| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * KVM/MIPS: Support for hardware virtualization extensions |
| * |
| * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. |
| * Authors: Yann Le Du <ledu@kymasys.com> |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/err.h> |
| #include <linux/module.h> |
| #include <linux/preempt.h> |
| #include <linux/vmalloc.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cacheops.h> |
| #include <asm/cmpxchg.h> |
| #include <asm/fpu.h> |
| #include <asm/hazards.h> |
| #include <asm/inst.h> |
| #include <asm/mmu_context.h> |
| #include <asm/r4kcache.h> |
| #include <asm/time.h> |
| #include <asm/tlb.h> |
| #include <asm/tlbex.h> |
| |
| #include <linux/kvm_host.h> |
| |
| #include "interrupt.h" |
| |
| #include "trace.h" |
| |
| /* Pointers to last VCPU loaded on each physical CPU */ |
| static struct kvm_vcpu *last_vcpu[NR_CPUS]; |
| /* Pointers to last VCPU executed on each physical CPU */ |
| static struct kvm_vcpu *last_exec_vcpu[NR_CPUS]; |
| |
| /* |
| * Number of guest VTLB entries to use, so we can catch inconsistency between |
| * CPUs. |
| */ |
| static unsigned int kvm_vz_guest_vtlb_size; |
| |
| static inline long kvm_vz_read_gc0_ebase(void) |
| { |
| if (sizeof(long) == 8 && cpu_has_ebase_wg) |
| return read_gc0_ebase_64(); |
| else |
| return read_gc0_ebase(); |
| } |
| |
| static inline void kvm_vz_write_gc0_ebase(long v) |
| { |
| /* |
| * First write with WG=1 to write upper bits, then write again in case |
| * WG should be left at 0. |
| * write_gc0_ebase_64() is no longer UNDEFINED since R6. |
| */ |
| if (sizeof(long) == 8 && |
| (cpu_has_mips64r6 || cpu_has_ebase_wg)) { |
| write_gc0_ebase_64(v | MIPS_EBASE_WG); |
| write_gc0_ebase_64(v); |
| } else { |
| write_gc0_ebase(v | MIPS_EBASE_WG); |
| write_gc0_ebase(v); |
| } |
| } |
| |
| /* |
| * These Config bits may be writable by the guest: |
| * Config: [K23, KU] (!TLB), K0 |
| * Config1: (none) |
| * Config2: [TU, SU] (impl) |
| * Config3: ISAOnExc |
| * Config4: FTLBPageSize |
| * Config5: K, CV, MSAEn, UFE, FRE, SBRI, UFR |
| */ |
| |
| static inline unsigned int kvm_vz_config_guest_wrmask(struct kvm_vcpu *vcpu) |
| { |
| return CONF_CM_CMASK; |
| } |
| |
| static inline unsigned int kvm_vz_config1_guest_wrmask(struct kvm_vcpu *vcpu) |
| { |
| return 0; |
| } |
| |
| static inline unsigned int kvm_vz_config2_guest_wrmask(struct kvm_vcpu *vcpu) |
| { |
| return 0; |
| } |
| |
| static inline unsigned int kvm_vz_config3_guest_wrmask(struct kvm_vcpu *vcpu) |
| { |
| return MIPS_CONF3_ISA_OE; |
| } |
| |
| static inline unsigned int kvm_vz_config4_guest_wrmask(struct kvm_vcpu *vcpu) |
| { |
| /* no need to be exact */ |
| return MIPS_CONF4_VFTLBPAGESIZE; |
| } |
| |
| static inline unsigned int kvm_vz_config5_guest_wrmask(struct kvm_vcpu *vcpu) |
| { |
| unsigned int mask = MIPS_CONF5_K | MIPS_CONF5_CV | MIPS_CONF5_SBRI; |
| |
| /* Permit MSAEn changes if MSA supported and enabled */ |
| if (kvm_mips_guest_has_msa(&vcpu->arch)) |
| mask |= MIPS_CONF5_MSAEN; |
| |
| /* |
| * Permit guest FPU mode changes if FPU is enabled and the relevant |
