| /* |
| * Copyright (C) 1991, 1992 Linus Torvalds |
| * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs |
| * |
| * Pentium III FXSR, SSE support |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| */ |
| |
| /* |
| * Handle hardware traps and faults. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/context_tracking.h> |
| #include <linux/interrupt.h> |
| #include <linux/kallsyms.h> |
| #include <linux/spinlock.h> |
| #include <linux/kprobes.h> |
| #include <linux/uaccess.h> |
| #include <linux/kdebug.h> |
| #include <linux/kgdb.h> |
| #include <linux/kernel.h> |
| #include <linux/export.h> |
| #include <linux/ptrace.h> |
| #include <linux/uprobes.h> |
| #include <linux/string.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/kexec.h> |
| #include <linux/sched.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/timer.h> |
| #include <linux/init.h> |
| #include <linux/bug.h> |
| #include <linux/nmi.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/io.h> |
| |
| #if defined(CONFIG_EDAC) |
| #include <linux/edac.h> |
| #endif |
| |
| #include <asm/stacktrace.h> |
| #include <asm/processor.h> |
| #include <asm/debugreg.h> |
| #include <linux/atomic.h> |
| #include <asm/text-patching.h> |
| #include <asm/ftrace.h> |
| #include <asm/traps.h> |
| #include <asm/desc.h> |
| #include <asm/fpu/internal.h> |
| #include <asm/cpu_entry_area.h> |
| #include <asm/mce.h> |
| #include <asm/fixmap.h> |
| #include <asm/mach_traps.h> |
| #include <asm/alternative.h> |
| #include <asm/fpu/xstate.h> |
| #include <asm/trace/mpx.h> |
| #include <asm/mpx.h> |
| #include <asm/vm86.h> |
| |
| #ifdef CONFIG_X86_64 |
| #include <asm/x86_init.h> |
| #include <asm/pgalloc.h> |
| #include <asm/proto.h> |
| #else |
| #include <asm/processor-flags.h> |
| #include <asm/setup.h> |
| #include <asm/proto.h> |
| #endif |
| |
| DECLARE_BITMAP(used_vectors, NR_VECTORS); |
| |
| static inline void cond_local_irq_enable(struct pt_regs *regs) |
| { |
| if (regs->flags & X86_EFLAGS_IF) |
| local_irq_enable(); |
| } |
| |
| static inline void cond_local_irq_disable(struct pt_regs *regs) |
| { |
| if (regs->flags & X86_EFLAGS_IF) |
| local_irq_disable(); |
| } |
| |
| /* |
| * In IST context, we explicitly disable preemption. This serves two |
| * purposes: it makes it much less likely that we would accidentally |
| * schedule in IST context and it will force a warning if we somehow |
| * manage to schedule by accident. |
| */ |
| void ist_enter(struct pt_regs *regs) |
| { |
| if (user_mode(regs)) { |
| RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| } else { |
| /* |
| * We might have interrupted pretty much anything. In |
| * fact, if we're a machine check, we can even interrupt |
| * NMI processing. We don't want in_nmi() to return true, |
| * but we need to notify RCU. |
| */ |
| rcu_nmi_enter(); |
| } |
| |
| preempt_disable(); |
| |
| /* This code is a bit fragile. Test it. */ |
| RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work"); |
| } |
| |
| void ist_exit(struct pt_regs *regs) |
| { |
| preempt_enable_no_resched(); |
| |
| if (!user_mode(regs)) |
| rcu_nmi_exit(); |
| } |
| |
| /** |
| * ist_begin_non_atomic() - begin a non-atomic section in an IST exception |
| * @regs: regs passed to the IST exception handler |
| * |
| * IST exception handlers normally cannot schedule. As a special |
| * exception, if the exception interrupted userspace code (i.e. |
| * user_mode(regs) would return true) and the exception was not |
| * a double fault, it can be safe to schedule. ist_begin_non_atomic() |
| * begins a non-atomic section within an ist_enter()/ist_exit() region. |
| * Callers are responsible for enabling interrupts themselves inside |
| * the non-atomic section, and callers must call ist_end_non_atomic() |
| * before ist_exit(). |
| */ |
| void ist_begin_non_atomic(struct pt_regs *regs) |
| { |
| BUG_ON(!user_mode(regs)); |
| |
| /* |
| * Sanity check: we need to be on the normal thread stack. This |
| * will catch asm bugs and any attempt to use ist_preempt_enable |
| * from double_fault. |
| */ |
| BUG_ON(!on_thread_stack()); |
| |
| preempt_enable_no_resched(); |
| } |
| |
| /** |
