc_omap_host;
struct mmc_omap_slot {
int id;
unsigned int vdd;
u16 saved_con;
u16 bus_mode;
unsigned int fclk_freq;
unsigned powered:1;
struct tasklet_struct cover_tasklet;
struct timer_list cover_timer;
unsigned cover_open;
struct mmc_request *mrq;
struct mmc_omap_host *host;
struct mmc_host *mmc;
struct omap_mmc_slot_data *pdata;
};
struct mmc_omap_host {
int initialized;
int suspended;
struct mmc_request * mrq;
struct mmc_command * cmd;
struct mmc_data * data;
struct mmc_host * mmc;
struct device * dev;
unsigned char id; /* 16xx chips have 2 MMC blocks */
struct clk * iclk;
struct clk * fclk;
struct dma_chan *dma_rx;
u32 dma_rx_burst;
struct dma_chan *dma_tx;
u32 dma_tx_burst;
struct resource *mem_res;
void __iomem *virt_base;
unsigned int phys_base;
int irq;
unsigned char bus_mode;
unsigned char hw_bus_mode;
unsigned int reg_shift;
struct work_struct cmd_abort_work;
unsigned abort:1;
struct timer_list cmd_abort_timer;
struct work_struct slot_release_work;
struct mmc_omap_slot *next_slot;
struct work_struct send_stop_work;
struct mmc_data *stop_data;
unsigned int sg_len;
int sg_idx;
u16 * buffer;
u32 buffer_bytes_left;
u32 total_bytes_left;
unsigned use_dma:1;
unsigned brs_received:1, dma_done:1;
unsigned dma_in_use:1;
spinlock_t dma_lock;
struct mmc_omap_slot *slots[OMAP_MMC_MAX_SLOTS];
struct mmc_omap_slot *current_slot;
spinlock_t slot_lock;
wait_queue_head_t slot_wq;
int nr_slots;
struct timer_list clk_timer;
spinlock_t clk_lock; /* for changing enabled state */
unsigned int fclk_enabled:1;
struct workqueue_struct *mmc_omap_wq;
struct omap_mmc_platform_data *pdata;
};
static void mmc_omap_fclk_offdelay(struct mmc_omap_slot *slot)
{
unsigned long tick_ns;
if (slot != NULL && slot->host->fclk_enabled && slot->fclk_freq > 0) {
tick_ns = (1000000000 + slot->fclk_freq - 1) / slot->fclk_freq;
ndelay(8 * tick_ns);
}
}
static void mmc_omap_fclk_enable(struct mmc_omap_host *host, unsigned int enable)
{
unsigned long flags;
spin_lock_irqsave(&host->clk_lock, flags);
if (host->fclk_enabled != enable) {
host->fclk_enabled = enable;
if (enable)
clk_enable(host->fclk);
else
clk_disable(host->fclk);
}
spin_unlock_irqrestore(&host->clk_lock, flags);
}
static void mmc_omap_select_slot(struct mmc_omap_slot *slot, int claimed)
{
struct mmc_omap_host *host = slot->host;
unsigned long flags;
if (claimed)
goto no_claim;
spin_lock_irqsave(&host->slot_lock, flags);
while (host->mmc != NULL) {
spin_unlock_irqrestore(&host->slot_lock, flags);
wait_event(host->slot_wq, host->mmc == NULL);
spin_lock_irqsave(&host->slot_lock, flags);
}
host->mmc = slot->mmc;
spin_unlock_irqrestore(&host->slot_lock, flags);
no_claim:
del_timer(&host->clk_timer);
if (host->current_slot != slot || !claimed)
mmc_omap_fclk_offdelay(host->current_slot);
if (host->current_slot != slot) {
OMAP_MMC_WRITE(host, CON, slot->saved_con & 0xFC00);
if (host->pdata->switch_slot != NULL)
host->pdata->switch_slot(mmc_dev(slot->mmc), slot->id);
host->current_slot = slot;
}
if (claimed) {
mmc_omap_fclk_enable(host, 1);
/* Doing the dummy read here seems to work around some bug
* at least in OMAP24xx silicon where the command would not
* start after writing the CMD register. Sigh. */
OMAP_MMC_READ(host, CON);
OMAP_MMC_WRITE(host, CON, slot->saved_con);
} else
mmc_omap_fclk_enable(host, 0);
}
static void mmc_omap_start_request(struct mmc_omap_host *host,
struct mmc_request *req);
static void mmc_omap_slot_release_work(struct work_struct *work)
{
struct mmc_omap_host *host = container_of(work, struct mmc_omap_host,
slot_release_work);
struct mmc_omap_slot *next_slot = host->next_slot;
struct mmc_request *rq;
host->next_slot = NULL;
mmc_omap_select_slot(next_slot, 1);
rq = next_slot->mrq;
next_slot->mrq = NULL;
mmc_omap_start_request(host, rq);
}
static void mmc_omap_release_slot(struct mmc_omap_slot *slot, int clk_enabled)
{
struct mmc_omap_host *host = slot->host;
unsigned long flags;
int i;
BUG_ON(slot == NULL || host->mmc == NULL);
if (clk_enabled)
/* Keeps clock running for at least 8 cycles on valid freq */
mod_timer(&host->clk_timer, jiffies + HZ/10);
else {
del_timer(&host->clk_timer);
mmc_omap_fclk_offdelay(slot);
mmc_omap_fclk_enable(host, 0);