| * feature exists according to FIR register. |
| */ |
| if (kvm_mips_guest_has_fpu(&vcpu->arch)) { |
| if (cpu_has_ufr) |
| mask |= MIPS_CONF5_UFR; |
| if (cpu_has_fre) |
| mask |= MIPS_CONF5_FRE | MIPS_CONF5_UFE; |
| } |
| |
| return mask; |
| } |
| |
| /* |
| * VZ optionally allows these additional Config bits to be written by root: |
| * Config: M, [MT] |
| * Config1: M, [MMUSize-1, C2, MD, PC, WR, CA], FP |
| * Config2: M |
| * Config3: M, MSAP, [BPG], ULRI, [DSP2P, DSPP], CTXTC, [ITL, LPA, VEIC, |
| * VInt, SP, CDMM, MT, SM, TL] |
| * Config4: M, [VTLBSizeExt, MMUSizeExt] |
| * Config5: MRP |
| */ |
| |
| static inline unsigned int kvm_vz_config_user_wrmask(struct kvm_vcpu *vcpu) |
| { |
| return kvm_vz_config_guest_wrmask(vcpu) | MIPS_CONF_M; |
| } |
| |
| static inline unsigned int kvm_vz_config1_user_wrmask(struct kvm_vcpu *vcpu) |
| { |
| unsigned int mask = kvm_vz_config1_guest_wrmask(vcpu) | MIPS_CONF_M; |
| |
| /* Permit FPU to be present if FPU is supported */ |
| if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) |
| mask |= MIPS_CONF1_FP; |
| |
| return mask; |
| } |
| |
| static inline unsigned int kvm_vz_config2_user_wrmask(struct kvm_vcpu *vcpu) |
| { |
| return kvm_vz_config2_guest_wrmask(vcpu) | MIPS_CONF_M; |
| } |
| |
| static inline unsigned int kvm_vz_config3_user_wrmask(struct kvm_vcpu *vcpu) |
| { |
| unsigned int mask = kvm_vz_config3_guest_wrmask(vcpu) | MIPS_CONF_M | |
| MIPS_CONF3_ULRI | MIPS_CONF3_CTXTC; |
| |
| /* Permit MSA to be present if MSA is supported */ |
| if (kvm_mips_guest_can_have_msa(&vcpu->arch)) |
| mask |= MIPS_CONF3_MSA; |
| |
| return mask; |
| } |
| |
| static inline unsigned int kvm_vz_config4_user_wrmask(struct kvm_vcpu *vcpu) |
| { |
| return kvm_vz_config4_guest_wrmask(vcpu) | MIPS_CONF_M; |
| } |
| |
| static inline unsigned int kvm_vz_config5_user_wrmask(struct kvm_vcpu *vcpu) |
| { |
| return kvm_vz_config5_guest_wrmask(vcpu) | MIPS_CONF5_MRP; |
| } |
| |
| static gpa_t kvm_vz_gva_to_gpa_cb(gva_t gva) |
| { |
| /* VZ guest has already converted gva to gpa */ |
| return gva; |
| } |
| |
| static void kvm_vz_queue_irq(struct kvm_vcpu *vcpu, unsigned int priority) |
| { |
| set_bit(priority, &vcpu->arch.pending_exceptions); |
| clear_bit(priority, &vcpu->arch.pending_exceptions_clr); |
| } |
| |
| static void kvm_vz_dequeue_irq(struct kvm_vcpu *vcpu, unsigned int priority) |
| { |
| clear_bit(priority, &vcpu->arch.pending_exceptions); |
| set_bit(priority, &vcpu->arch.pending_exceptions_clr); |
| } |
| |
| static void kvm_vz_queue_timer_int_cb(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * timer expiry is asynchronous to vcpu execution therefore defer guest |
| * cp0 accesses |
| */ |
| kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER); |
| } |
| |
| static void kvm_vz_dequeue_timer_int_cb(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * timer expiry is asynchronous to vcpu execution therefore defer guest |
| * cp0 accesses |
| */ |
| kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_TIMER); |
| } |
| |
| static void kvm_vz_queue_io_int_cb(struct kvm_vcpu *vcpu, |
