| /* |
| * Linux/PA-RISC Project (http://www.parisc-linux.org/) |
| * |
| * Floating-point emulation code |
| * Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| /* |
| * BEGIN_DESC |
| * |
| * File: |
| * @(#) pa/spmath/fmpyfadd.c $Revision: 1.1 $ |
| * |
| * Purpose: |
| * Double Floating-point Multiply Fused Add |
| * Double Floating-point Multiply Negate Fused Add |
| * Single Floating-point Multiply Fused Add |
| * Single Floating-point Multiply Negate Fused Add |
| * |
| * External Interfaces: |
| * dbl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| * dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| * sgl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| * sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| * |
| * Internal Interfaces: |
| * |
| * Theory: |
| * <<please update with a overview of the operation of this file>> |
| * |
| * END_DESC |
| */ |
| |
| |
| #include "float.h" |
| #include "sgl_float.h" |
| #include "dbl_float.h" |
| |
| |
| /* |
| * Double Floating-point Multiply Fused Add |
| */ |
| |
| int |
| dbl_fmpyfadd( |
| dbl_floating_point *src1ptr, |
| dbl_floating_point *src2ptr, |
| dbl_floating_point *src3ptr, |
| unsigned int *status, |
| dbl_floating_point *dstptr) |
| { |
| unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2; |
| register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4; |
| unsigned int rightp1, rightp2, rightp3, rightp4; |
| unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0; |
| register int mpy_exponent, add_exponent, count; |
| boolean inexact = FALSE, is_tiny = FALSE; |
| |
| unsigned int signlessleft1, signlessright1, save; |
| register int result_exponent, diff_exponent; |
| int sign_save, jumpsize; |
| |
| Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2); |
| Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2); |
| Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2); |
| |
| /* |
| * set sign bit of result of multiply |
| */ |
| if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1)) |
| Dbl_setnegativezerop1(resultp1); |
| else Dbl_setzerop1(resultp1); |
| |
| /* |
| * Generate multiply exponent |
| */ |
| mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS; |
| |
| /* |
| * check first operand for NaN's or infinity |
| */ |
| if (Dbl_isinfinity_exponent(opnd1p1)) { |
| if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { |
| if (Dbl_isnotnan(opnd2p1,opnd2p2) && |
| Dbl_isnotnan(opnd3p1,opnd3p2)) { |
| if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) { |
| /* |
| * invalid since operands are infinity |
| * and zero |
| */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| Set_invalidflag(); |
| Dbl_makequietnan(resultp1,resultp2); |
| Dbl_copytoptr(resultp1,resultp2,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* |
| * Check third operand for infinity with a |
| * sign opposite of the multiply result |
| */ |
| if (Dbl_isinfinity(opnd3p1,opnd3p2) && |
| (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { |
| /* |
| * invalid since attempting a magnitude |
| * subtraction of infinities |
| */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| Set_invalidflag(); |
| Dbl_makequietnan(resultp1,resultp2); |
| Dbl_copytoptr(resultp1,resultp2,dstptr); |
| return(NOEXCEPTION); |
| } |
| |
| /* |
| * return infinity |
| */ |
| Dbl_setinfinity_exponentmantissa(resultp1,resultp2); |
| Dbl_copytoptr(resultp1,resultp2,dstptr); |
| return(NOEXCEPTION); |
| } |
| } |
| else { |
| /* |
| * is NaN; signaling or quiet? |
| */ |
| if (Dbl_isone_signaling(opnd1p1)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Dbl_set_quiet(opnd1p1); |
| } |
| /* |
| * is second operand a signaling NaN? |
| */ |
| else if (Dbl_is_signalingnan(opnd2p1)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Dbl_set_quiet(opnd2p1); |
| Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* |
| * is third operand a signaling NaN? |
| */ |
| else if (Dbl_is_signalingnan(opnd3p1)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Dbl_set_quiet(opnd3p1); |
| Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* |
| * return quiet NaN |
| */ |
| Dbl_copytoptr(opnd1p1,opnd1p2,dstptr); |
| return(NOEXCEPTION); |
| } |
| } |
| |
| /* |
| * check second operand for NaN's or infinity |
| */ |
| if (Dbl_isinfinity_exponent(opnd2p1)) { |
| if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { |
| if (Dbl_isnotnan(opnd3p1,opnd3p2)) { |
| if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) { |
| /* |
| * invalid since multiply operands are |
| * zero & infinity |
| */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| Set_invalidflag(); |
| Dbl_makequietnan(opnd2p1,opnd2p2); |
| Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); |
| return(NOEXCEPTION); |
| } |
| |
| /* |
| * Check third operand for infinity with a |
| * sign opposite of the multiply result |
| */ |
| if (Dbl_isinfinity(opnd3p1,opnd3p2) && |
| (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { |
| /* |
| * invalid since attempting a magnitude |
| * subtraction of infinities |
| */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| Set_invalidflag(); |
| Dbl_makequietnan(resultp1,resultp2); |
| Dbl_copytoptr(resultp1,resultp2,dstptr); |
| return(NOEXCEPTION); |
| } |
| |
| /* |
| * return infinity |
| */ |
| Dbl_setinfinity_exponentmantissa(resultp1,resultp2); |
| Dbl_copytoptr(resultp1,resultp2,dstptr); |
| return(NOEXCEPTION); |
| } |
| } |
| else { |
| /* |
| * is NaN; signaling or quiet? |
| */ |
| if (Dbl_isone_signaling(opnd2p1)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Dbl_set_quiet(opnd2p1); |
| } |
| /* |
| * is third operand a signaling NaN? |
| */ |
| else if (Dbl_is_signalingnan(opnd3p1)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Dbl_set_quiet(opnd3p1); |
| Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* |
| * return quiet NaN |
| */ |
| Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); |
| return(NOEXCEPTION); |
| } |
| } |
| |
| /* |
| * check third operand for NaN's or infinity |
| */ |
| if (Dbl_isinfinity_exponent(opnd3p1)) { |
| if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { |
| /* return infinity */ |
| Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| return(NOEXCEPTION); |
| } else { |
| /* |
| * is NaN; signaling or quiet? |
| */ |
| if (Dbl_isone_signaling(opnd3p1)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Dbl_set_quiet(opnd3p1); |
| } |
| /* |
| * return quiet NaN |
| */ |
| Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| return(NOEXCEPTION); |
| } |
| } |
| |
| /* |
| * Generate multiply mantissa |
| */ |
| if (Dbl_isnotzero_exponent(opnd1p1)) { |
| /* set hidden bit */ |
| Dbl_clear_signexponent_set_hidden(opnd1p1); |
| } |
| else { |
| /* check for zero */ |
| if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { |
| /* |
| * Perform the add opnd3 with zero here. |
| */ |
| if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { |
| if (Is_rounding_mode(ROUNDMINUS)) { |
| Dbl_or_signs(opnd3p1,resultp1); |
| } else { |
| Dbl_and_signs(opnd3p1,resultp1); |
| } |
| } |
| /* |
| * Now let's check for trapped underflow case. |
| */ |
| else if (Dbl_iszero_exponent(opnd3p1) && |
| Is_underflowtrap_enabled()) { |
| /* need to normalize results mantissa */ |
| sign_save = Dbl_signextendedsign(opnd3p1); |
| result_exponent = 0; |
| Dbl_leftshiftby1(opnd3p1,opnd3p2); |
| Dbl_normalize(opnd3p1,opnd3p2,result_exponent); |
| Dbl_set_sign(opnd3p1,/*using*/sign_save); |
| Dbl_setwrapped_exponent(opnd3p1,result_exponent, |
| unfl); |
| Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| /* inexact = FALSE */ |
| return(OPC_2E_UNDERFLOWEXCEPTION); |
| } |
| Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* is denormalized, adjust exponent */ |
| Dbl_clear_signexponent(opnd1p1); |
| Dbl_leftshiftby1(opnd1p1,opnd1p2); |
| Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent); |
| } |
| /* opnd2 needs to have hidden bit set with msb in hidden bit */ |
| if (Dbl_isnotzero_exponent(opnd2p1)) { |
| Dbl_clear_signexponent_set_hidden(opnd2p1); |
| } |
| else { |
| /* check for zero */ |
| if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { |
| /* |
| * Perform the add opnd3 with zero here. |
| */ |
| if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { |
| if (Is_rounding_mode(ROUNDMINUS)) { |
| Dbl_or_signs(opnd3p1,resultp1); |
| } else { |
| Dbl_and_signs(opnd3p1,resultp1); |
| } |
| } |
| /* |
| * Now let's check for trapped underflow case. |
| */ |
| else if (Dbl_iszero_exponent(opnd3p1) && |
| Is_underflowtrap_enabled()) { |
| /* need to normalize results mantissa */ |
| sign_save = Dbl_signextendedsign(opnd3p1); |
| result_exponent = 0; |
| Dbl_leftshiftby1(opnd3p1,opnd3p2); |
| Dbl_normalize(opnd3p1,opnd3p2,result_exponent); |
| Dbl_set_sign(opnd3p1,/*using*/sign_save); |
| Dbl_setwrapped_exponent(opnd3p1,result_exponent, |
| unfl); |
| Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| /* inexact = FALSE */ |
| return(OPC_2E_UNDERFLOWEXCEPTION); |
| } |
| Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* is denormalized; want to normalize */ |
| Dbl_clear_signexponent(opnd2p1); |
| Dbl_leftshiftby1(opnd2p1,opnd2p2); |
| Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent); |
| } |
| |
| /* Multiply the first two source mantissas together */ |
| |
| /* |
| * The intermediate result will be kept in tmpres, |
| * which needs enough room for 106 bits of mantissa, |
| * so lets call it a Double extended. |
| */ |
| Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4); |