}
spin_lock_irqsave(&host->slot_lock, flags);
/* Check for any pending requests */
for (i = 0; i < host->nr_slots; i++) {
struct mmc_omap_slot *new_slot;
if (host->slots[i] == NULL || host->slots[i]->mrq == NULL)
continue;
BUG_ON(host->next_slot != NULL);
new_slot = host->slots[i];
/* The current slot should not have a request in queue */
BUG_ON(new_slot == host->current_slot);
host->next_slot = new_slot;
host->mmc = new_slot->mmc;
spin_unlock_irqrestore(&host->slot_lock, flags);
queue_work(host->mmc_omap_wq, &host->slot_release_work);
return;
}
host->mmc = NULL;
wake_up(&host->slot_wq);
spin_unlock_irqrestore(&host->slot_lock, flags);
}
static inline
int mmc_omap_cover_is_open(struct mmc_omap_slot *slot)
{
if (slot->pdata->get_cover_state)
return slot->pdata->get_cover_state(mmc_dev(slot->mmc),
slot->id);
return 0;
}
static ssize_t
mmc_omap_show_cover_switch(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
struct mmc_omap_slot *slot = mmc_priv(mmc);
return sprintf(buf, "%s\n", mmc_omap_cover_is_open(slot) ? "open" :
"closed");
}
static DEVICE_ATTR(cover_switch, S_IRUGO, mmc_omap_show_cover_switch, NULL);
static ssize_t
mmc_omap_show_slot_name(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
struct mmc_omap_slot *slot = mmc_priv(mmc);
return sprintf(buf, "%s\n", slot->pdata->name);
}
static DEVICE_ATTR(slot_name, S_IRUGO, mmc_omap_show_slot_name, NULL);
static void
mmc_omap_start_command(struct mmc_omap_host *host, struct mmc_command *cmd)
{
u32 cmdreg;
u32 resptype;
u32 cmdtype;
host->cmd = cmd;
resptype = 0;
cmdtype = 0;
/* Our hardware needs to know exact type */
switch (mmc_resp_type(cmd)) {
case MMC_RSP_NONE:
break;
case MMC_RSP_R1:
case MMC_RSP_R1B:
/* resp 1, 1b, 6, 7 */
resptype = 1;
break;
case MMC_RSP_R2:
resptype = 2;
break;
case MMC_RSP_R3:
resptype = 3;
break;
default:
dev_err(mmc_dev(host->mmc), "Invalid response type: %04x\n", mmc_resp_type(cmd));
break;
}
if (mmc_cmd_type(cmd) == MMC_CMD_ADTC) {
cmdtype = OMAP_MMC_CMDTYPE_ADTC;
} else if (mmc_cmd_type(cmd) == MMC_CMD_BC) {
cmdtype = OMAP_MMC_CMDTYPE_BC;
} else if (mmc_cmd_type(cmd) == MMC_CMD_BCR) {
cmdtype = OMAP_MMC_CMDTYPE_BCR;
} else {
cmdtype = OMAP_MMC_CMDTYPE_AC;
}
cmdreg = cmd->opcode | (resptype << 8) | (cmdtype << 12);
if (host->current_slot->bus_mode == MMC_BUSMODE_OPENDRAIN)
cmdreg |= 1 << 6;
if (cmd->flags & MMC_RSP_BUSY)
cmdreg |= 1 << 11;
if (host->data && !(host->data->flags & MMC_DATA_WRITE))
cmdreg |= 1 << 15;
mod_timer(&host->cmd_abort_timer, jiffies + HZ/2);
OMAP_MMC_WRITE(host, CTO, 200);
OMAP_MMC_WRITE(host, ARGL, cmd->arg & 0xffff);
OMAP_MMC_WRITE(host, ARGH, cmd->arg >> 16);
OMAP_MMC_WRITE(host, IE,
OMAP_MMC_STAT_A_EMPTY | OMAP_MMC_STAT_A_FULL |
OMAP_MMC_STAT_CMD_CRC | OMAP_MMC_STAT_CMD_TOUT |
OMAP_MMC_STAT_DATA_CRC | OMAP_MMC_STAT_DATA_TOUT |
OMAP_MMC_STAT_END_OF_CMD | OMAP_MMC_STAT_CARD_ERR |
OMAP_MMC_STAT_END_OF_DATA);
OMAP_MMC_WRITE(host, CMD, cmdreg);
}
static void
mmc_omap_release_dma(struct mmc_omap_host *host, struct mmc_data *data,
int abort)
{
enum dma_data_direction dma_data_dir;
struct device *dev = mmc_dev(host->mmc);
struct dma_chan *c;
if (data->flags & MMC_DATA_WRITE) {
dma_data_dir = DMA_TO_DEVICE;
c = host->dma_tx;
} else {
dma_data_dir = DMA_FROM_DEVICE;
c = host->dma_rx;
}
if (c) {
if (data->error) {
dmaengine_terminate_all(c);
/* Claim nothing transferred on error... */
data->bytes_xfered = 0;
}
dev = c->device->dev;
}
dma_unmap_sg(dev, data->sg, host->sg_len, dma_data_dir);
}
static void mmc_omap_send_stop_work(struct work_struct *work)
{
struct mmc_omap_host *host = container_of(work, struct mmc_omap_host,
send_stop_work);
struct mmc_omap_slot *slot = host->current_slot;
struct mmc_data *data = host->stop_data;
unsigned long tick_ns;
tick_ns = (1000000000 + slot->fclk_freq - 1)/slot->fclk_freq;
ndelay(8*tick_ns);
mmc_omap_start_command(host, data->stop);
}
static void
mmc_omap_xfer_done(struct mmc_omap_host *host, struct mmc_data *data)
{
if (host->dma_in_use)
mmc_omap_release_dma(host, data, data->error);
host->data = NULL;
host->sg_len = 0;
/* NOTE: MMC layer will sometimes poll-wait CMD13 next, issuing
* dozens of requests until the card finishes writing data.
