blob: ec277913e01b4e06b1034531818b96c253004863 [file] [log] [blame]
/*
* Copyright 2005, Paul Mackerras, IBM Corporation.
* Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
* Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/sched.h>
#include <linux/mm_types.h>
#include <linux/mm.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/sections.h>
#include <asm/mmu.h>
#include <asm/tlb.h>
#include "mmu_decl.h"
#define CREATE_TRACE_POINTS
#include <trace/events/thp.h>
#ifdef CONFIG_SPARSEMEM_VMEMMAP
/*
* vmemmap is the starting address of the virtual address space where
* struct pages are allocated for all possible PFNs present on the system
* including holes and bad memory (hence sparse). These virtual struct
* pages are stored in sequence in this virtual address space irrespective
* of the fact whether the corresponding PFN is valid or not. This achieves
* constant relationship between address of struct page and its PFN.
*
* During boot or memory hotplug operation when a new memory section is
* added, physical memory allocation (including hash table bolting) will
* be performed for the set of struct pages which are part of the memory
* section. This saves memory by not allocating struct pages for PFNs
* which are not valid.
*
* ----------------------------------------------
* | PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
* ----------------------------------------------
*
* f000000000000000 c000000000000000
* vmemmap +--------------+ +--------------+
* + | page struct | +--------------> | page struct |
* | +--------------+ +--------------+
* | | page struct | +--------------> | page struct |
* | +--------------+ | +--------------+
* | | page struct | + +------> | page struct |
* | +--------------+ | +--------------+
* | | page struct | | +--> | page struct |
* | +--------------+ | | +--------------+
* | | page struct | | |
* | +--------------+ | |
* | | page struct | | |
* | +--------------+ | |
* | | page struct | | |
* | +--------------+ | |
* | | page struct | | |
* | +--------------+ | |
* | | page struct | +-------+ |
* | +--------------+ |
* | | page struct | +-----------+
* | +--------------+
* | | page struct | No mapping
* | +--------------+
* | | page struct | No mapping
* v +--------------+
*
* -----------------------------------------
* | RELATION BETWEEN STRUCT PAGES AND PFNS|
* -----------------------------------------
*
* vmemmap +--------------+ +---------------+
* + | page struct | +-------------> | PFN |
* | +--------------+ +---------------+
* | | page struct | +-------------> | PFN |
* | +--------------+ +---------------+
* | | page struct | +-------------> | PFN |
* | +--------------+ +---------------+
* | | page struct | +-------------> | PFN |
* | +--------------+ +---------------+
* | | |
* | +--------------+
* | | |
* | +--------------+
* | | |
* | +--------------+ +---------------+
* | | page struct | +-------------> | PFN |
* | +--------------+ +---------------+
* | | |
* | +--------------+
* | | |
* | +--------------+ +---------------+
* | | page struct | +-------------> | PFN |
* | +--------------+ +---------------+
* | | page struct | +-------------> | PFN |
* v +--------------+ +---------------+
*/
/*
* On hash-based CPUs, the vmemmap is bolted in the hash table.
*
*/
int __meminit hash__vmemmap_create_mapping(unsigned long start,
unsigned long page_size,
unsigned long phys)
{
int rc = htab_bolt_mapping(start, start + page_size, phys,
pgprot_val(PAGE_KERNEL),
mmu_vmemmap_psize, mmu_kernel_ssize);
if (rc < 0) {
int rc2 = htab_remove_mapping(start, start + page_size,
mmu_vmemmap_psize,
mmu_kernel_ssize);
BUG_ON(rc2 && (rc2 != -ENOENT));
}
return rc;
}
#ifdef CONFIG_MEMORY_HOTPLUG
void hash__vmemmap_remove_mapping(unsigned long start,
unsigned long page_size)
{
int rc = htab_remove_mapping(start, start + page_size,
mmu_vmemmap_psize,
mmu_kernel_ssize);
BUG_ON((rc < 0) && (rc != -ENOENT));
WARN_ON(rc == -ENOENT);
}
#endif
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
/*
* map_kernel_page currently only called by __ioremap
* map_kernel_page adds an entry to the ioremap page table
* and adds an entry to the HPT, possibly bolting it
*/
int hash__map_kernel_page(unsigned long ea, unsigned long pa, unsigned long flags)
{
pgd_t *pgdp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
if (slab_is_available()) {
pgdp = pgd_offset_k(ea);
pudp = pud_alloc(&init_mm, pgdp, ea);
if (!pudp)
return -ENOMEM;
pmdp = pmd_alloc(&init_mm, pudp, ea);
if (!pmdp)
return -ENOMEM;
ptep = pte_alloc_kernel(pmdp, ea);
if (!ptep)
return -ENOMEM;
set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
__pgprot(flags)));
} else {
/*
* If the mm subsystem is not fully up, we cannot create a
* linux page table entry for this mapping. Simply bolt an
* entry in the hardware page table.