| |
| /* |
| * Four bits at a time are inspected in each loop, and a |
| * simple shift and add multiply algorithm is used. |
| */ |
| for (count = DBL_P-1; count >= 0; count -= 4) { |
| Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4); |
| if (Dbit28p2(opnd1p2)) { |
| /* Fourword_add should be an ADD followed by 3 ADDC's */ |
| Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0); |
| } |
| if (Dbit29p2(opnd1p2)) { |
| Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0); |
| } |
| if (Dbit30p2(opnd1p2)) { |
| Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0); |
| } |
| if (Dbit31p2(opnd1p2)) { |
| Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| opnd2p1, opnd2p2, 0, 0); |
| } |
| Dbl_rightshiftby4(opnd1p1,opnd1p2); |
| } |
| if (Is_dexthiddenoverflow(tmpresp1)) { |
| /* result mantissa >= 2 (mantissa overflow) */ |
| mpy_exponent++; |
| Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4); |
| } |
| |
| /* |
| * Restore the sign of the mpy result which was saved in resultp1. |
| * The exponent will continue to be kept in mpy_exponent. |
| */ |
| Dblext_set_sign(tmpresp1,Dbl_sign(resultp1)); |
| |
| /* |
| * No rounding is required, since the result of the multiply |
| * is exact in the extended format. |
| */ |
| |
| /* |
| * Now we are ready to perform the add portion of the operation. |
| * |
| * The exponents need to be kept as integers for now, since the |
| * multiply result might not fit into the exponent field. We |
| * can't overflow or underflow because of this yet, since the |
| * add could bring the final result back into range. |
| */ |
| add_exponent = Dbl_exponent(opnd3p1); |
| |
| /* |
| * Check for denormalized or zero add operand. |
| */ |
| if (add_exponent == 0) { |
| /* check for zero */ |
| if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { |
| /* right is zero */ |
| /* Left can't be zero and must be result. |
| * |
| * The final result is now in tmpres and mpy_exponent, |
| * and needs to be rounded and squeezed back into |
| * double precision format from double extended. |
| */ |
| result_exponent = mpy_exponent; |
| Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4, |
| resultp1,resultp2,resultp3,resultp4); |
| sign_save = Dbl_signextendedsign(resultp1);/*save sign*/ |
| goto round; |
| } |
| |
| /* |
| * Neither are zeroes. |
| * Adjust exponent and normalize add operand. |
| */ |
| sign_save = Dbl_signextendedsign(opnd3p1); /* save sign */ |
| Dbl_clear_signexponent(opnd3p1); |
| Dbl_leftshiftby1(opnd3p1,opnd3p2); |
| Dbl_normalize(opnd3p1,opnd3p2,add_exponent); |
| Dbl_set_sign(opnd3p1,sign_save); /* restore sign */ |
| } else { |
| Dbl_clear_exponent_set_hidden(opnd3p1); |
| } |
| /* |
| * Copy opnd3 to the double extended variable called right. |
| */ |
| Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4); |
| |
| /* |
| * A zero "save" helps discover equal operands (for later), |
| * and is used in swapping operands (if needed). |
| */ |
| Dblext_xortointp1(tmpresp1,rightp1,/*to*/save); |
| |
| /* |
| * Compare magnitude of operands. |
| */ |
| Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1); |
| Dblext_copytoint_exponentmantissap1(rightp1,signlessright1); |
| if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && |
| Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){ |
| /* |
| * Set the left operand to the larger one by XOR swap. |
| * First finish the first word "save". |
| */ |
| Dblext_xorfromintp1(save,rightp1,/*to*/rightp1); |
| Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); |
| Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4, |
| rightp2,rightp3,rightp4); |
| /* also setup exponents used in rest of routine */ |
| diff_exponent = add_exponent - mpy_exponent; |
| result_exponent = add_exponent; |
| } else { |
| /* also setup exponents used in rest of routine */ |
| diff_exponent = mpy_exponent - add_exponent; |
| result_exponent = mpy_exponent; |
| } |
| /* Invariant: left is not smaller than right. */ |
| |
| /* |
| * Special case alignment of operands that would force alignment |
| * beyond the extent of the extension. A further optimization |
| * could special case this but only reduces the path length for |
| * this infrequent case. |
| */ |
| if (diff_exponent > DBLEXT_THRESHOLD) { |
| diff_exponent = DBLEXT_THRESHOLD; |
| } |
| |
| /* Align right operand by shifting it to the right */ |
| Dblext_clear_sign(rightp1); |
| Dblext_right_align(rightp1,rightp2,rightp3,rightp4, |
| /*shifted by*/diff_exponent); |
| |
| /* Treat sum and difference of the operands separately. */ |
| if ((int)save < 0) { |
| /* |
| * Difference of the two operands. Overflow can occur if the |
| * multiply overflowed. A borrow can occur out of the hidden |
| * bit and force a post normalization phase. |
| */ |
| Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4, |
| rightp1,rightp2,rightp3,rightp4, |
| resultp1,resultp2,resultp3,resultp4); |
| sign_save = Dbl_signextendedsign(resultp1); |
| if (Dbl_iszero_hidden(resultp1)) { |
| /* Handle normalization */ |
| /* A straightforward algorithm would now shift the |
| * result and extension left until the hidden bit |
| * becomes one. Not all of the extension bits need |
| * participate in the shift. Only the two most |
| * significant bits (round and guard) are needed. |
| * If only a single shift is needed then the guard |
| * bit becomes a significant low order bit and the |
| * extension must participate in the rounding. |
| * If more than a single shift is needed, then all |
| * bits to the right of the guard bit are zeros, |
| * and the guard bit may or may not be zero. */ |
| Dblext_leftshiftby1(resultp1,resultp2,resultp3, |
| resultp4); |
| |
| /* Need to check for a zero result. The sign and |
| * exponent fields have already been zeroed. The more |
| * efficient test of the full object can be used. |
| */ |
| if(Dblext_iszero(resultp1,resultp2,resultp3,resultp4)){ |
| /* Must have been "x-x" or "x+(-x)". */ |
| if (Is_rounding_mode(ROUNDMINUS)) |
| Dbl_setone_sign(resultp1); |
| Dbl_copytoptr(resultp1,resultp2,dstptr); |
| return(NOEXCEPTION); |
| } |
| result_exponent--; |
| |
| /* Look to see if normalization is finished. */ |
| if (Dbl_isone_hidden(resultp1)) { |
| /* No further normalization is needed */ |
| goto round; |
| } |
| |
| /* Discover first one bit to determine shift amount. |
| * Use a modified binary search. We have already |
| * shifted the result one position right and still |
| * not found a one so the remainder of the extension |
| * must be zero and simplifies rounding. */ |
| /* Scan bytes */ |
| while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) { |
| Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4); |
| result_exponent -= 8; |
| } |
| /* Now narrow it down to the nibble */ |
| if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) { |
| /* The lower nibble contains the |
| * normalizing one */ |
| Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4); |
| result_exponent -= 4; |
| } |
| /* Select case where first bit is set (already |
| * normalized) otherwise select the proper shift. */ |
| jumpsize = Dbl_hiddenhigh3mantissa(resultp1); |
| if (jumpsize <= 7) switch(jumpsize) { |
| case 1: |
| Dblext_leftshiftby3(resultp1,resultp2,resultp3, |
| resultp4); |
| result_exponent -= 3; |
| break; |
| case 2: |
| case 3: |
| Dblext_leftshiftby2(resultp1,resultp2,resultp3, |
| resultp4); |
| result_exponent -= 2; |
| break; |
| case 4: |
| case 5: |
| case 6: |
| case 7: |
| Dblext_leftshiftby1(resultp1,resultp2,resultp3, |
| resultp4); |
| result_exponent -= 1; |
| break; |
| } |
| } /* end if (hidden...)... */ |
| /* Fall through and round */ |
| } /* end if (save < 0)... */ |
| else { |
| /* Add magnitudes */ |
| Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4, |
| rightp1,rightp2,rightp3,rightp4, |
| /*to*/resultp1,resultp2,resultp3,resultp4); |
| sign_save = Dbl_signextendedsign(resultp1); |
| if (Dbl_isone_hiddenoverflow(resultp1)) { |
| /* Prenormalization required. */ |
| Dblext_arithrightshiftby1(resultp1,resultp2,resultp3, |
| resultp4); |
| result_exponent++; |
| } /* end if hiddenoverflow... */ |
| } /* end else ...add magnitudes... */ |
| |
| /* Round the result. If the extension and lower two words are |
| * all zeros, then the result is exact. Otherwise round in the |
| * correct direction. Underflow is possible. If a postnormalization |
| * is necessary, then the mantissa is all zeros so no shift is needed. |
| */ |
| round: |
| if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { |
| Dblext_denormalize(resultp1,resultp2,resultp3,resultp4, |
| result_exponent,is_tiny); |
| } |
| Dbl_set_sign(resultp1,/*using*/sign_save); |
| if (Dblext_isnotzero_mantissap3(resultp3) || |
| Dblext_isnotzero_mantissap4(resultp4)) { |
| inexact = TRUE; |
| switch(Rounding_mode()) { |
| case ROUNDNEAREST: /* The default. */ |
| if (Dblext_isone_highp3(resultp3)) { |
| /* at least 1/2 ulp */ |
| if (Dblext_isnotzero_low31p3(resultp3) || |
| Dblext_isnotzero_mantissap4(resultp4) || |
| Dblext_isone_lowp2(resultp2)) { |
| /* either exactly half way and odd or |
| * more than 1/2ulp */ |
| Dbl_increment(resultp1,resultp2); |
| } |
| } |
| break; |
| |
| case ROUNDPLUS: |
| if (Dbl_iszero_sign(resultp1)) { |
| /* Round up positive results */ |
| Dbl_increment(resultp1,resultp2); |
| } |
| break; |
| |
| case ROUNDMINUS: |
| if (Dbl_isone_sign(resultp1)) { |
| /* Round down negative results */ |
| Dbl_increment(resultp1,resultp2); |