* It'd be cheaper to just wait till an EOFB interrupt arrives...
*/
if (!data->stop) {
struct mmc_host *mmc;
host->mrq = NULL;
mmc = host->mmc;
mmc_omap_release_slot(host->current_slot, 1);
mmc_request_done(mmc, data->mrq);
return;
}
host->stop_data = data;
queue_work(host->mmc_omap_wq, &host->send_stop_work);
}
static void
mmc_omap_send_abort(struct mmc_omap_host *host, int maxloops)
{
struct mmc_omap_slot *slot = host->current_slot;
unsigned int restarts, passes, timeout;
u16 stat = 0;
/* Sending abort takes 80 clocks. Have some extra and round up */
timeout = (120*1000000 + slot->fclk_freq - 1)/slot->fclk_freq;
restarts = 0;
while (restarts < maxloops) {
OMAP_MMC_WRITE(host, STAT, 0xFFFF);
OMAP_MMC_WRITE(host, CMD, (3 << 12) | (1 << 7));
passes = 0;
while (passes < timeout) {
stat = OMAP_MMC_READ(host, STAT);
if (stat & OMAP_MMC_STAT_END_OF_CMD)
goto out;
udelay(1);
passes++;
}
restarts++;
}
out:
OMAP_MMC_WRITE(host, STAT, stat);
}
static void
mmc_omap_abort_xfer(struct mmc_omap_host *host, struct mmc_data *data)
{
if (host->dma_in_use)
mmc_omap_release_dma(host, data, 1);
host->data = NULL;
host->sg_len = 0;
mmc_omap_send_abort(host, 10000);
}
static void
mmc_omap_end_of_data(struct mmc_omap_host *host, struct mmc_data *data)
{
unsigned long flags;
int done;
if (!host->dma_in_use) {
mmc_omap_xfer_done(host, data);
return;
}
done = 0;
spin_lock_irqsave(&host->dma_lock, flags);
if (host->dma_done)
done = 1;
else
host->brs_received = 1;
spin_unlock_irqrestore(&host->dma_lock, flags);
if (done)
mmc_omap_xfer_done(host, data);
}
static void
mmc_omap_dma_done(struct mmc_omap_host *host, struct mmc_data *data)
{
unsigned long flags;
int done;
done = 0;
spin_lock_irqsave(&host->dma_lock, flags);
if (host->brs_received)
done = 1;
else
host->dma_done = 1;
spin_unlock_irqrestore(&host->dma_lock, flags);
if (done)
mmc_omap_xfer_done(host, data);
}
static void
mmc_omap_cmd_done(struct mmc_omap_host *host, struct mmc_command *cmd)
{
host->cmd = NULL;
del_timer(&host->cmd_abort_timer);
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
/* response type 2 */
cmd->resp[3] =
OMAP_MMC_READ(host, RSP0) |
(OMAP_MMC_READ(host, RSP1) << 16);
cmd->resp[2] =
OMAP_MMC_READ(host, RSP2) |
(OMAP_MMC_READ(host, RSP3) << 16);
cmd->resp[1] =
OMAP_MMC_READ(host, RSP4) |
(OMAP_MMC_READ(host, RSP5) << 16);
cmd->resp[0] =
OMAP_MMC_READ(host, RSP6) |
(OMAP_MMC_READ(host, RSP7) << 16);
} else {
/* response types 1, 1b, 3, 4, 5, 6 */
cmd->resp[0] =
OMAP_MMC_READ(host, RSP6) |
(OMAP_MMC_READ(host, RSP7) << 16);
}
}
if (host->data == NULL || cmd->error) {
struct mmc_host *mmc;
if (host->data != NULL)
mmc_omap_abort_xfer(host, host->data);
host->mrq = NULL;
mmc = host->mmc;
mmc_omap_release_slot(host->current_slot, 1);
mmc_request_done(mmc, cmd->mrq);
}
}
/*
* Abort stuck command. Can occur when card is removed while it is being
* read.