| * ist_end_non_atomic() - begin a non-atomic section in an IST exception |
| * |
| * Ends a non-atomic section started with ist_begin_non_atomic(). |
| */ |
| void ist_end_non_atomic(void) |
| { |
| preempt_disable(); |
| } |
| |
| int is_valid_bugaddr(unsigned long addr) |
| { |
| unsigned short ud; |
| |
| if (addr < TASK_SIZE_MAX) |
| return 0; |
| |
| if (probe_kernel_address((unsigned short *)addr, ud)) |
| return 0; |
| |
| return ud == INSN_UD0 || ud == INSN_UD2; |
| } |
| |
| int fixup_bug(struct pt_regs *regs, int trapnr) |
| { |
| if (trapnr != X86_TRAP_UD) |
| return 0; |
| |
| switch (report_bug(regs->ip, regs)) { |
| case BUG_TRAP_TYPE_NONE: |
| case BUG_TRAP_TYPE_BUG: |
| break; |
| |
| case BUG_TRAP_TYPE_WARN: |
| regs->ip += LEN_UD2; |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static nokprobe_inline int |
| do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str, |
| struct pt_regs *regs, long error_code) |
| { |
| if (v8086_mode(regs)) { |
| /* |
| * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. |
| * On nmi (interrupt 2), do_trap should not be called. |
| */ |
| if (trapnr < X86_TRAP_UD) { |
| if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, |
| error_code, trapnr)) |
| return 0; |
| } |
| return -1; |
| } |
| |
| if (!user_mode(regs)) { |
| if (fixup_exception(regs, trapnr)) |
| return 0; |
| |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_nr = trapnr; |
| die(str, regs, error_code); |
| } |
| |
| return -1; |
| } |
| |
| static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr, |
| siginfo_t *info) |
| { |
| unsigned long siaddr; |
| int sicode; |
| |
| switch (trapnr) { |
| default: |
| return SEND_SIG_PRIV; |
| |
| case X86_TRAP_DE: |
| sicode = FPE_INTDIV; |
| siaddr = uprobe_get_trap_addr(regs); |
| break; |
| case X86_TRAP_UD: |
| sicode = ILL_ILLOPN; |
| siaddr = uprobe_get_trap_addr(regs); |
| break; |
| case X86_TRAP_AC: |
| sicode = BUS_ADRALN; |
| siaddr = 0; |
| break; |
| } |
| |
| info->si_signo = signr; |
| info->si_errno = 0; |
| info->si_code = sicode; |
| info->si_addr = (void __user *)siaddr; |
| return info; |
| } |
| |
| static void |
| do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, |
| long error_code, siginfo_t *info) |
| { |
| struct task_struct *tsk = current; |
| |
| |
| if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) |
| return; |
| /* |
| * We want error_code and trap_nr set for userspace faults and |
| * kernelspace faults which result in die(), but not |
| * kernelspace faults which are fixed up. die() gives the |
| * process no chance to handle the signal and notice the |
| * kernel fault information, so that won't result in polluting |
| * the information about previously queued, but not yet |
| * delivered, faults. See also do_general_protection below. |
| */ |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_nr = trapnr; |
| |
| if (show_unhandled_signals && unhandled_signal(tsk, signr) && |
| printk_ratelimit()) { |
| pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx", |
| tsk->comm, tsk->pid, str, |
| regs->ip, regs->sp, error_code); |
| print_vma_addr(KERN_CONT " in ", regs->ip); |
| pr_cont("\n"); |
| } |
| |
| force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk); |
| } |
| NOKPROBE_SYMBOL(do_trap); |
| |
| static void do_error_trap(struct pt_regs *regs, long error_code, char *str, |
| unsigned long trapnr, int signr) |
| { |
| siginfo_t info; |
| |
| RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| |
| /* |
| * WARN*()s end up here; fix them up before we call the |
| * notifier chain. |
| */ |
| if (!user_mode(regs) && fixup_bug(regs, trapnr)) |
| return; |
| |
| if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != |
| NOTIFY_STOP) { |
| cond_local_irq_enable(regs); |
| do_trap(trapnr, signr, str, regs, error_code, |
| fill_trap_info(regs, signr, trapnr, &info)); |
| } |
| } |
| |
| #define DO_ERROR(trapnr, signr, str, name) \ |
| dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ |
| { \ |
| do_error_trap(regs, error_code, str, trapnr, signr); \ |
| } |
| |
| DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error) |
| DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow) |
| DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op) |
| DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun) |
| DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS) |
| DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present) |
| DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment) |
| DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check) |
| |
| #ifdef CONFIG_VMAP_STACK |
| __visible void __noreturn handle_stack_overflow(const char *message, |
| struct pt_regs *regs, |
| unsigned long fault_address) |
| { |
| printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", |
| (void *)fault_address, current->stack, |
| (char *)current->stack + THREAD_SIZE - 1); |
| die(message, regs, 0); |
| |
| /* Be absolutely certain we don't return. */ |
| panic(message); |
| } |
| #endif |
| |
| #ifdef CONFIG_X86_64 |
| /* Runs on IST stack */ |
| dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) |
| { |
| static const char str[] = "double fault"; |
| struct task_struct *tsk = current; |
| #ifdef CONFIG_VMAP_STACK |
| unsigned long cr2; |
| #endif |
| |
| #ifdef CONFIG_X86_ESPFIX64 |
| extern unsigned char native_irq_return_iret[]; |
| |
| /* |
| * If IRET takes a non-IST fault on the espfix64 stack, then we |
| * end up promoting it to a doublefault. In that case, take |
| * advantage of the fact that we're not using the normal (TSS.sp0) |
| * stack right now. We can write a fake #GP(0) frame at TSS.sp0 |
| * and then modify our own IRET frame so that, when we return, |
| * we land directly at the #GP(0) vector with the stack already |
| * set up according to its expectations. |
| * |
| * The net result is that our #GP handler will think that we |
| * entered from usermode with the bad user context. |
| * |
| * No need for ist_enter here because we don't use RCU. |
| */ |
| if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && |
| regs->cs == __KERNEL_CS && |
| regs->ip == (unsigned long)native_irq_return_iret) |
| { |
| struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; |
| |
| /* |
| * regs->sp points to the failing IRET frame on the |
| * ESPFIX64 stack. Copy it to the entry stack. This fills |
| * in gpregs->ss through gpregs->ip. |
| * |
| */ |
| memmove(&gpregs->ip, (void *)regs->sp, 5*8); |
| gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ |
| |
| /* |
| * Adjust our frame so that we return straight to the #GP |
| * vector with the expected RSP value. This is safe because |
| * we won't enable interupts or schedule before we invoke |
| * general_protection, so nothing will clobber the stack |
| * frame we just set up. |
| */ |
| regs->ip = (unsigned long)general_protection; |
| regs->sp = (unsigned long)&gpregs->orig_ax; |
| |
| return; |
| } |
| #endif |
| |
| ist_enter(regs); |
| notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); |
| |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_nr = X86_TRAP_DF; |
| |
| #ifdef CONFIG_VMAP_STACK |
| /* |
| * If we overflow the stack into a guard page, the CPU will fail |
| * to deliver #PF and will send #DF instead. Similarly, if we |
| * take any non-IST exception while too close to the bottom of |
| * the stack, the processor will get a page fault while |
| * delivering the exception and will generate a double fault. |
| * |
| * According to the SDM (footnote in 6.15 under "Interrupt 14 - |
| * Page-Fault Exception (#PF): |
| * |
| * Processors update CR2 whenever a page fault is detected. If a |
| * second page fault occurs while an earlier page fault is being |
| * delivered, the faulting linear address of the second fault will |
| * overwrite the contents of CR2 (replacing the previous |
| * address). These updates to CR2 occur even if the page fault |
| * results in a double fault or occurs during the delivery of a |
| * double fault. |
| * |
| * The logic below has a small possibility of incorrectly diagnosing |
| * some errors as stack overflows. For example, if the IDT or GDT |
| * gets corrupted such that #GP delivery fails due to a bad descriptor |
| * causing #GP and we hit this condition while CR2 coincidentally |
| * points to the stack guard page, we'll think we overflowed the |
| * stack. Given that we're going to panic one way or another |