| } |
| |
| case ROUNDZERO:; |
| /* truncate is simple */ |
| } /* end switch... */ |
| if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++; |
| } |
| if (result_exponent >= DBL_INFINITY_EXPONENT) { |
| /* trap if OVERFLOWTRAP enabled */ |
| if (Is_overflowtrap_enabled()) { |
| /* |
| * Adjust bias of result |
| */ |
| Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl); |
| Dbl_copytoptr(resultp1,resultp2,dstptr); |
| if (inexact) |
| if (Is_inexacttrap_enabled()) |
| return (OPC_2E_OVERFLOWEXCEPTION | |
| OPC_2E_INEXACTEXCEPTION); |
| else Set_inexactflag(); |
| return (OPC_2E_OVERFLOWEXCEPTION); |
| } |
| inexact = TRUE; |
| Set_overflowflag(); |
| /* set result to infinity or largest number */ |
| Dbl_setoverflow(resultp1,resultp2); |
| |
| } else if (result_exponent <= 0) { /* underflow case */ |
| if (Is_underflowtrap_enabled()) { |
| /* |
| * Adjust bias of result |
| */ |
| Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); |
| Dbl_copytoptr(resultp1,resultp2,dstptr); |
| if (inexact) |
| if (Is_inexacttrap_enabled()) |
| return (OPC_2E_UNDERFLOWEXCEPTION | |
| OPC_2E_INEXACTEXCEPTION); |
| else Set_inexactflag(); |
| return(OPC_2E_UNDERFLOWEXCEPTION); |
| } |
| else if (inexact && is_tiny) Set_underflowflag(); |
| } |
| else Dbl_set_exponent(resultp1,result_exponent); |
| Dbl_copytoptr(resultp1,resultp2,dstptr); |
| if (inexact) |
| if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); |
| else Set_inexactflag(); |
| return(NOEXCEPTION); |
| } |
| |
| /* |
| * Double Floating-point Multiply Negate Fused Add |
| */ |
| |
| dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| |
| dbl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; |
| unsigned int *status; |
| { |
| unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2; |
| register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4; |
| unsigned int rightp1, rightp2, rightp3, rightp4; |
| unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0; |
| register int mpy_exponent, add_exponent, count; |
| boolean inexact = FALSE, is_tiny = FALSE; |
| |
| unsigned int signlessleft1, signlessright1, save; |
| register int result_exponent, diff_exponent; |
| int sign_save, jumpsize; |
| |
| Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2); |
| Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2); |
| Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2); |
| |
| /* |
| * set sign bit of result of multiply |
| */ |
| if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1)) |
| Dbl_setzerop1(resultp1); |
| else |
| Dbl_setnegativezerop1(resultp1); |
| |
| /* |
| * Generate multiply exponent |
| */ |
| mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS; |
| |
| /* |
| * check first operand for NaN's or infinity |
| */ |
| if (Dbl_isinfinity_exponent(opnd1p1)) { |
| if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { |
| if (Dbl_isnotnan(opnd2p1,opnd2p2) && |
| Dbl_isnotnan(opnd3p1,opnd3p2)) { |
| if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) { |
| /* |
| * invalid since operands are infinity |
| * and zero |
| */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| Set_invalidflag(); |
| Dbl_makequietnan(resultp1,resultp2); |
| Dbl_copytoptr(resultp1,resultp2,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* |
| * Check third operand for infinity with a |
| * sign opposite of the multiply result |
| */ |
| if (Dbl_isinfinity(opnd3p1,opnd3p2) && |
| (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { |
| /* |
| * invalid since attempting a magnitude |
| * subtraction of infinities |
| */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| Set_invalidflag(); |
| Dbl_makequietnan(resultp1,resultp2); |
| Dbl_copytoptr(resultp1,resultp2,dstptr); |
| return(NOEXCEPTION); |
| } |
| |
| /* |
| * return infinity |
| */ |
| Dbl_setinfinity_exponentmantissa(resultp1,resultp2); |
| Dbl_copytoptr(resultp1,resultp2,dstptr); |
| return(NOEXCEPTION); |
| } |
| } |
| else { |
| /* |
| * is NaN; signaling or quiet? |
| */ |
| if (Dbl_isone_signaling(opnd1p1)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Dbl_set_quiet(opnd1p1); |
| } |
| /* |
| * is second operand a signaling NaN? |
| */ |
| else if (Dbl_is_signalingnan(opnd2p1)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Dbl_set_quiet(opnd2p1); |
| Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* |
| * is third operand a signaling NaN? |
| */ |
| else if (Dbl_is_signalingnan(opnd3p1)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Dbl_set_quiet(opnd3p1); |
| Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* |
| * return quiet NaN |
| */ |
| Dbl_copytoptr(opnd1p1,opnd1p2,dstptr); |
| return(NOEXCEPTION); |
| } |
| } |
| |
| /* |
| * check second operand for NaN's or infinity |
| */ |
| if (Dbl_isinfinity_exponent(opnd2p1)) { |
| if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { |
| if (Dbl_isnotnan(opnd3p1,opnd3p2)) { |
| if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) { |
| /* |
| * invalid since multiply operands are |
| * zero & infinity |
| */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| Set_invalidflag(); |
| Dbl_makequietnan(opnd2p1,opnd2p2); |
| Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); |
| return(NOEXCEPTION); |
| } |
| |
| /* |
| * Check third operand for infinity with a |
| * sign opposite of the multiply result |
| */ |
| if (Dbl_isinfinity(opnd3p1,opnd3p2) && |
| (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { |
| /* |
| * invalid since attempting a magnitude |
| * subtraction of infinities |
| */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| Set_invalidflag(); |
| Dbl_makequietnan(resultp1,resultp2); |
| Dbl_copytoptr(resultp1,resultp2,dstptr); |
| return(NOEXCEPTION); |
| } |
| |
| /* |
| * return infinity |
| */ |
| Dbl_setinfinity_exponentmantissa(resultp1,resultp2); |
| Dbl_copytoptr(resultp1,resultp2,dstptr); |
| return(NOEXCEPTION); |
| } |
| } |
| else { |
| /* |
| * is NaN; signaling or quiet? |
| */ |
| if (Dbl_isone_signaling(opnd2p1)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Dbl_set_quiet(opnd2p1); |
| } |
| /* |
| * is third operand a signaling NaN? |
| */ |
| else if (Dbl_is_signalingnan(opnd3p1)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Dbl_set_quiet(opnd3p1); |
| Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* |
| * return quiet NaN |
| */ |
| Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); |
| return(NOEXCEPTION); |
| } |
| } |
| |
| /* |
| * check third operand for NaN's or infinity |
| */ |
| if (Dbl_isinfinity_exponent(opnd3p1)) { |
| if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { |
| /* return infinity */ |
| Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| return(NOEXCEPTION); |
| } else { |
| /* |
| * is NaN; signaling or quiet? |
| */ |
| if (Dbl_isone_signaling(opnd3p1)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Dbl_set_quiet(opnd3p1); |
| } |
| /* |
| * return quiet NaN |
| */ |
| Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| return(NOEXCEPTION); |
| } |
| } |
| |
| /* |
| * Generate multiply mantissa |
| */ |
| if (Dbl_isnotzero_exponent(opnd1p1)) { |
| /* set hidden bit */ |
| Dbl_clear_signexponent_set_hidden(opnd1p1); |
| } |
| else { |
| /* check for zero */ |
| if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { |
| /* |
| * Perform the add opnd3 with zero here. |
| */ |
| if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { |
| if (Is_rounding_mode(ROUNDMINUS)) { |
| Dbl_or_signs(opnd3p1,resultp1); |
| } else { |
| Dbl_and_signs(opnd3p1,resultp1); |
| } |
| } |
| /* |
| * Now let's check for trapped underflow case. |
| */ |
| else if (Dbl_iszero_exponent(opnd3p1) && |
| Is_underflowtrap_enabled()) { |
| /* need to normalize results mantissa */ |
| sign_save = Dbl_signextendedsign(opnd3p1); |
| result_exponent = 0; |
| Dbl_leftshiftby1(opnd3p1,opnd3p2); |
| Dbl_normalize(opnd3p1,opnd3p2,result_exponent); |
| Dbl_set_sign(opnd3p1,/*using*/sign_save); |
| Dbl_setwrapped_exponent(opnd3p1,result_exponent, |
| unfl); |
| Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| /* inexact = FALSE */ |
| return(OPC_2E_UNDERFLOWEXCEPTION); |
| } |
| Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* is denormalized, adjust exponent */ |
| Dbl_clear_signexponent(opnd1p1); |
| Dbl_leftshiftby1(opnd1p1,opnd1p2); |
| Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent); |
| } |
| /* opnd2 needs to have hidden bit set with msb in hidden bit */ |
| if (Dbl_isnotzero_exponent(opnd2p1)) { |
| Dbl_clear_signexponent_set_hidden(opnd2p1); |
| } |
| else { |
| /* check for zero */ |
| if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { |
| /* |
| * Perform the add opnd3 with zero here. |
| */ |
| if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { |
| if (Is_rounding_mode(ROUNDMINUS)) { |
| Dbl_or_signs(opnd3p1,resultp1); |
| } else { |
| Dbl_and_signs(opnd3p1,resultp1); |
| } |
| } |
| /* |
| * Now let's check for trapped underflow case. |
| */ |
| else if (Dbl_iszero_exponent(opnd3p1) && |
| Is_underflowtrap_enabled()) { |
| /* need to normalize results mantissa */ |
| sign_save = Dbl_signextendedsign(opnd3p1); |
| result_exponent = 0; |
| Dbl_leftshiftby1(opnd3p1,opnd3p2); |
| Dbl_normalize(opnd3p1,opnd3p2,result_exponent); |
| Dbl_set_sign(opnd3p1,/*using*/sign_save); |
| Dbl_setwrapped_exponent(opnd3p1,result_exponent, |
| unfl); |
| Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| /* inexact = FALSE */ |
| return(OPC_2E_UNDERFLOWEXCEPTION); |
| } |
| Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* is denormalized; want to normalize */ |
| Dbl_clear_signexponent(opnd2p1); |
| Dbl_leftshiftby1(opnd2p1,opnd2p2); |
| Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent); |
| } |
| |
| /* Multiply the first two source mantissas together */ |
| |
| /* |
| * The intermediate result will be kept in tmpres, |
| * which needs enough room for 106 bits of mantissa, |
| * so lets call it a Double extended. |
| */ |
| Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4); |
| |
| /* |
| * Four bits at a time are inspected in each loop, and a |
| * simple shift and add multiply algorithm is used. |
| */ |
| for (count = DBL_P-1; count >= 0; count -= 4) { |
| Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4); |
| if (Dbit28p2(opnd1p2)) { |
| /* Fourword_add should be an ADD followed by 3 ADDC's */ |
| Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0); |
| } |
| if (Dbit29p2(opnd1p2)) { |
| Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0); |
| } |
| if (Dbit30p2(opnd1p2)) { |
| Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0); |
| } |
| if (Dbit31p2(opnd1p2)) { |
| Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| opnd2p1, opnd2p2, 0, 0); |
| } |
| Dbl_rightshiftby4(opnd1p1,opnd1p2); |
| } |
| if (Is_dexthiddenoverflow(tmpresp1)) { |
| /* result mantissa >= 2 (mantissa overflow) */ |
| mpy_exponent++; |
| Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4); |
| } |
| |
| /* |
| * Restore the sign of the mpy result which was saved in resultp1. |
| * The exponent will continue to be kept in mpy_exponent. |
| */ |
| Dblext_set_sign(tmpresp1,Dbl_sign(resultp1)); |
| |
| /* |
| * No rounding is required, since the result of the multiply |
| * is exact in the extended format. |
| */ |
| |
| /* |
| * Now we are ready to perform the add portion of the operation. |
| * |
| * The exponents need to be kept as integers for now, since the |
| * multiply result might not fit into the exponent field. We |
| * can't overflow or underflow because of this yet, since the |
| * add could bring the final result back into range. |
| */ |
| add_exponent = Dbl_exponent(opnd3p1); |
| |
| /* |
| * Check for denormalized or zero add operand. |
| */ |
| if (add_exponent == 0) { |
| /* check for zero */ |
| if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { |
| /* right is zero */ |
| /* Left can't be zero and must be result. |
| * |
| * The final result is now in tmpres and mpy_exponent, |
| * and needs to be rounded and squeezed back into |
| * double precision format from double extended. |
| */ |
| result_exponent = mpy_exponent; |
| Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4, |
| resultp1,resultp2,resultp3,resultp4); |
| sign_save = Dbl_signextendedsign(resultp1);/*save sign*/ |
| goto round; |
| } |
| |
| /* |
| * Neither are zeroes. |
| * Adjust exponent and normalize add operand. |
| */ |
| sign_save = Dbl_signextendedsign(opnd3p1); /* save sign */ |
| Dbl_clear_signexponent(opnd3p1); |
| Dbl_leftshiftby1(opnd3p1,opnd3p2); |
| Dbl_normalize(opnd3p1,opnd3p2,add_exponent); |
| Dbl_set_sign(opnd3p1,sign_save); /* restore sign */ |
| } else { |
| Dbl_clear_exponent_set_hidden(opnd3p1); |
| } |
| /* |
| * Copy opnd3 to the double extended variable called right. |
| */ |
| Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4); |
| |
| /* |
| * A zero "save" helps discover equal operands (for later), |
| * and is used in swapping operands (if needed). |
| */ |
| Dblext_xortointp1(tmpresp1,rightp1,/*to*/save); |
| |
| /* |
| * Compare magnitude of operands. |
| */ |
| Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1); |
| Dblext_copytoint_exponentmantissap1(rightp1,signlessright1); |
| if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && |
| Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){ |
| /* |
| * Set the left operand to the larger one by XOR swap. |
| * First finish the first word "save". |
| */ |
| Dblext_xorfromintp1(save,rightp1,/*to*/rightp1); |
| Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); |
| Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4, |
| rightp2,rightp3,rightp4); |
| /* also setup exponents used in rest of routine */ |
| diff_exponent = add_exponent - mpy_exponent; |
| result_exponent = add_exponent; |
| } else { |
| /* also setup exponents used in rest of routine */ |
| diff_exponent = mpy_exponent - add_exponent; |
| result_exponent = mpy_exponent; |
| } |
| /* Invariant: left is not smaller than right. */ |
| |
| /* |
| * Special case alignment of operands that would force alignment |
| * beyond the extent of the extension. A further optimization |
| * could special case this but only reduces the path length for |
| * this infrequent case. |
| */ |
| if (diff_exponent > DBLEXT_THRESHOLD) { |
| diff_exponent = DBLEXT_THRESHOLD; |
| } |
| |
| /* Align right operand by shifting it to the right */ |
| Dblext_clear_sign(rightp1); |
| Dblext_right_align(rightp1,rightp2,rightp3,rightp4, |
| /*shifted by*/diff_exponent); |
| |
| /* Treat sum and difference of the operands separately. */ |
| if ((int)save < 0) { |
| /* |
| * Difference of the two operands. Overflow can occur if the |
| * multiply overflowed. A borrow can occur out of the hidden |
| * bit and force a post normalization phase. |
| */ |
| Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4, |
| rightp1,rightp2,rightp3,rightp4, |
| resultp1,resultp2,resultp3,resultp4); |
| sign_save = Dbl_signextendedsign(resultp1); |
| if (Dbl_iszero_hidden(resultp1)) { |
| /* Handle normalization */ |
| /* A straightforward algorithm would now shift the |
| * result and extension left until the hidden bit |
| * becomes one. Not all of the extension bits need |
| * participate in the shift. Only the two most |
| * significant bits (round and guard) are needed. |
| * If only a single shift is needed then the guard |
| * bit becomes a significant low order bit and the |
| * extension must participate in the rounding. |
| * If more than a single shift is needed, then all |
| * bits to the right of the guard bit are zeros, |
| * and the guard bit may or may not be zero. */ |
| Dblext_leftshiftby1(resultp1,resultp2,resultp3, |
| resultp4); |
| |
| /* Need to check for a zero result. The sign and |
| * exponent fields have already been zeroed. The more |
| * efficient test of the full object can be used. |
| */ |
| if (Dblext_iszero(resultp1,resultp2,resultp3,resultp4)) { |
| /* Must have been "x-x" or "x+(-x)". */ |
| if (Is_rounding_mode(ROUNDMINUS)) |
| Dbl_setone_sign(resultp1); |
| Dbl_copytoptr(resultp1,resultp2,dstptr); |
| return(NOEXCEPTION); |
| } |
| result_exponent--; |
| |
| /* Look to see if normalization is finished. */ |
| if (Dbl_isone_hidden(resultp1)) { |
| /* No further normalization is needed */ |
| goto round; |
| } |
| |
| /* Discover first one bit to determine shift amount. |
| * Use a modified binary search. We have already |
| * shifted the result one position right and still |
| * not found a one so the remainder of the extension |
| * must be zero and simplifies rounding. */ |
| /* Scan bytes */ |
| while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) { |
| Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4); |
| result_exponent -= 8; |
| } |
| /* Now narrow it down to the nibble */ |
| if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) { |
| /* The lower nibble contains the |
| * normalizing one */ |
| Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4); |
| result_exponent -= 4; |
| } |
| /* Select case where first bit is set (already |
| * normalized) otherwise select the proper shift. */ |
| jumpsize = Dbl_hiddenhigh3mantissa(resultp1); |
| if (jumpsize <= 7) switch(jumpsize) { |
| case 1: |
| Dblext_leftshiftby3(resultp1,resultp2,resultp3, |
| resultp4); |
| result_exponent -= 3; |
| break; |
| case 2: |
| case 3: |
| Dblext_leftshiftby2(resultp1,resultp2,resultp3, |
| resultp4); |
| result_exponent -= 2; |
| break; |
| case 4: |
| case 5: |
| case 6: |
| case 7: |
| Dblext_leftshiftby1(resultp1,resultp2,resultp3, |
| resultp4); |
| result_exponent -= 1; |
| break; |
| } |
| } /* end if (hidden...)... */ |
| /* Fall through and round */ |
| } /* end if (save < 0)... */ |
| else { |
| /* Add magnitudes */ |
| Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4, |
| rightp1,rightp2,rightp3,rightp4, |
| /*to*/resultp1,resultp2,resultp3,resultp4); |
| sign_save = Dbl_signextendedsign(resultp1); |
| if (Dbl_isone_hiddenoverflow(resultp1)) { |
| /* Prenormalization required. */ |
| Dblext_arithrightshiftby1(resultp1,resultp2,resultp3, |
| resultp4); |
| result_exponent++; |
| } /* end if hiddenoverflow... */ |
| } /* end else ...add magnitudes... */ |
| |
| /* Round the result. If the extension and lower two words are |
| * all zeros, then the result is exact. Otherwise round in the |
| * correct direction. Underflow is possible. If a postnormalization |
| * is necessary, then the mantissa is all zeros so no shift is needed. |
| */ |
| round: |
| if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { |
| Dblext_denormalize(resultp1,resultp2,resultp3,resultp4, |
| result_exponent,is_tiny); |
| } |
| Dbl_set_sign(resultp1,/*using*/sign_save); |
| if (Dblext_isnotzero_mantissap3(resultp3) || |
| Dblext_isnotzero_mantissap4(resultp4)) { |
| inexact = TRUE; |
| switch(Rounding_mode()) { |
| case ROUNDNEAREST: /* The default. */ |
| if (Dblext_isone_highp3(resultp3)) { |
| /* at least 1/2 ulp */ |
| if (Dblext_isnotzero_low31p3(resultp3) || |