*/
static void mmc_omap_abort_command(struct work_struct *work)
{
struct mmc_omap_host *host = container_of(work, struct mmc_omap_host,
cmd_abort_work);
BUG_ON(!host->cmd);
dev_dbg(mmc_dev(host->mmc), "Aborting stuck command CMD%d\n",
host->cmd->opcode);
if (host->cmd->error == 0)
host->cmd->error = -ETIMEDOUT;
if (host->data == NULL) {
struct mmc_command *cmd;
struct mmc_host *mmc;
cmd = host->cmd;
host->cmd = NULL;
mmc_omap_send_abort(host, 10000);
host->mrq = NULL;
mmc = host->mmc;
mmc_omap_release_slot(host->current_slot, 1);
mmc_request_done(mmc, cmd->mrq);
} else
mmc_omap_cmd_done(host, host->cmd);
host->abort = 0;
enable_irq(host->irq);
}
static void
mmc_omap_cmd_timer(unsigned long data)
{
struct mmc_omap_host *host = (struct mmc_omap_host *) data;
unsigned long flags;
spin_lock_irqsave(&host->slot_lock, flags);
if (host->cmd != NULL && !host->abort) {
OMAP_MMC_WRITE(host, IE, 0);
disable_irq(host->irq);
host->abort = 1;
queue_work(host->mmc_omap_wq, &host->cmd_abort_work);
}
spin_unlock_irqrestore(&host->slot_lock, flags);
}
/* PIO only */
static void
mmc_omap_sg_to_buf(struct mmc_omap_host *host)
{
struct scatterlist *sg;
sg = host->data->sg + host->sg_idx;
host->buffer_bytes_left = sg->length;
host->buffer = sg_virt(sg);
if (host->buffer_bytes_left > host->total_bytes_left)
host->buffer_bytes_left = host->total_bytes_left;
}
static void
mmc_omap_clk_timer(unsigned long data)
{
struct mmc_omap_host *host = (struct mmc_omap_host *) data;
mmc_omap_fclk_enable(host, 0);
}
/* PIO only */
static void
mmc_omap_xfer_data(struct mmc_omap_host *host, int write)
{
int n, nwords;
if (host->buffer_bytes_left == 0) {
host->sg_idx++;
BUG_ON(host->sg_idx == host->sg_len);
mmc_omap_sg_to_buf(host);
}
n = 64;
if (n > host->buffer_bytes_left)
n = host->buffer_bytes_left;
nwords = n / 2;
nwords += n & 1; /* handle odd number of bytes to transfer */
host->buffer_bytes_left -= n;
host->total_bytes_left -= n;
host->data->bytes_xfered += n;
if (write) {
__raw_writesw(host->virt_base + OMAP_MMC_REG(host, DATA),
host->buffer, nwords);
} else {
__raw_readsw(host->virt_base + OMAP_MMC_REG(host, DATA),
host->buffer, nwords);
}
host->buffer += nwords;
}
static inline void mmc_omap_report_irq(u16 status)
{
static const char *mmc_omap_status_bits[] = {
"EOC", "CD", "CB", "BRS", "EOFB", "DTO", "DCRC", "CTO",
"CCRC", "CRW", "AF", "AE", "OCRB", "CIRQ", "CERR"
};
int i, c = 0;
for (i = 0; i < ARRAY_SIZE(mmc_omap_status_bits); i++)
if (status & (1 << i)) {
if (c)
printk(" ");
printk("%s", mmc_omap_status_bits[i]);
c++;
}
}
static irqreturn_t mmc_omap_irq(int irq, void *dev_id)
{
struct mmc_omap_host * host = (struct mmc_omap_host *)dev_id;
u16 status;
int end_command;
int end_transfer;
int transfer_error, cmd_error;
if (host->cmd == NULL && host->data == NULL) {
status = OMAP_MMC_READ(host, STAT);
dev_info(mmc_dev(host->slots[0]->mmc),
"Spurious IRQ 0x%04x\n", status);
if (status != 0) {
OMAP_MMC_WRITE(host, STAT, status);
OMAP_MMC_WRITE(host, IE, 0);
}
return IRQ_HANDLED;
}
end_command = 0;
end_transfer = 0;
transfer_error = 0;
cmd_error = 0;
while ((status = OMAP_MMC_READ(host, STAT)) != 0) {
int cmd;
OMAP_MMC_WRITE(host, STAT, status);
if (host->cmd != NULL)
cmd = host->cmd->opcode;
else
cmd = -1;
#ifdef CONFIG_MMC_DEBUG
dev_dbg(mmc_dev(host->mmc), "MMC IRQ %04x (CMD %d): ",
status, cmd);
mmc_omap_report_irq(status);
printk("\n");
#endif
if (host->total_bytes_left) {
if ((status & OMAP_MMC_STAT_A_FULL) ||
(status & OMAP_MMC_STAT_END_OF_DATA))
mmc_omap_xfer_data(host, 0);
if (status & OMAP_MMC_STAT_A_EMPTY)
mmc_omap_xfer_data(host, 1);
}
if (status & OMAP_MMC_STAT_END_OF_DATA)
end_transfer = 1;
if (status & OMAP_MMC_STAT_DATA_TOUT) {
dev_dbg(mmc_dev(host->mmc), "data timeout (CMD%d)\n",
cmd);
if (host->data) {
host->data->error = -ETIMEDOUT;
transfer_error = 1;
}
}
if (status & OMAP_MMC_STAT_DATA_CRC) {
if (host->data) {
host->data->error = -EILSEQ;
dev_dbg(mmc_dev(host->mmc),
"data CRC error, bytes left %d\n",
host->total_bytes_left);
transfer_error = 1;
} else {
dev_dbg(mmc_dev(host->mmc), "data CRC error\n");
}
}
if (status & OMAP_MMC_STAT_CMD_TOUT) {
/* Timeouts are routine with some commands */
if (host->cmd) {
struct mmc_omap_slot *slot =
host->current_slot;
if (slot == NULL ||
!mmc_omap_cover_is_open(slot))
dev_err(mmc_dev(host->mmc),
"command timeout (CMD%d)\n",
cmd);
host->cmd->error = -ETIMEDOUT;
end_command = 1;
cmd_error = 1;
}
}
if (status & OMAP_MMC_STAT_CMD_CRC) {
