blob: fda988139fa46e05880d4fdddc2621f7bc941ab8 [file] [log] [blame]
/*
* Linux V4L2 radio driver for the Griffin radioSHARK2 USB radio receiver
*
* Note the radioSHARK2 offers the audio through a regular USB audio device,
* this driver only handles the tuning.
*
* The info necessary to drive the shark2 was taken from the small userspace
* shark2.c program by Hisaaki Shibata, which he kindly placed in the Public
* Domain.
*
* Copyright (c) 2012 Hans de Goede <hdegoede@redhat.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/leds.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/workqueue.h>
#include <media/v4l2-device.h>
#include "radio-tea5777.h"
#if defined(CONFIG_LEDS_CLASS) || \
(defined(CONFIG_LEDS_CLASS_MODULE) && defined(CONFIG_RADIO_SHARK2_MODULE))
#define SHARK_USE_LEDS 1
#endif
MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
MODULE_DESCRIPTION("Griffin radioSHARK2, USB radio receiver driver");
MODULE_LICENSE("GPL");
static int debug;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0-1)");
#define SHARK_IN_EP 0x83
#define SHARK_OUT_EP 0x05
#define TB_LEN 7
#define DRV_NAME "radioshark2"
#define v4l2_dev_to_shark(d) container_of(d, struct shark_device, v4l2_dev)
enum { BLUE_LED, RED_LED, NO_LEDS };
struct shark_device {
struct usb_device *usbdev;
struct v4l2_device v4l2_dev;
struct radio_tea5777 tea;
#ifdef SHARK_USE_LEDS
struct work_struct led_work;
struct led_classdev leds[NO_LEDS];
char led_names[NO_LEDS][64];
atomic_t brightness[NO_LEDS];
unsigned long brightness_new;
#endif
u8 *transfer_buffer;
};
static atomic_t shark_instance = ATOMIC_INIT(0);
static int shark_write_reg(struct radio_tea5777 *tea, u64 reg)
{
struct shark_device *shark = tea->private_data;
int i, res, actual_len;
memset(shark->transfer_buffer, 0, TB_LEN);
shark->transfer_buffer[0] = 0x81; /* Write register command */
for (i = 0; i < 6; i++)
shark->transfer_buffer[i + 1] = (reg >> (40 - i * 8)) & 0xff;
v4l2_dbg(1, debug, tea->v4l2_dev, "shark2-write: %*ph\n",
7, shark->transfer_buffer);
res = usb_interrupt_msg(shark->usbdev,
usb_sndintpipe(shark->usbdev, SHARK_OUT_EP),
shark->transfer_buffer, TB_LEN,
&actual_len, 1000);
if (res < 0) {
v4l2_err(tea->v4l2_dev, "write error: %d\n", res);
return res;
}
return 0;
}
static int shark_read_reg(struct radio_tea5777 *tea, u32 *reg_ret)
{
struct shark_device *shark = tea->private_data;
int i, res, actual_len;
u32 reg = 0;
memset(shark->transfer_buffer, 0, TB_LEN);
shark->transfer_buffer[0] = 0x82;
res = usb_interrupt_msg(shark->usbdev,
usb_sndintpipe(shark->usbdev, SHARK_OUT_EP),
shark->transfer_buffer, TB_LEN,
&actual_len, 1000);
if (res < 0) {
v4l2_err(tea->v4l2_dev, "request-read error: %d\n", res);
return res;
}
res = usb_interrupt_msg(shark->usbdev,
usb_rcvintpipe(shark->usbdev, SHARK_IN_EP),
shark->transfer_buffer, TB_LEN,
&actual_len, 1000);
if (res < 0) {
v4l2_err(tea->v4l2_dev, "read error: %d\n", res);
return res;
}
for (i = 0; i < 3; i++)
reg |= shark->transfer_buffer[i] << (16 - i * 8);
v4l2_dbg(1, debug, tea->v4l2_dev, "shark2-read: %*ph\n",
3, shark->transfer_buffer);
*reg_ret = reg;
return 0;
}
static const struct radio_tea5777_ops shark_tea_ops = {