| Dblext_isnotzero_mantissap4(resultp4) || |
| Dblext_isone_lowp2(resultp2)) { |
| /* either exactly half way and odd or |
| * more than 1/2ulp */ |
| Dbl_increment(resultp1,resultp2); |
| } |
| } |
| break; |
| |
| case ROUNDPLUS: |
| if (Dbl_iszero_sign(resultp1)) { |
| /* Round up positive results */ |
| Dbl_increment(resultp1,resultp2); |
| } |
| break; |
| |
| case ROUNDMINUS: |
| if (Dbl_isone_sign(resultp1)) { |
| /* Round down negative results */ |
| Dbl_increment(resultp1,resultp2); |
| } |
| |
| case ROUNDZERO:; |
| /* truncate is simple */ |
| } /* end switch... */ |
| if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++; |
| } |
| if (result_exponent >= DBL_INFINITY_EXPONENT) { |
| /* Overflow */ |
| if (Is_overflowtrap_enabled()) { |
| /* |
| * Adjust bias of result |
| */ |
| Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl); |
| Dbl_copytoptr(resultp1,resultp2,dstptr); |
| if (inexact) |
| if (Is_inexacttrap_enabled()) |
| return (OPC_2E_OVERFLOWEXCEPTION | |
| OPC_2E_INEXACTEXCEPTION); |
| else Set_inexactflag(); |
| return (OPC_2E_OVERFLOWEXCEPTION); |
| } |
| inexact = TRUE; |
| Set_overflowflag(); |
| Dbl_setoverflow(resultp1,resultp2); |
| } else if (result_exponent <= 0) { /* underflow case */ |
| if (Is_underflowtrap_enabled()) { |
| /* |
| * Adjust bias of result |
| */ |
| Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); |
| Dbl_copytoptr(resultp1,resultp2,dstptr); |
| if (inexact) |
| if (Is_inexacttrap_enabled()) |
| return (OPC_2E_UNDERFLOWEXCEPTION | |
| OPC_2E_INEXACTEXCEPTION); |
| else Set_inexactflag(); |
| return(OPC_2E_UNDERFLOWEXCEPTION); |
| } |
| else if (inexact && is_tiny) Set_underflowflag(); |
| } |
| else Dbl_set_exponent(resultp1,result_exponent); |
| Dbl_copytoptr(resultp1,resultp2,dstptr); |
| if (inexact) |
| if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); |
| else Set_inexactflag(); |
| return(NOEXCEPTION); |
| } |
| |
| /* |
| * Single Floating-point Multiply Fused Add |
| */ |
| |
| sgl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| |
| sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; |
| unsigned int *status; |
| { |
| unsigned int opnd1, opnd2, opnd3; |
| register unsigned int tmpresp1, tmpresp2; |
| unsigned int rightp1, rightp2; |
| unsigned int resultp1, resultp2 = 0; |
| register int mpy_exponent, add_exponent, count; |
| boolean inexact = FALSE, is_tiny = FALSE; |
| |
| unsigned int signlessleft1, signlessright1, save; |
| register int result_exponent, diff_exponent; |
| int sign_save, jumpsize; |
| |
| Sgl_copyfromptr(src1ptr,opnd1); |
| Sgl_copyfromptr(src2ptr,opnd2); |
| Sgl_copyfromptr(src3ptr,opnd3); |
| |
| /* |
| * set sign bit of result of multiply |
| */ |
| if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2)) |
| Sgl_setnegativezero(resultp1); |
| else Sgl_setzero(resultp1); |
| |
| /* |
| * Generate multiply exponent |
| */ |
| mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS; |
| |
| /* |
| * check first operand for NaN's or infinity |
| */ |
| if (Sgl_isinfinity_exponent(opnd1)) { |
| if (Sgl_iszero_mantissa(opnd1)) { |
| if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) { |
| if (Sgl_iszero_exponentmantissa(opnd2)) { |
| /* |
| * invalid since operands are infinity |
| * and zero |
| */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| Set_invalidflag(); |
| Sgl_makequietnan(resultp1); |
| Sgl_copytoptr(resultp1,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* |
| * Check third operand for infinity with a |
| * sign opposite of the multiply result |
| */ |
| if (Sgl_isinfinity(opnd3) && |
| (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { |
| /* |
| * invalid since attempting a magnitude |
| * subtraction of infinities |
| */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| Set_invalidflag(); |
| Sgl_makequietnan(resultp1); |
| Sgl_copytoptr(resultp1,dstptr); |
| return(NOEXCEPTION); |
| } |
| |
| /* |
| * return infinity |
| */ |
| Sgl_setinfinity_exponentmantissa(resultp1); |
| Sgl_copytoptr(resultp1,dstptr); |
| return(NOEXCEPTION); |
| } |
| } |
| else { |
| /* |
| * is NaN; signaling or quiet? |
| */ |
| if (Sgl_isone_signaling(opnd1)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Sgl_set_quiet(opnd1); |
| } |
| /* |
| * is second operand a signaling NaN? |
| */ |
| else if (Sgl_is_signalingnan(opnd2)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Sgl_set_quiet(opnd2); |
| Sgl_copytoptr(opnd2,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* |
| * is third operand a signaling NaN? |
| */ |
| else if (Sgl_is_signalingnan(opnd3)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Sgl_set_quiet(opnd3); |
| Sgl_copytoptr(opnd3,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* |
| * return quiet NaN |
| */ |
| Sgl_copytoptr(opnd1,dstptr); |
| return(NOEXCEPTION); |
| } |
| } |
| |
| /* |
| * check second operand for NaN's or infinity |
| */ |
| if (Sgl_isinfinity_exponent(opnd2)) { |
| if (Sgl_iszero_mantissa(opnd2)) { |
| if (Sgl_isnotnan(opnd3)) { |
| if (Sgl_iszero_exponentmantissa(opnd1)) { |
| /* |
| * invalid since multiply operands are |
| * zero & infinity |
| */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| Set_invalidflag(); |
| Sgl_makequietnan(opnd2); |
| Sgl_copytoptr(opnd2,dstptr); |
| return(NOEXCEPTION); |
| } |
| |
| /* |
| * Check third operand for infinity with a |
| * sign opposite of the multiply result |
| */ |
| if (Sgl_isinfinity(opnd3) && |
| (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { |
| /* |
| * invalid since attempting a magnitude |
| * subtraction of infinities |
| */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| Set_invalidflag(); |
| Sgl_makequietnan(resultp1); |
| Sgl_copytoptr(resultp1,dstptr); |
| return(NOEXCEPTION); |
| } |
| |
| /* |
| * return infinity |
| */ |
| Sgl_setinfinity_exponentmantissa(resultp1); |
| Sgl_copytoptr(resultp1,dstptr); |
| return(NOEXCEPTION); |
| } |
| } |
| else { |
| /* |
| * is NaN; signaling or quiet? |
| */ |
| if (Sgl_isone_signaling(opnd2)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Sgl_set_quiet(opnd2); |
| } |
| /* |
| * is third operand a signaling NaN? |
| */ |
| else if (Sgl_is_signalingnan(opnd3)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Sgl_set_quiet(opnd3); |
| Sgl_copytoptr(opnd3,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* |
| * return quiet NaN |
| */ |
| Sgl_copytoptr(opnd2,dstptr); |
| return(NOEXCEPTION); |
| } |
| } |
| |
| /* |
| * check third operand for NaN's or infinity |
| */ |
| if (Sgl_isinfinity_exponent(opnd3)) { |
| if (Sgl_iszero_mantissa(opnd3)) { |
| /* return infinity */ |
| Sgl_copytoptr(opnd3,dstptr); |
| return(NOEXCEPTION); |
| } else { |
| /* |
| * is NaN; signaling or quiet? |
| */ |
| if (Sgl_isone_signaling(opnd3)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Sgl_set_quiet(opnd3); |
| } |
| /* |
| * return quiet NaN |
| */ |
| Sgl_copytoptr(opnd3,dstptr); |
| return(NOEXCEPTION); |
| } |
| } |
| |
| /* |
| * Generate multiply mantissa |
| */ |
| if (Sgl_isnotzero_exponent(opnd1)) { |
| /* set hidden bit */ |
| Sgl_clear_signexponent_set_hidden(opnd1); |
| } |
| else { |
| /* check for zero */ |
| if (Sgl_iszero_mantissa(opnd1)) { |
| /* |
| * Perform the add opnd3 with zero here. |
| */ |
| if (Sgl_iszero_exponentmantissa(opnd3)) { |
| if (Is_rounding_mode(ROUNDMINUS)) { |
| Sgl_or_signs(opnd3,resultp1); |
| } else { |
| Sgl_and_signs(opnd3,resultp1); |
| } |
| } |
| /* |
| * Now let's check for trapped underflow case. |
| */ |
| else if (Sgl_iszero_exponent(opnd3) && |
| Is_underflowtrap_enabled()) { |
| /* need to normalize results mantissa */ |
| sign_save = Sgl_signextendedsign(opnd3); |
| result_exponent = 0; |
| Sgl_leftshiftby1(opnd3); |
| Sgl_normalize(opnd3,result_exponent); |
| Sgl_set_sign(opnd3,/*using*/sign_save); |
| Sgl_setwrapped_exponent(opnd3,result_exponent, |
| unfl); |
| Sgl_copytoptr(opnd3,dstptr); |
| /* inexact = FALSE */ |
| return(OPC_2E_UNDERFLOWEXCEPTION); |
| } |
| Sgl_copytoptr(opnd3,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* is denormalized, adjust exponent */ |
| Sgl_clear_signexponent(opnd1); |
| Sgl_leftshiftby1(opnd1); |
| Sgl_normalize(opnd1,mpy_exponent); |
| } |
| /* opnd2 needs to have hidden bit set with msb in hidden bit */ |
| if (Sgl_isnotzero_exponent(opnd2)) { |
| Sgl_clear_signexponent_set_hidden(opnd2); |
| } |
| else { |
| /* check for zero */ |
| if (Sgl_iszero_mantissa(opnd2)) { |
| /* |
| * Perform the add opnd3 with zero here. |
| */ |
| if (Sgl_iszero_exponentmantissa(opnd3)) { |
| if (Is_rounding_mode(ROUNDMINUS)) { |
| Sgl_or_signs(opnd3,resultp1); |
| } else { |
| Sgl_and_signs(opnd3,resultp1); |
| } |
| } |
| /* |
| * Now let's check for trapped underflow case. |
| */ |
| else if (Sgl_iszero_exponent(opnd3) && |
| Is_underflowtrap_enabled()) { |
| /* need to normalize results mantissa */ |
| sign_save = Sgl_signextendedsign(opnd3); |
| result_exponent = 0; |
| Sgl_leftshiftby1(opnd3); |
| Sgl_normalize(opnd3,result_exponent); |
| Sgl_set_sign(opnd3,/*using*/sign_save); |
| Sgl_setwrapped_exponent(opnd3,result_exponent, |
| unfl); |
| Sgl_copytoptr(opnd3,dstptr); |
| /* inexact = FALSE */ |
| return(OPC_2E_UNDERFLOWEXCEPTION); |
| } |
| Sgl_copytoptr(opnd3,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* is denormalized; want to normalize */ |
| Sgl_clear_signexponent(opnd2); |
| Sgl_leftshiftby1(opnd2); |
| Sgl_normalize(opnd2,mpy_exponent); |
| } |
| |
| /* Multiply the first two source mantissas together */ |