if (host->cmd) {
dev_err(mmc_dev(host->mmc),
"command CRC error (CMD%d, arg 0x%08x)\n",
cmd, host->cmd->arg);
host->cmd->error = -EILSEQ;
end_command = 1;
cmd_error = 1;
} else
dev_err(mmc_dev(host->mmc),
"command CRC error without cmd?\n");
}
if (status & OMAP_MMC_STAT_CARD_ERR) {
dev_dbg(mmc_dev(host->mmc),
"ignoring card status error (CMD%d)\n",
cmd);
end_command = 1;
}
/*
* NOTE: On 1610 the END_OF_CMD may come too early when
* starting a write
*/
if ((status & OMAP_MMC_STAT_END_OF_CMD) &&
(!(status & OMAP_MMC_STAT_A_EMPTY))) {
end_command = 1;
}
}
if (cmd_error && host->data) {
del_timer(&host->cmd_abort_timer);
host->abort = 1;
OMAP_MMC_WRITE(host, IE, 0);
disable_irq_nosync(host->irq);
queue_work(host->mmc_omap_wq, &host->cmd_abort_work);
return IRQ_HANDLED;
}
if (end_command && host->cmd)
mmc_omap_cmd_done(host, host->cmd);
if (host->data != NULL) {
if (transfer_error)
mmc_omap_xfer_done(host, host->data);
else if (end_transfer)
mmc_omap_end_of_data(host, host->data);
}
return IRQ_HANDLED;
}
void omap_mmc_notify_cover_event(struct device *dev, int num, int is_closed)
{
int cover_open;
struct mmc_omap_host *host = dev_get_drvdata(dev);
struct mmc_omap_slot *slot = host->slots[num];
BUG_ON(num >= host->nr_slots);
/* Other subsystems can call in here before we're initialised. */
if (host->nr_slots == 0 || !host->slots[num])
return;
cover_open = mmc_omap_cover_is_open(slot);
if (cover_open != slot->cover_open) {
slot->cover_open = cover_open;
sysfs_notify(&slot->mmc->class_dev.kobj, NULL, "cover_switch");
}
tasklet_hi_schedule(&slot->cover_tasklet);
}
static void mmc_omap_cover_timer(unsigned long arg)
{
struct mmc_omap_slot *slot = (struct mmc_omap_slot *) arg;
tasklet_schedule(&slot->cover_tasklet);
}
static void mmc_omap_cover_handler(unsigned long param)
{
struct mmc_omap_slot *slot = (struct mmc_omap_slot *)param;
int cover_open = mmc_omap_cover_is_open(slot);
mmc_detect_change(slot->mmc, 0);
if (!cover_open)
return;
/*
* If no card is inserted, we postpone polling until
* the cover has been closed.
*/
if (slot->mmc->card == NULL || !mmc_card_present(slot->mmc->card))
return;
mod_timer(&slot->cover_timer,
jiffies + msecs_to_jiffies(OMAP_MMC_COVER_POLL_DELAY));
}
static void mmc_omap_dma_callback(void *priv)
{
struct mmc_omap_host *host = priv;
struct mmc_data *data = host->data;
/* If we got to the end of DMA, assume everything went well */
data->bytes_xfered += data->blocks * data->blksz;
mmc_omap_dma_done(host, data);
}
static inline void set_cmd_timeout(struct mmc_omap_host *host, struct mmc_request *req)
{
u16 reg;
reg = OMAP_MMC_READ(host, SDIO);
reg &= ~(1 << 5);
OMAP_MMC_WRITE(host, SDIO, reg);
/* Set maximum timeout */
OMAP_MMC_WRITE(host, CTO, 0xff);
}
static inline void set_data_timeout(struct mmc_omap_host *host, struct mmc_request *req)
{
unsigned int timeout, cycle_ns;
u16 reg;
cycle_ns = 1000000000 / host->current_slot->fclk_freq;
timeout = req->data->timeout_ns / cycle_ns;
timeout += req->data->timeout_clks;
/* Check if we need to use timeout multiplier register */
reg = OMAP_MMC_READ(host, SDIO);
if (timeout > 0xffff) {
reg |= (1 << 5);
timeout /= 1024;
} else
reg &= ~(1 << 5);
OMAP_MMC_WRITE(host, SDIO, reg);
OMAP_MMC_WRITE(host, DTO, timeout);
}
static void
mmc_omap_prepare_data(struct mmc_omap_host *host, struct mmc_request *req)
{
struct mmc_data *data = req->data;
int i, use_dma, block_size;
unsigned sg_len;
host->data = data;
if (data == NULL) {
OMAP_MMC_WRITE(host, BLEN, 0);
OMAP_MMC_WRITE(host, NBLK, 0);
OMAP_MMC_WRITE(host, BUF, 0);
host->dma_in_use = 0;
set_cmd_timeout(host, req);
return;
}
block_size = data->blksz;
OMAP_MMC_WRITE(host, NBLK, data->blocks - 1);
OMAP_MMC_WRITE(host, BLEN, block_size - 1);
set_data_timeout(host, req);
/* cope with calling layer confusion; it issues "single
* block" writes using multi-block scatterlists.
*/
sg_len = (data->blocks == 1) ? 1 : data->sg_len;
/* Only do DMA for entire blocks */
use_dma = host->use_dma;
if (use_dma) {
for (i = 0; i < sg_len; i++) {
if ((data->sg[i].length % block_size) != 0) {
use_dma = 0;
break;
}
}
}
host->sg_idx = 0;
if (use_dma) {
enum dma_data_direction dma_data_dir;
struct dma_async_tx_descriptor *tx;
struct dma_chan *c;
u32 burst, *bp;
u16 buf;
/*
* FIFO is 16x2 bytes on 15xx, and 32x2 bytes on 16xx
* and 24xx. Use 16 or 32 word frames when the
* blocksize is at least that large. Blocksize is
* usually 512 bytes; but not for some SD reads.