.write_reg = shark_write_reg,
.read_reg = shark_read_reg,
};
#ifdef SHARK_USE_LEDS
static void shark_led_work(struct work_struct *work)
{
struct shark_device *shark =
container_of(work, struct shark_device, led_work);
int i, res, brightness, actual_len;
for (i = 0; i < 2; i++) {
if (!test_and_clear_bit(i, &shark->brightness_new))
continue;
brightness = atomic_read(&shark->brightness[i]);
memset(shark->transfer_buffer, 0, TB_LEN);
shark->transfer_buffer[0] = 0x83 + i;
shark->transfer_buffer[1] = brightness;
res = usb_interrupt_msg(shark->usbdev,
usb_sndintpipe(shark->usbdev,
SHARK_OUT_EP),
shark->transfer_buffer, TB_LEN,
&actual_len, 1000);
if (res < 0)
v4l2_err(&shark->v4l2_dev, "set LED %s error: %d\n",
shark->led_names[i], res);
}
}
static void shark_led_set_blue(struct led_classdev *led_cdev,
enum led_brightness value)
{
struct shark_device *shark =
container_of(led_cdev, struct shark_device, leds[BLUE_LED]);
atomic_set(&shark->brightness[BLUE_LED], value);
set_bit(BLUE_LED, &shark->brightness_new);
schedule_work(&shark->led_work);
}
static void shark_led_set_red(struct led_classdev *led_cdev,
enum led_brightness value)
{
struct shark_device *shark =
container_of(led_cdev, struct shark_device, leds[RED_LED]);
atomic_set(&shark->brightness[RED_LED], value);
set_bit(RED_LED, &shark->brightness_new);
schedule_work(&shark->led_work);
}
static const struct led_classdev shark_led_templates[NO_LEDS] = {
[BLUE_LED] = {
.name = "%s:blue:",
.brightness = LED_OFF,
.max_brightness = 127,
.brightness_set = shark_led_set_blue,
},
[RED_LED] = {
.name = "%s:red:",
.brightness = LED_OFF,
.max_brightness = 1,
.brightness_set = shark_led_set_red,
},
};
static int shark_register_leds(struct shark_device *shark, struct device *dev)
{
int i, retval;
atomic_set(&shark->brightness[BLUE_LED], 127);
INIT_WORK(&shark->led_work, shark_led_work);
for (i = 0; i < NO_LEDS; i++) {
shark->leds[i] = shark_led_templates[i];
snprintf(shark->led_names[i], sizeof(shark->led_names[0]),
shark->leds[i].name, shark->v4l2_dev.name);
shark->leds[i].name = shark->led_names[i];
retval = led_classdev_register(dev, &shark->leds[i]);
if (retval) {
v4l2_err(&shark->v4l2_dev,
"couldn't register led: %s\n",
shark->led_names[i]);
return retval;
}
}
return 0;
}
static void shark_unregister_leds(struct shark_device *shark)
{
int i;
for (i = 0; i < NO_LEDS; i++)
led_classdev_unregister(&shark->leds[i]);
cancel_work_sync(&shark->led_work);
}
static inline void shark_resume_leds(struct shark_device *shark)
{
int i;
for (i = 0; i < NO_LEDS; i++)
set_bit(i, &shark->brightness_new);
schedule_work(&shark->led_work);
}
#else
static int shark_register_leds(struct shark_device *shark, struct device *dev)
{
v4l2_warn(&shark->v4l2_dev,
"CONFIG_LEDS_CLASS not enabled, LED support disabled\n");
return 0;
}
static inline void shark_unregister_leds(struct shark_device *shark) { }
static inline void shark_resume_leds(struct shark_device *shark) { }
#endif
static void usb_shark_disconnect(struct usb_interface *intf)
{
struct v4l2_device *v4l2_dev = usb_get_intfdata(intf);
struct shark_device *shark = v4l2_dev_to_shark(v4l2_dev);
mutex_lock(&shark->tea.mutex);