| * if this happens, this isn't necessarily worth fixing. |
| * |
| * If necessary, we could improve the test by only diagnosing |
| * a stack overflow if the saved RSP points within 47 bytes of |
| * the bottom of the stack: if RSP == tsk_stack + 48 and we |
| * take an exception, the stack is already aligned and there |
| * will be enough room SS, RSP, RFLAGS, CS, RIP, and a |
| * possible error code, so a stack overflow would *not* double |
| * fault. With any less space left, exception delivery could |
| * fail, and, as a practical matter, we've overflowed the |
| * stack even if the actual trigger for the double fault was |
| * something else. |
| */ |
| cr2 = read_cr2(); |
| if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE) |
| handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2); |
| #endif |
| |
| #ifdef CONFIG_DOUBLEFAULT |
| df_debug(regs, error_code); |
| #endif |
| /* |
| * This is always a kernel trap and never fixable (and thus must |
| * never return). |
| */ |
| for (;;) |
| die(str, regs, error_code); |
| } |
| #endif |
| |
| dotraplinkage void do_bounds(struct pt_regs *regs, long error_code) |
| { |
| const struct mpx_bndcsr *bndcsr; |
| siginfo_t *info; |
| |
| RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| if (notify_die(DIE_TRAP, "bounds", regs, error_code, |
| X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) |
| return; |
| cond_local_irq_enable(regs); |
| |
| if (!user_mode(regs)) |
| die("bounds", regs, error_code); |
| |
| if (!cpu_feature_enabled(X86_FEATURE_MPX)) { |
| /* The exception is not from Intel MPX */ |
| goto exit_trap; |
| } |
| |
| /* |
| * We need to look at BNDSTATUS to resolve this exception. |
| * A NULL here might mean that it is in its 'init state', |
| * which is all zeros which indicates MPX was not |
| * responsible for the exception. |
| */ |
| bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR); |
| if (!bndcsr) |
| goto exit_trap; |
| |
| trace_bounds_exception_mpx(bndcsr); |
| /* |
| * The error code field of the BNDSTATUS register communicates status |
| * information of a bound range exception #BR or operation involving |
| * bound directory. |
| */ |
| switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) { |
| case 2: /* Bound directory has invalid entry. */ |
| if (mpx_handle_bd_fault()) |
| goto exit_trap; |
| break; /* Success, it was handled */ |
| case 1: /* Bound violation. */ |
| info = mpx_generate_siginfo(regs); |
| if (IS_ERR(info)) { |
| /* |
| * We failed to decode the MPX instruction. Act as if |
| * the exception was not caused by MPX. |
| */ |
| goto exit_trap; |
| } |
| /* |
| * Success, we decoded the instruction and retrieved |
| * an 'info' containing the address being accessed |
| * which caused the exception. This information |
| * allows and application to possibly handle the |
| * #BR exception itself. |
| */ |
| do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info); |
| kfree(info); |
| break; |
| case 0: /* No exception caused by Intel MPX operations. */ |
| goto exit_trap; |
| default: |
| die("bounds", regs, error_code); |
| } |
| |
| return; |
| |
| exit_trap: |
| /* |
| * This path out is for all the cases where we could not |
| * handle the exception in some way (like allocating a |
| * table or telling userspace about it. We will also end |
| * up here if the kernel has MPX turned off at compile |
| * time.. |
| */ |
| do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL); |
| } |
| |
| dotraplinkage void |
| do_general_protection(struct pt_regs *regs, long error_code) |
| { |
| struct task_struct *tsk; |
| |
| RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| cond_local_irq_enable(regs); |
| |
| if (v8086_mode(regs)) { |
| local_irq_enable(); |
| handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); |
| return; |
| } |
| |
| tsk = current; |
| if (!user_mode(regs)) { |
| if (fixup_exception(regs, X86_TRAP_GP)) |
| return; |
| |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_nr = X86_TRAP_GP; |
| if (notify_die(DIE_GPF, "general protection fault", regs, error_code, |
| X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP) |