*/
burst = cpu_is_omap15xx() ? 32 : 64;
if (burst > data->blksz)
burst = data->blksz;
burst >>= 1;
if (data->flags & MMC_DATA_WRITE) {
c = host->dma_tx;
bp = &host->dma_tx_burst;
buf = 0x0f80 | (burst - 1) << 0;
dma_data_dir = DMA_TO_DEVICE;
} else {
c = host->dma_rx;
bp = &host->dma_rx_burst;
buf = 0x800f | (burst - 1) << 8;
dma_data_dir = DMA_FROM_DEVICE;
}
if (!c)
goto use_pio;
/* Only reconfigure if we have a different burst size */
if (*bp != burst) {
struct dma_slave_config cfg;
cfg.src_addr = host->phys_base + OMAP_MMC_REG(host, DATA);
cfg.dst_addr = host->phys_base + OMAP_MMC_REG(host, DATA);
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
cfg.src_maxburst = burst;
cfg.dst_maxburst = burst;
if (dmaengine_slave_config(c, &cfg))
goto use_pio;
*bp = burst;
}
host->sg_len = dma_map_sg(c->device->dev, data->sg, sg_len,
dma_data_dir);
if (host->sg_len == 0)
goto use_pio;
tx = dmaengine_prep_slave_sg(c, data->sg, host->sg_len,
data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx)
goto use_pio;
OMAP_MMC_WRITE(host, BUF, buf);
tx->callback = mmc_omap_dma_callback;
tx->callback_param = host;
dmaengine_submit(tx);
host->brs_received = 0;
host->dma_done = 0;
host->dma_in_use = 1;
return;
}
use_pio:
/* Revert to PIO? */
OMAP_MMC_WRITE(host, BUF, 0x1f1f);
host->total_bytes_left = data->blocks * block_size;
host->sg_len = sg_len;
mmc_omap_sg_to_buf(host);
host->dma_in_use = 0;
}
static void mmc_omap_start_request(struct mmc_omap_host *host,
struct mmc_request *req)
{
BUG_ON(host->mrq != NULL);
host->mrq = req;
/* only touch fifo AFTER the controller readies it */
mmc_omap_prepare_data(host, req);
mmc_omap_start_command(host, req->cmd);
if (host->dma_in_use) {
struct dma_chan *c = host->data->flags & MMC_DATA_WRITE ?
host->dma_tx : host->dma_rx;
dma_async_issue_pending(c);
}
}
static void mmc_omap_request(struct mmc_host *mmc, struct mmc_request *req)
{
struct mmc_omap_slot *slot = mmc_priv(mmc);
struct mmc_omap_host *host = slot->host;
unsigned long flags;
spin_lock_irqsave(&host->slot_lock, flags);
if (host->mmc != NULL) {
BUG_ON(slot->mrq != NULL);
slot->mrq = req;
spin_unlock_irqrestore(&host->slot_lock, flags);
return;
} else
host->mmc = mmc;
spin_unlock_irqrestore(&host->slot_lock, flags);
mmc_omap_select_slot(slot, 1);
mmc_omap_start_request(host, req);
}
static void mmc_omap_set_power(struct mmc_omap_slot *slot, int power_on,
int vdd)
{
struct mmc_omap_host *host;
host = slot->host;
if (slot->pdata->set_power != NULL)
slot->pdata->set_power(mmc_dev(slot->mmc), slot->id, power_on,
vdd);
if (cpu_is_omap24xx()) {
u16 w;
if (power_on) {
w = OMAP_MMC_READ(host, CON);
OMAP_MMC_WRITE(host, CON, w | (1 << 11));
} else {
w = OMAP_MMC_READ(host, CON);
OMAP_MMC_WRITE(host, CON, w & ~(1 << 11));
}
}
}
static int mmc_omap_calc_divisor(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct mmc_omap_slot *slot = mmc_priv(mmc);
struct mmc_omap_host *host = slot->host;
int func_clk_rate = clk_get_rate(host->fclk);
int dsor;
if (ios->clock == 0)
return 0;
dsor = func_clk_rate / ios->clock;
if (dsor < 1)
dsor = 1;
if (func_clk_rate / dsor > ios->clock)
dsor++;
if (dsor > 250)
dsor = 250;
slot->fclk_freq = func_clk_rate / dsor;
if (ios->bus_width == MMC_BUS_WIDTH_4)
dsor |= 1 << 15;
return dsor;
}
static void mmc_omap_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct mmc_omap_slot *slot = mmc_priv(mmc);
struct mmc_omap_host *host = slot->host;
int i, dsor;
int clk_enabled;
mmc_omap_select_slot(slot, 0);
dsor = mmc_omap_calc_divisor(mmc, ios);
if (ios->vdd != slot->vdd)
slot->vdd = ios->vdd;
clk_enabled = 0;
switch (ios->power_mode) {
case MMC_POWER_OFF:
mmc_omap_set_power(slot, 0, ios->vdd);
break;
case MMC_POWER_UP:
/* Cannot touch dsor yet, just power up MMC */
mmc_omap_set_power(slot, 1, ios->vdd);
goto exit;
case MMC_POWER_ON:
mmc_omap_fclk_enable(host, 1);
clk_enabled = 1;
dsor |= 1 << 11;
break;
}
if (slot->bus_mode != ios->bus_mode) {
if (slot->pdata->set_bus_mode != NULL)
slot->pdata->set_bus_mode(mmc_dev(mmc), slot->id,
ios->bus_mode);
slot->bus_mode = ios->bus_mode;
}
/* On insanely high arm_per frequencies something sometimes
* goes somehow out of sync, and the POW bit is not being set,
* which results in the while loop below getting stuck.