| |
| /* |
| * The intermediate result will be kept in tmpres, |
| * which needs enough room for 106 bits of mantissa, |
| * so lets call it a Double extended. |
| */ |
| Sglext_setzero(tmpresp1,tmpresp2); |
| |
| /* |
| * Four bits at a time are inspected in each loop, and a |
| * simple shift and add multiply algorithm is used. |
| */ |
| for (count = SGL_P-1; count >= 0; count -= 4) { |
| Sglext_rightshiftby4(tmpresp1,tmpresp2); |
| if (Sbit28(opnd1)) { |
| /* Twoword_add should be an ADD followed by 2 ADDC's */ |
| Twoword_add(tmpresp1, tmpresp2, opnd2<<3, 0); |
| } |
| if (Sbit29(opnd1)) { |
| Twoword_add(tmpresp1, tmpresp2, opnd2<<2, 0); |
| } |
| if (Sbit30(opnd1)) { |
| Twoword_add(tmpresp1, tmpresp2, opnd2<<1, 0); |
| } |
| if (Sbit31(opnd1)) { |
| Twoword_add(tmpresp1, tmpresp2, opnd2, 0); |
| } |
| Sgl_rightshiftby4(opnd1); |
| } |
| if (Is_sexthiddenoverflow(tmpresp1)) { |
| /* result mantissa >= 2 (mantissa overflow) */ |
| mpy_exponent++; |
| Sglext_rightshiftby4(tmpresp1,tmpresp2); |
| } else { |
| Sglext_rightshiftby3(tmpresp1,tmpresp2); |
| } |
| |
| /* |
| * Restore the sign of the mpy result which was saved in resultp1. |
| * The exponent will continue to be kept in mpy_exponent. |
| */ |
| Sglext_set_sign(tmpresp1,Sgl_sign(resultp1)); |
| |
| /* |
| * No rounding is required, since the result of the multiply |
| * is exact in the extended format. |
| */ |
| |
| /* |
| * Now we are ready to perform the add portion of the operation. |
| * |
| * The exponents need to be kept as integers for now, since the |
| * multiply result might not fit into the exponent field. We |
| * can't overflow or underflow because of this yet, since the |
| * add could bring the final result back into range. |
| */ |
| add_exponent = Sgl_exponent(opnd3); |
| |
| /* |
| * Check for denormalized or zero add operand. |
| */ |
| if (add_exponent == 0) { |
| /* check for zero */ |
| if (Sgl_iszero_mantissa(opnd3)) { |
| /* right is zero */ |
| /* Left can't be zero and must be result. |
| * |
| * The final result is now in tmpres and mpy_exponent, |
| * and needs to be rounded and squeezed back into |
| * double precision format from double extended. |
| */ |
| result_exponent = mpy_exponent; |
| Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2); |
| sign_save = Sgl_signextendedsign(resultp1);/*save sign*/ |
| goto round; |
| } |
| |
| /* |
| * Neither are zeroes. |
| * Adjust exponent and normalize add operand. |
| */ |
| sign_save = Sgl_signextendedsign(opnd3); /* save sign */ |
| Sgl_clear_signexponent(opnd3); |
| Sgl_leftshiftby1(opnd3); |
| Sgl_normalize(opnd3,add_exponent); |
| Sgl_set_sign(opnd3,sign_save); /* restore sign */ |
| } else { |
| Sgl_clear_exponent_set_hidden(opnd3); |
| } |
| /* |
| * Copy opnd3 to the double extended variable called right. |
| */ |
| Sgl_copyto_sglext(opnd3,rightp1,rightp2); |
| |
| /* |
| * A zero "save" helps discover equal operands (for later), |
| * and is used in swapping operands (if needed). |
| */ |
| Sglext_xortointp1(tmpresp1,rightp1,/*to*/save); |
| |
| /* |
| * Compare magnitude of operands. |
| */ |
| Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1); |
| Sglext_copytoint_exponentmantissa(rightp1,signlessright1); |
| if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && |
| Sglext_ismagnitudeless(signlessleft1,signlessright1)) { |
| /* |
| * Set the left operand to the larger one by XOR swap. |
| * First finish the first word "save". |
| */ |
| Sglext_xorfromintp1(save,rightp1,/*to*/rightp1); |
| Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); |
| Sglext_swap_lower(tmpresp2,rightp2); |
| /* also setup exponents used in rest of routine */ |
| diff_exponent = add_exponent - mpy_exponent; |
| result_exponent = add_exponent; |
| } else { |
| /* also setup exponents used in rest of routine */ |
| diff_exponent = mpy_exponent - add_exponent; |
| result_exponent = mpy_exponent; |
| } |
| /* Invariant: left is not smaller than right. */ |
| |
| /* |
| * Special case alignment of operands that would force alignment |
| * beyond the extent of the extension. A further optimization |
| * could special case this but only reduces the path length for |
| * this infrequent case. |
| */ |
| if (diff_exponent > SGLEXT_THRESHOLD) { |
| diff_exponent = SGLEXT_THRESHOLD; |
| } |
| |
| /* Align right operand by shifting it to the right */ |
| Sglext_clear_sign(rightp1); |
| Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent); |
| |
| /* Treat sum and difference of the operands separately. */ |
| if ((int)save < 0) { |
| /* |
| * Difference of the two operands. Overflow can occur if the |
| * multiply overflowed. A borrow can occur out of the hidden |
| * bit and force a post normalization phase. |
| */ |
| Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2, |
| resultp1,resultp2); |
| sign_save = Sgl_signextendedsign(resultp1); |
| if (Sgl_iszero_hidden(resultp1)) { |
| /* Handle normalization */ |
| /* A straightforward algorithm would now shift the |
| * result and extension left until the hidden bit |
| * becomes one. Not all of the extension bits need |
| * participate in the shift. Only the two most |
| * significant bits (round and guard) are needed. |
| * If only a single shift is needed then the guard |
| * bit becomes a significant low order bit and the |
| * extension must participate in the rounding. |
| * If more than a single shift is needed, then all |
| * bits to the right of the guard bit are zeros, |
| * and the guard bit may or may not be zero. */ |
| Sglext_leftshiftby1(resultp1,resultp2); |
| |
| /* Need to check for a zero result. The sign and |
| * exponent fields have already been zeroed. The more |
| * efficient test of the full object can be used. |
| */ |
| if (Sglext_iszero(resultp1,resultp2)) { |
| /* Must have been "x-x" or "x+(-x)". */ |
| if (Is_rounding_mode(ROUNDMINUS)) |
| Sgl_setone_sign(resultp1); |
| Sgl_copytoptr(resultp1,dstptr); |
| return(NOEXCEPTION); |
| } |
| result_exponent--; |
| |
| /* Look to see if normalization is finished. */ |
| if (Sgl_isone_hidden(resultp1)) { |
| /* No further normalization is needed */ |
| goto round; |
| } |
| |
| /* Discover first one bit to determine shift amount. |
| * Use a modified binary search. We have already |
| * shifted the result one position right and still |
| * not found a one so the remainder of the extension |
| * must be zero and simplifies rounding. */ |
| /* Scan bytes */ |
| while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) { |
| Sglext_leftshiftby8(resultp1,resultp2); |
| result_exponent -= 8; |
| } |
| /* Now narrow it down to the nibble */ |
| if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) { |
| /* The lower nibble contains the |
| * normalizing one */ |
| Sglext_leftshiftby4(resultp1,resultp2); |
| result_exponent -= 4; |
| } |
| /* Select case where first bit is set (already |
| * normalized) otherwise select the proper shift. */ |
| jumpsize = Sgl_hiddenhigh3mantissa(resultp1); |
| if (jumpsize <= 7) switch(jumpsize) { |
| case 1: |
| Sglext_leftshiftby3(resultp1,resultp2); |
| result_exponent -= 3; |
| break; |
| case 2: |
| case 3: |
| Sglext_leftshiftby2(resultp1,resultp2); |
| result_exponent -= 2; |
| break; |
| case 4: |
| case 5: |
| case 6: |
| case 7: |
| Sglext_leftshiftby1(resultp1,resultp2); |
| result_exponent -= 1; |
| break; |
| } |
| } /* end if (hidden...)... */ |
| /* Fall through and round */ |
| } /* end if (save < 0)... */ |
| else { |
| /* Add magnitudes */ |
| Sglext_addition(tmpresp1,tmpresp2, |
| rightp1,rightp2, /*to*/resultp1,resultp2); |
| sign_save = Sgl_signextendedsign(resultp1); |
| if (Sgl_isone_hiddenoverflow(resultp1)) { |
| /* Prenormalization required. */ |
| Sglext_arithrightshiftby1(resultp1,resultp2); |
| result_exponent++; |
| } /* end if hiddenoverflow... */ |
| } /* end else ...add magnitudes... */ |
| |
| /* Round the result. If the extension and lower two words are |
| * all zeros, then the result is exact. Otherwise round in the |
| * correct direction. Underflow is possible. If a postnormalization |
| * is necessary, then the mantissa is all zeros so no shift is needed. |
| */ |
| round: |
| if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { |
| Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny); |
| } |
| Sgl_set_sign(resultp1,/*using*/sign_save); |
| if (Sglext_isnotzero_mantissap2(resultp2)) { |
| inexact = TRUE; |
| switch(Rounding_mode()) { |
| case ROUNDNEAREST: /* The default. */ |
| if (Sglext_isone_highp2(resultp2)) { |
| /* at least 1/2 ulp */ |
| if (Sglext_isnotzero_low31p2(resultp2) || |
| Sglext_isone_lowp1(resultp1)) { |
| /* either exactly half way and odd or |
| * more than 1/2ulp */ |
| Sgl_increment(resultp1); |
| } |
| } |
| break; |
| |
| case ROUNDPLUS: |
| if (Sgl_iszero_sign(resultp1)) { |
| /* Round up positive results */ |
| Sgl_increment(resultp1); |
| } |
| break; |
| |
| case ROUNDMINUS: |
| if (Sgl_isone_sign(resultp1)) { |
| /* Round down negative results */ |
| Sgl_increment(resultp1); |
| } |
| |
| case ROUNDZERO:; |
| /* truncate is simple */ |
| } /* end switch... */ |
| if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++; |
| } |
| if (result_exponent >= SGL_INFINITY_EXPONENT) { |
| /* Overflow */ |
| if (Is_overflowtrap_enabled()) { |
| /* |
| * Adjust bias of result |
| */ |
| Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl); |
| Sgl_copytoptr(resultp1,dstptr); |
| if (inexact) |
| if (Is_inexacttrap_enabled()) |
| return (OPC_2E_OVERFLOWEXCEPTION | |