v4l2_device_disconnect(&shark->v4l2_dev);
radio_tea5777_exit(&shark->tea);
mutex_unlock(&shark->tea.mutex);
shark_unregister_leds(shark);
v4l2_device_put(&shark->v4l2_dev);
}
static void usb_shark_release(struct v4l2_device *v4l2_dev)
{
struct shark_device *shark = v4l2_dev_to_shark(v4l2_dev);
v4l2_device_unregister(&shark->v4l2_dev);
kfree(shark->transfer_buffer);
kfree(shark);
}
static int usb_shark_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct shark_device *shark;
int retval = -ENOMEM;
static const u8 ep_addresses[] = {
SHARK_IN_EP | USB_DIR_IN,
SHARK_OUT_EP | USB_DIR_OUT,
0};
/* Are the expected endpoints present? */
if (!usb_check_int_endpoints(intf, ep_addresses)) {
dev_err(&intf->dev, "Invalid radioSHARK2 device\n");
return -EINVAL;
}
shark = kzalloc(sizeof(struct shark_device), GFP_KERNEL);
if (!shark)
return retval;
shark->transfer_buffer = kmalloc(TB_LEN, GFP_KERNEL);
if (!shark->transfer_buffer)
goto err_alloc_buffer;
v4l2_device_set_name(&shark->v4l2_dev, DRV_NAME, &shark_instance);
retval = shark_register_leds(shark, &intf->dev);
if (retval)
goto err_reg_leds;
shark->v4l2_dev.release = usb_shark_release;
retval = v4l2_device_register(&intf->dev, &shark->v4l2_dev);
if (retval) {
v4l2_err(&shark->v4l2_dev, "couldn't register v4l2_device\n");
goto err_reg_dev;
}
shark->usbdev = interface_to_usbdev(intf);
shark->tea.v4l2_dev = &shark->v4l2_dev;
shark->tea.private_data = shark;
shark->tea.ops = &shark_tea_ops;
shark->tea.has_am = true;
shark->tea.write_before_read = true;
strlcpy(shark->tea.card, "Griffin radioSHARK2",
sizeof(shark->tea.card));
usb_make_path(shark->usbdev, shark->tea.bus_info,
sizeof(shark->tea.bus_info));
retval = radio_tea5777_init(&shark->tea, THIS_MODULE);
if (retval) {
v4l2_err(&shark->v4l2_dev, "couldn't init tea5777\n");
goto err_init_tea;
}
return 0;
err_init_tea:
v4l2_device_unregister(&shark->v4l2_dev);
err_reg_dev:
shark_unregister_leds(shark);
err_reg_leds:
kfree(shark->transfer_buffer);
err_alloc_buffer:
kfree(shark);
return retval;
}
#ifdef CONFIG_PM
static int usb_shark_suspend(struct usb_interface *intf, pm_message_t message)
{
return 0;
}
static int usb_shark_resume(struct usb_interface *intf)
{
struct v4l2_device *v4l2_dev = usb_get_intfdata(intf);
struct shark_device *shark = v4l2_dev_to_shark(v4l2_dev);
int ret;
mutex_lock(&shark->tea.mutex);
ret = radio_tea5777_set_freq(&shark->tea);
mutex_unlock(&shark->tea.mutex);
shark_resume_leds(shark);
return ret;
}
#endif
/* Specify the bcdDevice value, as the radioSHARK and radioSHARK2 share ids */
static const struct usb_device_id usb_shark_device_table[] = {
{ .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION |
USB_DEVICE_ID_MATCH_INT_CLASS,
.idVendor = 0x077d,
.idProduct = 0x627a,
.bcdDevice_lo = 0x0010,
.bcdDevice_hi = 0x0010,
.bInterfaceClass = 3,
},
{ }
};
MODULE_DEVICE_TABLE(usb, usb_shark_device_table);
static struct usb_driver usb_shark_driver = {
.name = DRV_NAME,
.probe = usb_shark_probe,
.disconnect = usb_shark_disconnect,
.id_table = usb_shark_device_table,
#ifdef CONFIG_PM
.suspend = usb_shark_suspend,
.resume = usb_shark_resume,
.reset_resume = usb_shark_resume,
#endif
};
module_usb_driver(usb_shark_driver);