*
*/
if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
mmu_io_psize, mmu_kernel_ssize)) {
printk(KERN_ERR "Failed to do bolted mapping IO "
"memory at %016lx !\n", pa);
return -ENOMEM;
}
}
smp_wmb();
return 0;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, unsigned long clr,
unsigned long set)
{
__be64 old_be, tmp;
unsigned long old;
#ifdef CONFIG_DEBUG_VM
WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
assert_spin_locked(&mm->page_table_lock);
#endif
__asm__ __volatile__(
"1: ldarx %0,0,%3\n\
and. %1,%0,%6\n\
bne- 1b \n\
andc %1,%0,%4 \n\
or %1,%1,%7\n\
stdcx. %1,0,%3 \n\
bne- 1b"
: "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
: "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
"r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
: "cc" );
old = be64_to_cpu(old_be);
trace_hugepage_update(addr, old, clr, set);
if (old & H_PAGE_HASHPTE)
hpte_do_hugepage_flush(mm, addr, pmdp, old);
return old;
}
pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp)
{
pmd_t pmd;
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
VM_BUG_ON(pmd_trans_huge(*pmdp));
VM_BUG_ON(pmd_devmap(*pmdp));
pmd = *pmdp;
pmd_clear(pmdp);
/*
* Wait for all pending hash_page to finish. This is needed
* in case of subpage collapse. When we collapse normal pages
* to hugepage, we first clear the pmd, then invalidate all
* the PTE entries. The assumption here is that any low level
* page fault will see a none pmd and take the slow path that
* will wait on mmap_sem. But we could very well be in a
* hash_page with local ptep pointer value. Such a hash page
* can result in adding new HPTE entries for normal subpages.
* That means we could be modifying the page content as we
* copy them to a huge page. So wait for parallel hash_page
* to finish before invalidating HPTE entries. We can do this
* by sending an IPI to all the cpus and executing a dummy
* function there.
*/
serialize_against_pte_lookup(vma->vm_mm);
/*
* Now invalidate the hpte entries in the range
* covered by pmd. This make sure we take a
* fault and will find the pmd as none, which will
* result in a major fault which takes mmap_sem and
* hence wait for collapse to complete. Without this
* the __collapse_huge_page_copy can result in copying
* the old content.
*/
flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
return pmd;
}
/*
* We want to put the pgtable in pmd and use pgtable for tracking
* the base page size hptes
*/
void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
pgtable_t pgtable)
{
pgtable_t *pgtable_slot;
assert_spin_locked(&mm->page_table_lock);
/*
* we store the pgtable in the second half of PMD
*/
pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
*pgtable_slot = pgtable;
/*
* expose the deposited pgtable to other cpus.
* before we set the hugepage PTE at pmd level
* hash fault code looks at the deposted pgtable
* to store hash index values.
*/
smp_wmb();
}
pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
{
pgtable_t pgtable;
pgtable_t *pgtable_slot;
assert_spin_locked(&mm->page_table_lock);
pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
pgtable = *pgtable_slot;
/*
* Once we withdraw, mark the entry NULL.
*/
*pgtable_slot = NULL;
/*
* We store HPTE information in the deposited PTE fragment.
* zero out the content on withdraw.
*/
memset(pgtable, 0, PTE_FRAG_SIZE);
return pgtable;
}
void hash__pmdp_huge_split_prepare(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp)
{
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
VM_BUG_ON(REGION_ID(address) != USER_REGION_ID);
VM_BUG_ON(pmd_devmap(*pmdp));
/*
* We can't mark the pmd none here, because that will cause a race
* against exit_mmap. We need to continue mark pmd TRANS HUGE, while
* we spilt, but at the same time we wan't rest of the ppc64 code
* not to insert hash pte on this, because we will be modifying
* the deposited pgtable in the caller of this function. Hence
* clear the _PAGE_USER so that we move the fault handling to
* higher level function and that will serialize against ptl.