* Writing to the CON register twice seems to do the trick. */
for (i = 0; i < 2; i++)
OMAP_MMC_WRITE(host, CON, dsor);
slot->saved_con = dsor;
if (ios->power_mode == MMC_POWER_ON) {
/* worst case at 400kHz, 80 cycles makes 200 microsecs */
int usecs = 250;
/* Send clock cycles, poll completion */
OMAP_MMC_WRITE(host, IE, 0);
OMAP_MMC_WRITE(host, STAT, 0xffff);
OMAP_MMC_WRITE(host, CMD, 1 << 7);
while (usecs > 0 && (OMAP_MMC_READ(host, STAT) & 1) == 0) {
udelay(1);
usecs--;
}
OMAP_MMC_WRITE(host, STAT, 1);
}
exit:
mmc_omap_release_slot(slot, clk_enabled);
}
static const struct mmc_host_ops mmc_omap_ops = {
.request = mmc_omap_request,
.set_ios = mmc_omap_set_ios,
};
static int __devinit mmc_omap_new_slot(struct mmc_omap_host *host, int id)
{
struct mmc_omap_slot *slot = NULL;
struct mmc_host *mmc;
int r;
mmc = mmc_alloc_host(sizeof(struct mmc_omap_slot), host->dev);
if (mmc == NULL)
return -ENOMEM;
slot = mmc_priv(mmc);
slot->host = host;
slot->mmc = mmc;
slot->id = id;
slot->pdata = &host->pdata->slots[id];
host->slots[id] = slot;
mmc->caps = 0;
if (host->pdata->slots[id].wires >= 4)
mmc->caps |= MMC_CAP_4_BIT_DATA;
mmc->ops = &mmc_omap_ops;
mmc->f_min = 400000;
if (cpu_class_is_omap2())
mmc->f_max = 48000000;
else
mmc->f_max = 24000000;
if (host->pdata->max_freq)
mmc->f_max = min(host->pdata->max_freq, mmc->f_max);
mmc->ocr_avail = slot->pdata->ocr_mask;
/* Use scatterlist DMA to reduce per-transfer costs.
* NOTE max_seg_size assumption that small blocks aren't
* normally used (except e.g. for reading SD registers).
*/
mmc->max_segs = 32;
mmc->max_blk_size = 2048; /* BLEN is 11 bits (+1) */
mmc->max_blk_count = 2048; /* NBLK is 11 bits (+1) */
mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
mmc->max_seg_size = mmc->max_req_size;
r = mmc_add_host(mmc);
if (r < 0)
goto err_remove_host;
if (slot->pdata->name != NULL) {
r = device_create_file(&mmc->class_dev,
&dev_attr_slot_name);
if (r < 0)
goto err_remove_host;
}
if (slot->pdata->get_cover_state != NULL) {
r = device_create_file(&mmc->class_dev,
&dev_attr_cover_switch);
if (r < 0)
goto err_remove_slot_name;
setup_timer(&slot->cover_timer, mmc_omap_cover_timer,
(unsigned long)slot);
tasklet_init(&slot->cover_tasklet, mmc_omap_cover_handler,
(unsigned long)slot);
tasklet_schedule(&slot->cover_tasklet);
}
return 0;
err_remove_slot_name:
if (slot->pdata->name != NULL)
device_remove_file(&mmc->class_dev, &dev_attr_slot_name);
err_remove_host:
mmc_remove_host(mmc);
mmc_free_host(mmc);
return r;
}
static void mmc_omap_remove_slot(struct mmc_omap_slot *slot)
{
struct mmc_host *mmc = slot->mmc;
if (slot->pdata->name != NULL)
device_remove_file(&mmc->class_dev, &dev_attr_slot_name);
if (slot->pdata->get_cover_state != NULL)
device_remove_file(&mmc->class_dev, &dev_attr_cover_switch);
tasklet_kill(&slot->cover_tasklet);
del_timer_sync(&slot->cover_timer);
flush_workqueue(slot->host->mmc_omap_wq);
mmc_remove_host(mmc);
mmc_free_host(mmc);
}
static int __devinit mmc_omap_probe(struct platform_device *pdev)
{
struct omap_mmc_platform_data *pdata = pdev->dev.platform_data;
struct mmc_omap_host *host = NULL;
struct resource *res;
dma_cap_mask_t mask;
unsigned sig;
int i, ret = 0;
int irq;
if (pdata == NULL) {
dev_err(&pdev->dev, "platform data missing\n");
return -ENXIO;
}
if (pdata->nr_slots == 0) {
dev_err(&pdev->dev, "no slots\n");
return -ENXIO;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
irq = platform_get_irq(pdev, 0);
if (res == NULL || irq < 0)
return -ENXIO;
res = request_mem_region(res->start, resource_size(res),
pdev->name);
if (res == NULL)
return -EBUSY;
host = kzalloc(sizeof(struct mmc_omap_host), GFP_KERNEL);
if (host == NULL) {
ret = -ENOMEM;
goto err_free_mem_region;
}
INIT_WORK(&host->slot_release_work, mmc_omap_slot_release_work);
INIT_WORK(&host->send_stop_work, mmc_omap_send_stop_work);
INIT_WORK(&host->cmd_abort_work, mmc_omap_abort_command);
setup_timer(&host->cmd_abort_timer, mmc_omap_cmd_timer,
(unsigned long) host);
spin_lock_init(&host->clk_lock);
setup_timer(&host->clk_timer, mmc_omap_clk_timer, (unsigned long) host);
spin_lock_init(&host->dma_lock);
spin_lock_init(&host->slot_lock);
init_waitqueue_head(&host->slot_wq);
host->pdata = pdata;
host->dev = &pdev->dev;
platform_set_drvdata(pdev, host);
host->id = pdev->id;
host->mem_res = res;
host->irq = irq;
host->use_dma = 1;
host->irq = irq;
host->phys_base = host->mem_res->start;
host->virt_base = ioremap(res->start, resource_size(res));