| struct kvm_mips_interrupt *irq) |
| { |
| int intr = (int)irq->irq; |
| |
| /* |
| * interrupts are asynchronous to vcpu execution therefore defer guest |
| * cp0 accesses |
| */ |
| switch (intr) { |
| case 2: |
| kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IO); |
| break; |
| |
| case 3: |
| kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IPI_1); |
| break; |
| |
| case 4: |
| kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IPI_2); |
| break; |
| |
| default: |
| break; |
| } |
| |
| } |
| |
| static void kvm_vz_dequeue_io_int_cb(struct kvm_vcpu *vcpu, |
| struct kvm_mips_interrupt *irq) |
| { |
| int intr = (int)irq->irq; |
| |
| /* |
| * interrupts are asynchronous to vcpu execution therefore defer guest |
| * cp0 accesses |
| */ |
| switch (intr) { |
| case -2: |
| kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IO); |
| break; |
| |
| case -3: |
| kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IPI_1); |
| break; |
| |
| case -4: |
| kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IPI_2); |
| break; |
| |
| default: |
| break; |
| } |
| |
| } |
| |
| static u32 kvm_vz_priority_to_irq[MIPS_EXC_MAX] = { |
| [MIPS_EXC_INT_TIMER] = C_IRQ5, |
| [MIPS_EXC_INT_IO] = C_IRQ0, |
| [MIPS_EXC_INT_IPI_1] = C_IRQ1, |
| [MIPS_EXC_INT_IPI_2] = C_IRQ2, |
| }; |
| |
| static int kvm_vz_irq_deliver_cb(struct kvm_vcpu *vcpu, unsigned int priority, |
| u32 cause) |
| { |
| u32 irq = (priority < MIPS_EXC_MAX) ? |
| kvm_vz_priority_to_irq[priority] : 0; |
| |
| switch (priority) { |
| case MIPS_EXC_INT_TIMER: |
| set_gc0_cause(C_TI); |
| break; |
| |
| case MIPS_EXC_INT_IO: |
| case MIPS_EXC_INT_IPI_1: |
| case MIPS_EXC_INT_IPI_2: |
| if (cpu_has_guestctl2) |
| set_c0_guestctl2(irq); |
| else |
| set_gc0_cause(irq); |
| break; |
| |
| default: |
| break; |
| } |
| |
| clear_bit(priority, &vcpu->arch.pending_exceptions); |
| return 1; |
| } |
| |
| static int kvm_vz_irq_clear_cb(struct kvm_vcpu *vcpu, unsigned int priority, |
| u32 cause) |
| { |
| u32 irq = (priority < MIPS_EXC_MAX) ? |
| kvm_vz_priority_to_irq[priority] : 0; |
| |
| switch (priority) { |
| case MIPS_EXC_INT_TIMER: |
| /* |
| * Call to kvm_write_c0_guest_compare() clears Cause.TI in |
| * kvm_mips_emulate_CP0(). Explicitly clear irq associated with |
| * Cause.IP[IPTI] if GuestCtl2 virtual interrupt register not |
| * supported or if not using GuestCtl2 Hardware Clear. |
| */ |
| if (cpu_has_guestctl2) { |
| if (!(read_c0_guestctl2() & (irq << 14))) |
| clear_c0_guestctl2(irq); |
| } else { |
| clear_gc0_cause(irq); |
| } |
| break; |
| |
| case MIPS_EXC_INT_IO: |
| case MIPS_EXC_INT_IPI_1: |
| case MIPS_EXC_INT_IPI_2: |
| /* Clear GuestCtl2.VIP irq if not using Hardware Clear */ |
| if (cpu_has_guestctl2) { |
| if (!(read_c0_guestctl2() & (irq << 14))) |
| clear_c0_guestctl2(irq); |
| } else { |
| clear_gc0_cause(irq); |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| clear_bit(priority, &vcpu->arch.pending_exceptions_clr); |
| return 1; |
| } |
| |
| /* |
| * VZ guest timer handling. |
| */ |
| |
| /** |
| * kvm_vz_should_use_htimer() - Find whether to use the VZ hard guest timer. |