| OPC_2E_INEXACTEXCEPTION); |
| else Set_inexactflag(); |
| return (OPC_2E_OVERFLOWEXCEPTION); |
| } |
| inexact = TRUE; |
| Set_overflowflag(); |
| Sgl_setoverflow(resultp1); |
| } else if (result_exponent <= 0) { /* underflow case */ |
| if (Is_underflowtrap_enabled()) { |
| /* |
| * Adjust bias of result |
| */ |
| Sgl_setwrapped_exponent(resultp1,result_exponent,unfl); |
| Sgl_copytoptr(resultp1,dstptr); |
| if (inexact) |
| if (Is_inexacttrap_enabled()) |
| return (OPC_2E_UNDERFLOWEXCEPTION | |
| OPC_2E_INEXACTEXCEPTION); |
| else Set_inexactflag(); |
| return(OPC_2E_UNDERFLOWEXCEPTION); |
| } |
| else if (inexact && is_tiny) Set_underflowflag(); |
| } |
| else Sgl_set_exponent(resultp1,result_exponent); |
| Sgl_copytoptr(resultp1,dstptr); |
| if (inexact) |
| if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); |
| else Set_inexactflag(); |
| return(NOEXCEPTION); |
| } |
| |
| /* |
| * Single Floating-point Multiply Negate Fused Add |
| */ |
| |
| sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| |
| sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; |
| unsigned int *status; |
| { |
| unsigned int opnd1, opnd2, opnd3; |
| register unsigned int tmpresp1, tmpresp2; |
| unsigned int rightp1, rightp2; |
| unsigned int resultp1, resultp2 = 0; |
| register int mpy_exponent, add_exponent, count; |
| boolean inexact = FALSE, is_tiny = FALSE; |
| |
| unsigned int signlessleft1, signlessright1, save; |
| register int result_exponent, diff_exponent; |
| int sign_save, jumpsize; |
| |
| Sgl_copyfromptr(src1ptr,opnd1); |
| Sgl_copyfromptr(src2ptr,opnd2); |
| Sgl_copyfromptr(src3ptr,opnd3); |
| |
| /* |
| * set sign bit of result of multiply |
| */ |
| if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2)) |
| Sgl_setzero(resultp1); |
| else |
| Sgl_setnegativezero(resultp1); |
| |
| /* |
| * Generate multiply exponent |
| */ |
| mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS; |
| |
| /* |
| * check first operand for NaN's or infinity |
| */ |
| if (Sgl_isinfinity_exponent(opnd1)) { |
| if (Sgl_iszero_mantissa(opnd1)) { |
| if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) { |
| if (Sgl_iszero_exponentmantissa(opnd2)) { |
| /* |
| * invalid since operands are infinity |
| * and zero |
| */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| Set_invalidflag(); |
| Sgl_makequietnan(resultp1); |
| Sgl_copytoptr(resultp1,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* |
| * Check third operand for infinity with a |
| * sign opposite of the multiply result |
| */ |
| if (Sgl_isinfinity(opnd3) && |
| (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { |
| /* |
| * invalid since attempting a magnitude |
| * subtraction of infinities |
| */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| Set_invalidflag(); |
| Sgl_makequietnan(resultp1); |
| Sgl_copytoptr(resultp1,dstptr); |
| return(NOEXCEPTION); |
| } |
| |
| /* |
| * return infinity |
| */ |
| Sgl_setinfinity_exponentmantissa(resultp1); |
| Sgl_copytoptr(resultp1,dstptr); |
| return(NOEXCEPTION); |
| } |
| } |
| else { |
| /* |
| * is NaN; signaling or quiet? |
| */ |
| if (Sgl_isone_signaling(opnd1)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Sgl_set_quiet(opnd1); |
| } |
| /* |
| * is second operand a signaling NaN? |
| */ |
| else if (Sgl_is_signalingnan(opnd2)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Sgl_set_quiet(opnd2); |
| Sgl_copytoptr(opnd2,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* |
| * is third operand a signaling NaN? |
| */ |
| else if (Sgl_is_signalingnan(opnd3)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Sgl_set_quiet(opnd3); |
| Sgl_copytoptr(opnd3,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* |
| * return quiet NaN |
| */ |
| Sgl_copytoptr(opnd1,dstptr); |
| return(NOEXCEPTION); |
| } |
| } |
| |
| /* |
| * check second operand for NaN's or infinity |
| */ |
| if (Sgl_isinfinity_exponent(opnd2)) { |
| if (Sgl_iszero_mantissa(opnd2)) { |
| if (Sgl_isnotnan(opnd3)) { |
| if (Sgl_iszero_exponentmantissa(opnd1)) { |
| /* |
| * invalid since multiply operands are |
| * zero & infinity |
| */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| Set_invalidflag(); |
| Sgl_makequietnan(opnd2); |
| Sgl_copytoptr(opnd2,dstptr); |
| return(NOEXCEPTION); |
| } |
| |
| /* |
| * Check third operand for infinity with a |
| * sign opposite of the multiply result |
| */ |
| if (Sgl_isinfinity(opnd3) && |
| (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { |
| /* |
| * invalid since attempting a magnitude |
| * subtraction of infinities |
| */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| Set_invalidflag(); |
| Sgl_makequietnan(resultp1); |
| Sgl_copytoptr(resultp1,dstptr); |
| return(NOEXCEPTION); |
| } |
| |
| /* |
| * return infinity |
| */ |
| Sgl_setinfinity_exponentmantissa(resultp1); |
| Sgl_copytoptr(resultp1,dstptr); |
| return(NOEXCEPTION); |
| } |
| } |
| else { |
| /* |
| * is NaN; signaling or quiet? |
| */ |
| if (Sgl_isone_signaling(opnd2)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Sgl_set_quiet(opnd2); |
| } |
| /* |
| * is third operand a signaling NaN? |
| */ |
| else if (Sgl_is_signalingnan(opnd3)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Sgl_set_quiet(opnd3); |
| Sgl_copytoptr(opnd3,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* |
| * return quiet NaN |
| */ |
| Sgl_copytoptr(opnd2,dstptr); |
| return(NOEXCEPTION); |
| } |
| } |
| |
| /* |
| * check third operand for NaN's or infinity |
| */ |
| if (Sgl_isinfinity_exponent(opnd3)) { |
| if (Sgl_iszero_mantissa(opnd3)) { |
| /* return infinity */ |
| Sgl_copytoptr(opnd3,dstptr); |
| return(NOEXCEPTION); |
| } else { |
| /* |
| * is NaN; signaling or quiet? |
| */ |
| if (Sgl_isone_signaling(opnd3)) { |
| /* trap if INVALIDTRAP enabled */ |
| if (Is_invalidtrap_enabled()) |
| return(OPC_2E_INVALIDEXCEPTION); |
| /* make NaN quiet */ |
| Set_invalidflag(); |
| Sgl_set_quiet(opnd3); |
| } |
| /* |
| * return quiet NaN |
| */ |
| Sgl_copytoptr(opnd3,dstptr); |
| return(NOEXCEPTION); |
| } |
| } |
| |
| /* |
| * Generate multiply mantissa |
| */ |
| if (Sgl_isnotzero_exponent(opnd1)) { |
| /* set hidden bit */ |
| Sgl_clear_signexponent_set_hidden(opnd1); |
| } |
| else { |
| /* check for zero */ |
| if (Sgl_iszero_mantissa(opnd1)) { |
| /* |
| * Perform the add opnd3 with zero here. |
| */ |
| if (Sgl_iszero_exponentmantissa(opnd3)) { |
| if (Is_rounding_mode(ROUNDMINUS)) { |
| Sgl_or_signs(opnd3,resultp1); |
| } else { |
| Sgl_and_signs(opnd3,resultp1); |
| } |
| } |
| /* |
| * Now let's check for trapped underflow case. |
| */ |
| else if (Sgl_iszero_exponent(opnd3) && |
| Is_underflowtrap_enabled()) { |
| /* need to normalize results mantissa */ |
| sign_save = Sgl_signextendedsign(opnd3); |
| result_exponent = 0; |
| Sgl_leftshiftby1(opnd3); |
| Sgl_normalize(opnd3,result_exponent); |
| Sgl_set_sign(opnd3,/*using*/sign_save); |
| Sgl_setwrapped_exponent(opnd3,result_exponent, |
| unfl); |
| Sgl_copytoptr(opnd3,dstptr); |
| /* inexact = FALSE */ |
| return(OPC_2E_UNDERFLOWEXCEPTION); |
| } |
| Sgl_copytoptr(opnd3,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* is denormalized, adjust exponent */ |
| Sgl_clear_signexponent(opnd1); |
| Sgl_leftshiftby1(opnd1); |
| Sgl_normalize(opnd1,mpy_exponent); |
| } |
| /* opnd2 needs to have hidden bit set with msb in hidden bit */ |
| if (Sgl_isnotzero_exponent(opnd2)) { |
| Sgl_clear_signexponent_set_hidden(opnd2); |
| } |
| else { |
| /* check for zero */ |
| if (Sgl_iszero_mantissa(opnd2)) { |
| /* |
| * Perform the add opnd3 with zero here. |
| */ |
| if (Sgl_iszero_exponentmantissa(opnd3)) { |
| if (Is_rounding_mode(ROUNDMINUS)) { |
| Sgl_or_signs(opnd3,resultp1); |
| } else { |
| Sgl_and_signs(opnd3,resultp1); |
| } |
| } |
| /* |
| * Now let's check for trapped underflow case. |
| */ |
| else if (Sgl_iszero_exponent(opnd3) && |
| Is_underflowtrap_enabled()) { |
| /* need to normalize results mantissa */ |
| sign_save = Sgl_signextendedsign(opnd3); |
| result_exponent = 0; |
| Sgl_leftshiftby1(opnd3); |
| Sgl_normalize(opnd3,result_exponent); |
| Sgl_set_sign(opnd3,/*using*/sign_save); |
| Sgl_setwrapped_exponent(opnd3,result_exponent, |
| unfl); |
| Sgl_copytoptr(opnd3,dstptr); |
| /* inexact = FALSE */ |
| return(OPC_2E_UNDERFLOWEXCEPTION); |
| } |
| Sgl_copytoptr(opnd3,dstptr); |
| return(NOEXCEPTION); |
| } |
| /* is denormalized; want to normalize */ |
| Sgl_clear_signexponent(opnd2); |
| Sgl_leftshiftby1(opnd2); |
| Sgl_normalize(opnd2,mpy_exponent); |
| } |
| |
| /* Multiply the first two source mantissas together */ |
| |
| /* |
| * The intermediate result will be kept in tmpres, |
| * which needs enough room for 106 bits of mantissa, |
| * so lets call it a Double extended. |
| */ |
| Sglext_setzero(tmpresp1,tmpresp2); |
| |
| /* |
| * Four bits at a time are inspected in each loop, and a |
| * simple shift and add multiply algorithm is used. |
| */ |
| for (count = SGL_P-1; count >= 0; count -= 4) { |
| Sglext_rightshiftby4(tmpresp1,tmpresp2); |
| if (Sbit28(opnd1)) { |
| /* Twoword_add should be an ADD followed by 2 ADDC's */ |
| Twoword_add(tmpresp1, tmpresp2, opnd2<<3, 0); |
| } |
| if (Sbit29(opnd1)) { |
| Twoword_add(tmpresp1, tmpresp2, opnd2<<2, 0); |
| } |
| if (Sbit30(opnd1)) { |
| Twoword_add(tmpresp1, tmpresp2, opnd2<<1, 0); |
| } |
| if (Sbit31(opnd1)) { |
| Twoword_add(tmpresp1, tmpresp2, opnd2, 0); |
| } |
| Sgl_rightshiftby4(opnd1); |
| } |
| if (Is_sexthiddenoverflow(tmpresp1)) { |