| die("general protection fault", regs, error_code); |
| return; |
| } |
| |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_nr = X86_TRAP_GP; |
| |
| if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && |
| printk_ratelimit()) { |
| pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx", |
| tsk->comm, task_pid_nr(tsk), |
| regs->ip, regs->sp, error_code); |
| print_vma_addr(KERN_CONT " in ", regs->ip); |
| pr_cont("\n"); |
| } |
| |
| force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk); |
| } |
| NOKPROBE_SYMBOL(do_general_protection); |
| |
| dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code) |
| { |
| #ifdef CONFIG_DYNAMIC_FTRACE |
| /* |
| * ftrace must be first, everything else may cause a recursive crash. |
| * See note by declaration of modifying_ftrace_code in ftrace.c |
| */ |
| if (unlikely(atomic_read(&modifying_ftrace_code)) && |
| ftrace_int3_handler(regs)) |
| return; |
| #endif |
| if (poke_int3_handler(regs)) |
| return; |
| |
| /* |
| * Use ist_enter despite the fact that we don't use an IST stack. |
| * We can be called from a kprobe in non-CONTEXT_KERNEL kernel |
| * mode or even during context tracking state changes. |
| * |
| * This means that we can't schedule. That's okay. |
| */ |
| ist_enter(regs); |
| RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP |
| if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, |
| SIGTRAP) == NOTIFY_STOP) |
| goto exit; |
| #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ |
| |
| #ifdef CONFIG_KPROBES |
| if (kprobe_int3_handler(regs)) |
| goto exit; |
| #endif |
| |
| if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, |
| SIGTRAP) == NOTIFY_STOP) |
| goto exit; |
| |
| cond_local_irq_enable(regs); |
| do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL); |
| cond_local_irq_disable(regs); |
| |
| exit: |
| ist_exit(regs); |
| } |
| NOKPROBE_SYMBOL(do_int3); |
| |
| #ifdef CONFIG_X86_64 |
| /* |
| * Help handler running on a per-cpu (IST or entry trampoline) stack |
| * to switch to the normal thread stack if the interrupted code was in |
| * user mode. The actual stack switch is done in entry_64.S |
| */ |
| asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs) |
| { |
| struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; |
| if (regs != eregs) |
| *regs = *eregs; |
| return regs; |
| } |
| NOKPROBE_SYMBOL(sync_regs); |
| |
| struct bad_iret_stack { |
| void *error_entry_ret; |
| struct pt_regs regs; |
| }; |
| |
| asmlinkage __visible notrace |
| struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) |
| { |
| /* |
| * This is called from entry_64.S early in handling a fault |
| * caused by a bad iret to user mode. To handle the fault |
| * correctly, we want to move our stack frame to where it would |
| * be had we entered directly on the entry stack (rather than |
| * just below the IRET frame) and we want to pretend that the |
| * exception came from the IRET target. |
| */ |
| struct bad_iret_stack *new_stack = |
| (struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; |
| |
| /* Copy the IRET target to the new stack. */ |
| memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8); |
| |
| /* Copy the remainder of the stack from the current stack. */ |
| memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip)); |
| |
| BUG_ON(!user_mode(&new_stack->regs)); |
| return new_stack; |
| } |
| NOKPROBE_SYMBOL(fixup_bad_iret); |
| #endif |
| |
| static bool is_sysenter_singlestep(struct pt_regs *regs) |
| { |
| /* |
| * We don't try for precision here. If we're anywhere in the region of |
| * code that can be single-stepped in the SYSENTER entry path, then |
| * assume that this is a useless single-step trap due to SYSENTER |
| * being invoked with TF set. (We don't know in advance exactly |
| * which instructions will be hit because BTF could plausibly |
| * be set.) |
| */ |
| #ifdef CONFIG_X86_32 |
| return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < |
| (unsigned long)__end_SYSENTER_singlestep_region - |
| (unsigned long)__begin_SYSENTER_singlestep_region; |
| #elif defined(CONFIG_IA32_EMULATION) |
| return (regs->ip - (unsigned long)entry_SYSENTER_compat) < |