| * @vcpu: Virtual CPU. |
| * |
| * Returns: true if the VZ GTOffset & real guest CP0_Count should be used |
| * instead of software emulation of guest timer. |
| * false otherwise. |
| */ |
| static bool kvm_vz_should_use_htimer(struct kvm_vcpu *vcpu) |
| { |
| if (kvm_mips_count_disabled(vcpu)) |
| return false; |
| |
| /* Chosen frequency must match real frequency */ |
| if (mips_hpt_frequency != vcpu->arch.count_hz) |
| return false; |
| |
| /* We don't support a CP0_GTOffset with fewer bits than CP0_Count */ |
| if (current_cpu_data.gtoffset_mask != 0xffffffff) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * _kvm_vz_restore_stimer() - Restore soft timer state. |
| * @vcpu: Virtual CPU. |
| * @compare: CP0_Compare register value, restored by caller. |
| * @cause: CP0_Cause register to restore. |
| * |
| * Restore VZ state relating to the soft timer. The hard timer can be enabled |
| * later. |
| */ |
| static void _kvm_vz_restore_stimer(struct kvm_vcpu *vcpu, u32 compare, |
| u32 cause) |
| { |
| /* |
| * Avoid spurious counter interrupts by setting Guest CP0_Count to just |
| * after Guest CP0_Compare. |
| */ |
| write_c0_gtoffset(compare - read_c0_count()); |
| |
| back_to_back_c0_hazard(); |
| write_gc0_cause(cause); |
| } |
| |
| /** |
| * _kvm_vz_restore_htimer() - Restore hard timer state. |
| * @vcpu: Virtual CPU. |
| * @compare: CP0_Compare register value, restored by caller. |
| * @cause: CP0_Cause register to restore. |
| * |
| * Restore hard timer Guest.Count & Guest.Cause taking care to preserve the |
| * value of Guest.CP0_Cause.TI while restoring Guest.CP0_Cause. |
| */ |
| static void _kvm_vz_restore_htimer(struct kvm_vcpu *vcpu, |
| u32 compare, u32 cause) |
| { |
| u32 start_count, after_count; |
| ktime_t freeze_time; |
| unsigned long flags; |
| |
| /* |
| * Freeze the soft-timer and sync the guest CP0_Count with it. We do |
| * this with interrupts disabled to avoid latency. |
| */ |
| local_irq_save(flags); |
| freeze_time = kvm_mips_freeze_hrtimer(vcpu, &start_count); |
| write_c0_gtoffset(start_count - read_c0_count()); |
| local_irq_restore(flags); |
| |
| /* restore guest CP0_Cause, as TI may already be set */ |
| back_to_back_c0_hazard(); |
| write_gc0_cause(cause); |
| |
| /* |
| * The above sequence isn't atomic and would result in lost timer |
| * interrupts if we're not careful. Detect if a timer interrupt is due |
| * and assert it. |
| */ |
| back_to_back_c0_hazard(); |
| after_count = read_gc0_count(); |
| if (after_count - start_count > compare - start_count - 1) |
| kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER); |
| } |
| |
| /** |
| * kvm_vz_restore_timer() - Restore timer state. |
| * @vcpu: Virtual CPU. |
| * |
| * Restore soft timer state from saved context. |
| */ |
| static void kvm_vz_restore_timer(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| u32 cause, compare; |
| |
| compare = kvm_read_sw_gc0_compare(cop0); |
| cause = kvm_read_sw_gc0_cause(cop0); |
| |
| write_gc0_compare(compare); |
| _kvm_vz_restore_stimer(vcpu, compare, cause); |
| } |
| |
| /** |