* We need to flush existing hash pte entries here even though,
* the translation is still valid, because we will withdraw
* pgtable_t after this.
*/
pmd_hugepage_update(vma->vm_mm, address, pmdp, 0, _PAGE_PRIVILEGED);
}
/*
* A linux hugepage PMD was changed and the corresponding hash table entries
* neesd to be flushed.
*/
void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, unsigned long old_pmd)
{
int ssize;
unsigned int psize;
unsigned long vsid;
unsigned long flags = 0;
/* get the base page size,vsid and segment size */
#ifdef CONFIG_DEBUG_VM
psize = get_slice_psize(mm, addr);
BUG_ON(psize == MMU_PAGE_16M);
#endif
if (old_pmd & H_PAGE_COMBO)
psize = MMU_PAGE_4K;
else
psize = MMU_PAGE_64K;
if (!is_kernel_addr(addr)) {
ssize = user_segment_size(addr);
vsid = get_vsid(mm->context.id, addr, ssize);
WARN_ON(vsid == 0);
} else {
vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
ssize = mmu_kernel_ssize;
}
if (mm_is_thread_local(mm))
flags |= HPTE_LOCAL_UPDATE;
return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
}
pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp)
{
pmd_t old_pmd;
pgtable_t pgtable;
unsigned long old;
pgtable_t *pgtable_slot;
old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
old_pmd = __pmd(old);
/*
* We have pmd == none and we are holding page_table_lock.
* So we can safely go and clear the pgtable hash
* index info.
*/
pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
pgtable = *pgtable_slot;
/*
* Let's zero out old valid and hash index details
* hash fault look at them.
*/
memset(pgtable, 0, PTE_FRAG_SIZE);
/*
* Serialize against find_current_mm_pte variants which does lock-less
* lookup in page tables with local interrupts disabled. For huge pages
* it casts pmd_t to pte_t. Since format of pte_t is different from
* pmd_t we want to prevent transit from pmd pointing to page table
* to pmd pointing to huge page (and back) while interrupts are disabled.
* We clear pmd to possibly replace it with page table pointer in
* different code paths. So make sure we wait for the parallel
* find_curren_mm_pte to finish.
*/
serialize_against_pte_lookup(mm);
return old_pmd;
}
int hash__has_transparent_hugepage(void)
{
if (!mmu_has_feature(MMU_FTR_16M_PAGE))
return 0;
/*
* We support THP only if PMD_SIZE is 16MB.
*/
if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
return 0;
/*
* We need to make sure that we support 16MB hugepage in a segement
* with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
* of 64K.
*/
/*
* If we have 64K HPTE, we will be using that by default
*/
if (mmu_psize_defs[MMU_PAGE_64K].shift &&
(mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
return 0;
/*
* Ok we only have 4K HPTE
*/
if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
return 0;
return 1;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#ifdef CONFIG_STRICT_KERNEL_RWX
static bool hash__change_memory_range(unsigned long start, unsigned long end,
unsigned long newpp)
{
unsigned long idx;
unsigned int step, shift;
shift = mmu_psize_defs[mmu_linear_psize].shift;
step = 1 << shift;
start = ALIGN_DOWN(start, step);
end = ALIGN(end, step); // aligns up
if (start >= end)
return false;
pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
start, end, newpp, step);
for (idx = start; idx < end; idx += step)
/* Not sure if we can do much with the return value */
mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
mmu_kernel_ssize);
return true;
}
void hash__mark_rodata_ro(void)
{
unsigned long start, end;
start = (unsigned long)_stext;
end = (unsigned long)__init_begin;
WARN_ON(!hash__change_memory_range(start, end, PP_RXXX));
}
void hash__mark_initmem_nx(void)
{
unsigned long start, end, pp;
start = (unsigned long)__init_begin;
end = (unsigned long)__init_end;
pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
WARN_ON(!hash__change_memory_range(start, end, pp));
}
#endif