| /* result mantissa >= 2 (mantissa overflow) */ |
| mpy_exponent++; |
| Sglext_rightshiftby4(tmpresp1,tmpresp2); |
| } else { |
| Sglext_rightshiftby3(tmpresp1,tmpresp2); |
| } |
| |
| /* |
| * Restore the sign of the mpy result which was saved in resultp1. |
| * The exponent will continue to be kept in mpy_exponent. |
| */ |
| Sglext_set_sign(tmpresp1,Sgl_sign(resultp1)); |
| |
| /* |
| * No rounding is required, since the result of the multiply |
| * is exact in the extended format. |
| */ |
| |
| /* |
| * Now we are ready to perform the add portion of the operation. |
| * |
| * The exponents need to be kept as integers for now, since the |
| * multiply result might not fit into the exponent field. We |
| * can't overflow or underflow because of this yet, since the |
| * add could bring the final result back into range. |
| */ |
| add_exponent = Sgl_exponent(opnd3); |
| |
| /* |
| * Check for denormalized or zero add operand. |
| */ |
| if (add_exponent == 0) { |
| /* check for zero */ |
| if (Sgl_iszero_mantissa(opnd3)) { |
| /* right is zero */ |
| /* Left can't be zero and must be result. |
| * |
| * The final result is now in tmpres and mpy_exponent, |
| * and needs to be rounded and squeezed back into |
| * double precision format from double extended. |
| */ |
| result_exponent = mpy_exponent; |
| Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2); |
| sign_save = Sgl_signextendedsign(resultp1);/*save sign*/ |
| goto round; |
| } |
| |
| /* |
| * Neither are zeroes. |
| * Adjust exponent and normalize add operand. |
| */ |
| sign_save = Sgl_signextendedsign(opnd3); /* save sign */ |
| Sgl_clear_signexponent(opnd3); |
| Sgl_leftshiftby1(opnd3); |
| Sgl_normalize(opnd3,add_exponent); |
| Sgl_set_sign(opnd3,sign_save); /* restore sign */ |
| } else { |
| Sgl_clear_exponent_set_hidden(opnd3); |
| } |
| /* |
| * Copy opnd3 to the double extended variable called right. |
| */ |
| Sgl_copyto_sglext(opnd3,rightp1,rightp2); |
| |
| /* |
| * A zero "save" helps discover equal operands (for later), |
| * and is used in swapping operands (if needed). |
| */ |
| Sglext_xortointp1(tmpresp1,rightp1,/*to*/save); |
| |
| /* |
| * Compare magnitude of operands. |
| */ |
| Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1); |
| Sglext_copytoint_exponentmantissa(rightp1,signlessright1); |
| if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && |
| Sglext_ismagnitudeless(signlessleft1,signlessright1)) { |
| /* |
| * Set the left operand to the larger one by XOR swap. |
| * First finish the first word "save". |
| */ |
| Sglext_xorfromintp1(save,rightp1,/*to*/rightp1); |
| Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); |
| Sglext_swap_lower(tmpresp2,rightp2); |
| /* also setup exponents used in rest of routine */ |
| diff_exponent = add_exponent - mpy_exponent; |
| result_exponent = add_exponent; |
| } else { |
| /* also setup exponents used in rest of routine */ |
| diff_exponent = mpy_exponent - add_exponent; |
| result_exponent = mpy_exponent; |
| } |
| /* Invariant: left is not smaller than right. */ |
| |
| /* |
| * Special case alignment of operands that would force alignment |
| * beyond the extent of the extension. A further optimization |
| * could special case this but only reduces the path length for |
| * this infrequent case. |
| */ |
| if (diff_exponent > SGLEXT_THRESHOLD) { |
| diff_exponent = SGLEXT_THRESHOLD; |
| } |
| |
| /* Align right operand by shifting it to the right */ |
| Sglext_clear_sign(rightp1); |
| Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent); |
| |
| /* Treat sum and difference of the operands separately. */ |
| if ((int)save < 0) { |
| /* |
| * Difference of the two operands. Overflow can occur if the |
| * multiply overflowed. A borrow can occur out of the hidden |
| * bit and force a post normalization phase. |
| */ |
| Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2, |
| resultp1,resultp2); |
| sign_save = Sgl_signextendedsign(resultp1); |
| if (Sgl_iszero_hidden(resultp1)) { |
| /* Handle normalization */ |
| /* A straightforward algorithm would now shift the |
| * result and extension left until the hidden bit |
| * becomes one. Not all of the extension bits need |
| * participate in the shift. Only the two most |
| * significant bits (round and guard) are needed. |
| * If only a single shift is needed then the guard |
| * bit becomes a significant low order bit and the |
| * extension must participate in the rounding. |
| * If more than a single shift is needed, then all |
| * bits to the right of the guard bit are zeros, |
| * and the guard bit may or may not be zero. */ |
| Sglext_leftshiftby1(resultp1,resultp2); |
| |
| /* Need to check for a zero result. The sign and |
| * exponent fields have already been zeroed. The more |
| * efficient test of the full object can be used. |
| */ |
| if (Sglext_iszero(resultp1,resultp2)) { |
| /* Must have been "x-x" or "x+(-x)". */ |
| if (Is_rounding_mode(ROUNDMINUS)) |
| Sgl_setone_sign(resultp1); |
| Sgl_copytoptr(resultp1,dstptr); |
| return(NOEXCEPTION); |
| } |
| result_exponent--; |
| |
| /* Look to see if normalization is finished. */ |
| if (Sgl_isone_hidden(resultp1)) { |
| /* No further normalization is needed */ |
| goto round; |
| } |
| |
| /* Discover first one bit to determine shift amount. |
| * Use a modified binary search. We have already |
| * shifted the result one position right and still |
| * not found a one so the remainder of the extension |
| * must be zero and simplifies rounding. */ |
| /* Scan bytes */ |
| while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) { |
| Sglext_leftshiftby8(resultp1,resultp2); |
| result_exponent -= 8; |
| } |
| /* Now narrow it down to the nibble */ |
| if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) { |
| /* The lower nibble contains the |
| * normalizing one */ |
| Sglext_leftshiftby4(resultp1,resultp2); |
| result_exponent -= 4; |
| } |
| /* Select case where first bit is set (already |
| * normalized) otherwise select the proper shift. */ |
| jumpsize = Sgl_hiddenhigh3mantissa(resultp1); |
| if (jumpsize <= 7) switch(jumpsize) { |
| case 1: |
| Sglext_leftshiftby3(resultp1,resultp2); |
| result_exponent -= 3; |
| break; |
| case 2: |
| case 3: |
| Sglext_leftshiftby2(resultp1,resultp2); |
| result_exponent -= 2; |
| break; |
| case 4: |
| case 5: |
| case 6: |
| case 7: |
| Sglext_leftshiftby1(resultp1,resultp2); |
| result_exponent -= 1; |
| break; |
| } |
| } /* end if (hidden...)... */ |
| /* Fall through and round */ |
| } /* end if (save < 0)... */ |
| else { |
| /* Add magnitudes */ |
| Sglext_addition(tmpresp1,tmpresp2, |
| rightp1,rightp2, /*to*/resultp1,resultp2); |
| sign_save = Sgl_signextendedsign(resultp1); |
| if (Sgl_isone_hiddenoverflow(resultp1)) { |
| /* Prenormalization required. */ |
| Sglext_arithrightshiftby1(resultp1,resultp2); |
| result_exponent++; |
| } /* end if hiddenoverflow... */ |
| } /* end else ...add magnitudes... */ |
| |
| /* Round the result. If the extension and lower two words are |
| * all zeros, then the result is exact. Otherwise round in the |
| * correct direction. Underflow is possible. If a postnormalization |
| * is necessary, then the mantissa is all zeros so no shift is needed. |
| */ |
| round: |
| if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { |
| Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny); |
| } |
| Sgl_set_sign(resultp1,/*using*/sign_save); |
| if (Sglext_isnotzero_mantissap2(resultp2)) { |
| inexact = TRUE; |
| switch(Rounding_mode()) { |
| case ROUNDNEAREST: /* The default. */ |
| if (Sglext_isone_highp2(resultp2)) { |
| /* at least 1/2 ulp */ |
| if (Sglext_isnotzero_low31p2(resultp2) || |
| Sglext_isone_lowp1(resultp1)) { |
| /* either exactly half way and odd or |
| * more than 1/2ulp */ |
| Sgl_increment(resultp1); |
| } |
| } |
| break; |
| |
| case ROUNDPLUS: |
| if (Sgl_iszero_sign(resultp1)) { |
| /* Round up positive results */ |
| Sgl_increment(resultp1); |
| } |
| break; |
| |
| case ROUNDMINUS: |
| if (Sgl_isone_sign(resultp1)) { |
| /* Round down negative results */ |
| Sgl_increment(resultp1); |
| } |
| |
| case ROUNDZERO:; |
| /* truncate is simple */ |
| } /* end switch... */ |
| if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++; |
| } |
| if (result_exponent >= SGL_INFINITY_EXPONENT) { |
| /* Overflow */ |
| if (Is_overflowtrap_enabled()) { |
| /* |
| * Adjust bias of result |
| */ |
| Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl); |
| Sgl_copytoptr(resultp1,dstptr); |
| if (inexact) |
| if (Is_inexacttrap_enabled()) |
| return (OPC_2E_OVERFLOWEXCEPTION | |
| OPC_2E_INEXACTEXCEPTION); |
| else Set_inexactflag(); |
| return (OPC_2E_OVERFLOWEXCEPTION); |
| } |
| inexact = TRUE; |
| Set_overflowflag(); |
| Sgl_setoverflow(resultp1); |
| } else if (result_exponent <= 0) { /* underflow case */ |
| if (Is_underflowtrap_enabled()) { |
| /* |
| * Adjust bias of result |
| */ |
| Sgl_setwrapped_exponent(resultp1,result_exponent,unfl); |
| Sgl_copytoptr(resultp1,dstptr); |
| if (inexact) |
| if (Is_inexacttrap_enabled()) |
| return (OPC_2E_UNDERFLOWEXCEPTION | |
| OPC_2E_INEXACTEXCEPTION); |
| else Set_inexactflag(); |
| return(OPC_2E_UNDERFLOWEXCEPTION); |
| } |
| else if (inexact && is_tiny) Set_underflowflag(); |
| } |
| else Sgl_set_exponent(resultp1,result_exponent); |
| Sgl_copytoptr(resultp1,dstptr); |
| if (inexact) |
| if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); |
| else Set_inexactflag(); |
| return(NOEXCEPTION); |
| } |
| |