| * kvm_vz_acquire_htimer() - Switch to hard timer state. |
| * @vcpu: Virtual CPU. |
| * |
| * Restore hard timer state on top of existing soft timer state if possible. |
| * |
| * Since hard timer won't remain active over preemption, preemption should be |
| * disabled by the caller. |
| */ |
| void kvm_vz_acquire_htimer(struct kvm_vcpu *vcpu) |
| { |
| u32 gctl0; |
| |
| gctl0 = read_c0_guestctl0(); |
| if (!(gctl0 & MIPS_GCTL0_GT) && kvm_vz_should_use_htimer(vcpu)) { |
| /* enable guest access to hard timer */ |
| write_c0_guestctl0(gctl0 | MIPS_GCTL0_GT); |
| |
| _kvm_vz_restore_htimer(vcpu, read_gc0_compare(), |
| read_gc0_cause()); |
| } |
| } |
| |
| /** |
| * _kvm_vz_save_htimer() - Switch to software emulation of guest timer. |
| * @vcpu: Virtual CPU. |
| * @compare: Pointer to write compare value to. |
| * @cause: Pointer to write cause value to. |
| * |
| * Save VZ guest timer state and switch to software emulation of guest CP0 |
| * timer. The hard timer must already be in use, so preemption should be |
| * disabled. |
| */ |
| static void _kvm_vz_save_htimer(struct kvm_vcpu *vcpu, |
| u32 *out_compare, u32 *out_cause) |
| { |
| u32 cause, compare, before_count, end_count; |
| ktime_t before_time; |
| |
| compare = read_gc0_compare(); |
| *out_compare = compare; |
| |
| before_time = ktime_get(); |
| |
| /* |
| * Record the CP0_Count *prior* to saving CP0_Cause, so we have a time |
| * at which no pending timer interrupt is missing. |
| */ |
| before_count = read_gc0_count(); |
| back_to_back_c0_hazard(); |
| cause = read_gc0_cause(); |
| *out_cause = cause; |
| |
| /* |
| * Record a final CP0_Count which we will transfer to the soft-timer. |
| * This is recorded *after* saving CP0_Cause, so we don't get any timer |
| * interrupts from just after the final CP0_Count point. |
| */ |
| back_to_back_c0_hazard(); |
| end_count = read_gc0_count(); |
| |
| /* |
| * The above sequence isn't atomic, so we could miss a timer interrupt |
| * between reading CP0_Cause and end_count. Detect and record any timer |
| * interrupt due between before_count and end_count. |
| */ |
| if (end_count - before_count > compare - before_count - 1) |
| kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER); |
| |
| /* |
| * Restore soft-timer, ignoring a small amount of negative drift due to |
| * delay between freeze_hrtimer and setting CP0_GTOffset. |
| */ |
| kvm_mips_restore_hrtimer(vcpu, before_time, end_count, -0x10000); |
| } |
| |
| /** |
| * kvm_vz_save_timer() - Save guest timer state. |
| * @vcpu: Virtual CPU. |
| * |
| * Save VZ guest timer state and switch to soft guest timer if hard timer was in |
| * use. |
| */ |
| static void kvm_vz_save_timer(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| u32 gctl0, compare, cause; |
| |
| gctl0 = read_c0_guestctl0(); |
| if (gctl0 & MIPS_GCTL0_GT) { |
| /* disable guest use of hard timer */ |
| write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT); |
| |
| /* save hard timer state */ |
| _kvm_vz_save_htimer(vcpu, &compare, &cause); |
| } else { |
| compare = read_gc0_compare(); |
| cause = read_gc0_cause(); |
| } |