| (unsigned long)__end_entry_SYSENTER_compat - |
| (unsigned long)entry_SYSENTER_compat; |
| #else |
| return false; |
| #endif |
| } |
| |
| /* |
| * Our handling of the processor debug registers is non-trivial. |
| * We do not clear them on entry and exit from the kernel. Therefore |
| * it is possible to get a watchpoint trap here from inside the kernel. |
| * However, the code in ./ptrace.c has ensured that the user can |
| * only set watchpoints on userspace addresses. Therefore the in-kernel |
| * watchpoint trap can only occur in code which is reading/writing |
| * from user space. Such code must not hold kernel locks (since it |
| * can equally take a page fault), therefore it is safe to call |
| * force_sig_info even though that claims and releases locks. |
| * |
| * Code in ./signal.c ensures that the debug control register |
| * is restored before we deliver any signal, and therefore that |
| * user code runs with the correct debug control register even though |
| * we clear it here. |
| * |
| * Being careful here means that we don't have to be as careful in a |
| * lot of more complicated places (task switching can be a bit lazy |
| * about restoring all the debug state, and ptrace doesn't have to |
| * find every occurrence of the TF bit that could be saved away even |
| * by user code) |
| * |
| * May run on IST stack. |
| */ |
| dotraplinkage void do_debug(struct pt_regs *regs, long error_code) |
| { |
| struct task_struct *tsk = current; |
| int user_icebp = 0; |
| unsigned long dr6; |
| int si_code; |
| |
| ist_enter(regs); |
| |
| get_debugreg(dr6, 6); |
| /* |
| * The Intel SDM says: |
| * |
| * Certain debug exceptions may clear bits 0-3. The remaining |
| * contents of the DR6 register are never cleared by the |
| * processor. To avoid confusion in identifying debug |
| * exceptions, debug handlers should clear the register before |
| * returning to the interrupted task. |
| * |
| * Keep it simple: clear DR6 immediately. |
| */ |
| set_debugreg(0, 6); |
| |
| /* Filter out all the reserved bits which are preset to 1 */ |
| dr6 &= ~DR6_RESERVED; |
| |
| /* |
| * The SDM says "The processor clears the BTF flag when it |
| * generates a debug exception." Clear TIF_BLOCKSTEP to keep |
| * TIF_BLOCKSTEP in sync with the hardware BTF flag. |
| */ |
| clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); |
| |
| if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) && |
| is_sysenter_singlestep(regs))) { |
| dr6 &= ~DR_STEP; |
| if (!dr6) |
| goto exit; |
| /* |
| * else we might have gotten a single-step trap and hit a |
| * watchpoint at the same time, in which case we should fall |
| * through and handle the watchpoint. |
| */ |
| } |
| |
| /* |
| * If dr6 has no reason to give us about the origin of this trap, |
| * then it's very likely the result of an icebp/int01 trap. |
| * User wants a sigtrap for that. |
| */ |
| if (!dr6 && user_mode(regs)) |
| user_icebp = 1; |
| |
| /* Store the virtualized DR6 value */ |
| tsk->thread.debugreg6 = dr6; |
| |
| #ifdef CONFIG_KPROBES |
| if (kprobe_debug_handler(regs)) |
| goto exit; |
| #endif |
| |
| if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code, |
| SIGTRAP) == NOTIFY_STOP) |
| goto exit; |
| |
| /* |
| * Let others (NMI) know that the debug stack is in use |
| * as we may switch to the interrupt stack. |
| */ |
| debug_stack_usage_inc(); |
| |
| /* It's safe to allow irq's after DR6 has been saved */ |
| cond_local_irq_enable(regs); |
| |
| if (v8086_mode(regs)) { |
| handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, |
| X86_TRAP_DB); |
| cond_local_irq_disable(regs); |
| debug_stack_usage_dec(); |
| goto exit; |
| } |
| |
| if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { |
| /* |
| * Historical junk that used to handle SYSENTER single-stepping. |
| * This should be unreachable now. If we survive for a while |
| * without anyone hitting this warning, we'll turn this into |
| * an oops. |
| */ |
| tsk->thread.debugreg6 &= ~DR_STEP; |
| set_tsk_thread_flag(tsk, TIF_SINGLESTEP); |
| regs->flags &= ~X86_EFLAGS_TF; |
| } |
| si_code = get_si_code(tsk->thread.debugreg6); |
| if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) |