if (!host->virt_base)
goto err_ioremap;
host->iclk = clk_get(&pdev->dev, "ick");
if (IS_ERR(host->iclk)) {
ret = PTR_ERR(host->iclk);
goto err_free_mmc_host;
}
clk_enable(host->iclk);
host->fclk = clk_get(&pdev->dev, "fck");
if (IS_ERR(host->fclk)) {
ret = PTR_ERR(host->fclk);
goto err_free_iclk;
}
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
host->dma_tx_burst = -1;
host->dma_rx_burst = -1;
if (cpu_is_omap24xx())
sig = host->id == 0 ? OMAP24XX_DMA_MMC1_TX : OMAP24XX_DMA_MMC2_TX;
else
sig = host->id == 0 ? OMAP_DMA_MMC_TX : OMAP_DMA_MMC2_TX;
host->dma_tx = dma_request_channel(mask, omap_dma_filter_fn, &sig);
#if 0
if (!host->dma_tx) {
dev_err(host->dev, "unable to obtain TX DMA engine channel %u\n",
sig);
goto err_dma;
}
#else
if (!host->dma_tx)
dev_warn(host->dev, "unable to obtain TX DMA engine channel %u\n",
sig);
#endif
if (cpu_is_omap24xx())
sig = host->id == 0 ? OMAP24XX_DMA_MMC1_RX : OMAP24XX_DMA_MMC2_RX;
else
sig = host->id == 0 ? OMAP_DMA_MMC_RX : OMAP_DMA_MMC2_RX;
host->dma_rx = dma_request_channel(mask, omap_dma_filter_fn, &sig);
#if 0
if (!host->dma_rx) {
dev_err(host->dev, "unable to obtain RX DMA engine channel %u\n",
sig);
goto err_dma;
}
#else
if (!host->dma_rx)
dev_warn(host->dev, "unable to obtain RX DMA engine channel %u\n",
sig);
#endif
ret = request_irq(host->irq, mmc_omap_irq, 0, DRIVER_NAME, host);
if (ret)
goto err_free_dma;
if (pdata->init != NULL) {
ret = pdata->init(&pdev->dev);
if (ret < 0)
goto err_free_irq;
}
host->nr_slots = pdata->nr_slots;
host->reg_shift = (cpu_is_omap7xx() ? 1 : 2);
host->mmc_omap_wq = alloc_workqueue("mmc_omap", 0, 0);
if (!host->mmc_omap_wq)
goto err_plat_cleanup;
for (i = 0; i < pdata->nr_slots; i++) {
ret = mmc_omap_new_slot(host, i);
if (ret < 0) {
while (--i >= 0)
mmc_omap_remove_slot(host->slots[i]);
goto err_destroy_wq;
}
}
return 0;
err_destroy_wq:
destroy_workqueue(host->mmc_omap_wq);
err_plat_cleanup:
if (pdata->cleanup)
pdata->cleanup(&pdev->dev);
err_free_irq:
free_irq(host->irq, host);
err_free_dma:
if (host->dma_tx)
dma_release_channel(host->dma_tx);
if (host->dma_rx)
dma_release_channel(host->dma_rx);
clk_put(host->fclk);
err_free_iclk:
clk_disable(host->iclk);
clk_put(host->iclk);
err_free_mmc_host:
iounmap(host->virt_base);
err_ioremap:
kfree(host);
err_free_mem_region:
release_mem_region(res->start, resource_size(res));
return ret;
}
static int __devexit mmc_omap_remove(struct platform_device *pdev)
{
struct mmc_omap_host *host = platform_get_drvdata(pdev);
int i;
platform_set_drvdata(pdev, NULL);
BUG_ON(host == NULL);
for (i = 0; i < host->nr_slots; i++)
mmc_omap_remove_slot(host->slots[i]);
if (host->pdata->cleanup)
host->pdata->cleanup(&pdev->dev);
mmc_omap_fclk_enable(host, 0);
free_irq(host->irq, host);
clk_put(host->fclk);
clk_disable(host->iclk);
clk_put(host->iclk);
if (host->dma_tx)
dma_release_channel(host->dma_tx);
if (host->dma_rx)
dma_release_channel(host->dma_rx);
iounmap(host->virt_base);
release_mem_region(pdev->resource[0].start,
pdev->resource[0].end - pdev->resource[0].start + 1);
destroy_workqueue(host->mmc_omap_wq);
kfree(host);
return 0;
}
#ifdef CONFIG_PM
static int mmc_omap_suspend(struct platform_device *pdev, pm_message_t mesg)
{
int i, ret = 0;
struct mmc_omap_host *host = platform_get_drvdata(pdev);
if (host == NULL || host->suspended)
return 0;
for (i = 0; i < host->nr_slots; i++) {
struct mmc_omap_slot *slot;
slot = host->slots[i];
ret = mmc_suspend_host(slot->mmc);
if (ret < 0) {
while (--i >= 0) {
slot = host->slots[i];
mmc_resume_host(slot->mmc);
}
return ret;
}
}
host->suspended = 1;
return 0;
}
static int mmc_omap_resume(struct platform_device *pdev)
{
int i, ret = 0;
struct mmc_omap_host *host = platform_get_drvdata(pdev);
if (host == NULL || !host->suspended)
return 0;
for (i = 0; i < host->nr_slots; i++) {
struct mmc_omap_slot *slot;
slot = host->slots[i];
ret = mmc_resume_host(slot->mmc);
if (ret < 0)
return ret;
host->suspended = 0;
}
return 0;
}
#else
#define mmc_omap_suspend NULL
#define mmc_omap_resume NULL
#endif
static struct platform_driver mmc_omap_driver = {
.probe = mmc_omap_probe,
.remove = __devexit_p(mmc_omap_remove),
.suspend = mmc_omap_suspend,
.resume = mmc_omap_resume,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
},
};
module_platform_driver(mmc_omap_driver);
MODULE_DESCRIPTION("OMAP Multimedia Card driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_AUTHOR("Juha Yrjölä");