| send_sigtrap(tsk, regs, error_code, si_code); |
| cond_local_irq_disable(regs); |
| debug_stack_usage_dec(); |
| |
| exit: |
| ist_exit(regs); |
| } |
| NOKPROBE_SYMBOL(do_debug); |
| |
| /* |
| * Note that we play around with the 'TS' bit in an attempt to get |
| * the correct behaviour even in the presence of the asynchronous |
| * IRQ13 behaviour |
| */ |
| static void math_error(struct pt_regs *regs, int error_code, int trapnr) |
| { |
| struct task_struct *task = current; |
| struct fpu *fpu = &task->thread.fpu; |
| siginfo_t info; |
| char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : |
| "simd exception"; |
| |
| cond_local_irq_enable(regs); |
| |
| if (!user_mode(regs)) { |
| if (fixup_exception(regs, trapnr)) |
| return; |
| |
| task->thread.error_code = error_code; |
| task->thread.trap_nr = trapnr; |
| |
| if (notify_die(DIE_TRAP, str, regs, error_code, |
| trapnr, SIGFPE) != NOTIFY_STOP) |
| die(str, regs, error_code); |
| return; |
| } |
| |
| /* |
| * Save the info for the exception handler and clear the error. |
| */ |
| fpu__save(fpu); |
| |
| task->thread.trap_nr = trapnr; |
| task->thread.error_code = error_code; |
| info.si_signo = SIGFPE; |
| info.si_errno = 0; |
| info.si_addr = (void __user *)uprobe_get_trap_addr(regs); |
| |
| info.si_code = fpu__exception_code(fpu, trapnr); |
| |
| /* Retry when we get spurious exceptions: */ |
| if (!info.si_code) |
| return; |
| |
| force_sig_info(SIGFPE, &info, task); |
| } |
| |
| dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) |
| { |
| RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| math_error(regs, error_code, X86_TRAP_MF); |
| } |
| |
| dotraplinkage void |
| do_simd_coprocessor_error(struct pt_regs *regs, long error_code) |
| { |
| RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| math_error(regs, error_code, X86_TRAP_XF); |
| } |
| |
| dotraplinkage void |
| do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) |
| { |
| cond_local_irq_enable(regs); |
| } |
| |
| dotraplinkage void |
| do_device_not_available(struct pt_regs *regs, long error_code) |
| { |
| unsigned long cr0; |
| |
| RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| |
| #ifdef CONFIG_MATH_EMULATION |
| if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) { |
| struct math_emu_info info = { }; |
| |
| cond_local_irq_enable(regs); |
| |
| info.regs = regs; |
| math_emulate(&info); |
| return; |
| } |
| #endif |
| |
| /* This should not happen. */ |
| cr0 = read_cr0(); |
| if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { |
| /* Try to fix it up and carry on. */ |
| write_cr0(cr0 & ~X86_CR0_TS); |
| } else { |
| /* |
| * Something terrible happened, and we're better off trying |
| * to kill the task than getting stuck in a never-ending |
| * loop of #NM faults. |
| */ |
| die("unexpected #NM exception", regs, error_code); |
| } |
| } |
| NOKPROBE_SYMBOL(do_device_not_available); |
| |
| #ifdef CONFIG_X86_32 |
| dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) |
| { |
| siginfo_t info; |
| |
| RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
| local_irq_enable(); |
| |
| info.si_signo = SIGILL; |
| info.si_errno = 0; |
| info.si_code = ILL_BADSTK; |
| info.si_addr = NULL; |
| if (notify_die(DIE_TRAP, "iret exception", regs, error_code, |
| X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { |
| do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code, |
| &info); |
| } |
| } |
| #endif |
| |
| void __init trap_init(void) |
| { |
| /* Init cpu_entry_area before IST entries are set up */ |
| setup_cpu_entry_areas(); |
| |
| idt_setup_traps(); |
| |
| /* |
| * Set the IDT descriptor to a fixed read-only location, so that the |
| * "sidt" instruction will not leak the location of the kernel, and |
| * to defend the IDT against arbitrary memory write vulnerabilities. |
| * It will be reloaded in cpu_init() */ |
| cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table), |
| PAGE_KERNEL_RO); |
| idt_descr.address = CPU_ENTRY_AREA_RO_IDT; |
| |
| /* |
| * Should be a barrier for any external CPU state: |
| */ |
| cpu_init(); |
| |
| idt_setup_ist_traps(); |
| |
| x86_init.irqs.trap_init(); |
| |
| idt_setup_debugidt_traps(); |
| } |