| |
| /* save timer-related state to VCPU context */ |
| kvm_write_sw_gc0_cause(cop0, cause); |
| kvm_write_sw_gc0_compare(cop0, compare); |
| } |
| |
| /** |
| * kvm_vz_lose_htimer() - Ensure hard guest timer is not in use. |
| * @vcpu: Virtual CPU. |
| * |
| * Transfers the state of the hard guest timer to the soft guest timer, leaving |
| * guest state intact so it can continue to be used with the soft timer. |
| */ |
| void kvm_vz_lose_htimer(struct kvm_vcpu *vcpu) |
| { |
| u32 gctl0, compare, cause; |
| |
| preempt_disable(); |
| gctl0 = read_c0_guestctl0(); |
| if (gctl0 & MIPS_GCTL0_GT) { |
| /* disable guest use of timer */ |
| write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT); |
| |
| /* switch to soft timer */ |
| _kvm_vz_save_htimer(vcpu, &compare, &cause); |
| |
| /* leave soft timer in usable state */ |
| _kvm_vz_restore_stimer(vcpu, compare, cause); |
| } |
| preempt_enable(); |
| } |
| |
| /** |
| * is_eva_access() - Find whether an instruction is an EVA memory accessor. |
| * @inst: 32-bit instruction encoding. |
| * |
| * Finds whether @inst encodes an EVA memory access instruction, which would |
| * indicate that emulation of it should access the user mode address space |
| * instead of the kernel mode address space. This matters for MUSUK segments |
| * which are TLB mapped for user mode but unmapped for kernel mode. |
| * |
| * Returns: Whether @inst encodes an EVA accessor instruction. |
| */ |
| static bool is_eva_access(union mips_instruction inst) |
| { |
| if (inst.spec3_format.opcode != spec3_op) |
| return false; |
| |
| switch (inst.spec3_format.func) { |
| case lwle_op: |
| case lwre_op: |
| case cachee_op: |
| case sbe_op: |
| case she_op: |
| case sce_op: |
| case swe_op: |
| case swle_op: |
| case swre_op: |
| case prefe_op: |
| case lbue_op: |
| case lhue_op: |
| case lbe_op: |
| case lhe_op: |
| case lle_op: |
| case lwe_op: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /** |
| * is_eva_am_mapped() - Find whether an access mode is mapped. |
| * @vcpu: KVM VCPU state. |
| * @am: 3-bit encoded access mode. |
| * @eu: Segment becomes unmapped and uncached when Status.ERL=1. |
| * |
| * Decode @am to find whether it encodes a mapped segment for the current VCPU |
| * state. Where necessary @eu and the actual instruction causing the fault are |
| * taken into account to make the decision. |
| * |
| * Returns: Whether the VCPU faulted on a TLB mapped address. |
| */ |
| static bool is_eva_am_mapped(struct kvm_vcpu *vcpu, unsigned int am, bool eu) |
| { |
| u32 am_lookup; |
| int err; |
| |
| /* |
| * Interpret access control mode. We assume address errors will already |
| * have been caught by the guest, leaving us with: |
| * AM UM SM KM 31..24 23..16 |
| * UK 0 000 Unm 0 0 |
| * MK 1 001 TLB 1 |
| * MSK 2 010 TLB TLB 1 |
| * MUSK 3 011 TLB TLB TLB 1 |
| * MUSUK 4 100 TLB TLB Unm 0 1 |
| * USK 5 101 Unm Unm 0 0 |
| * - 6 110 0 0 |
| * UUSK 7 111 Unm Unm Unm 0 0 |
| * |
| * We shift a magic value by AM across the sign bit to find if always |
| * TLB mapped, and if not shift by 8 again to find if it depends on KM. |
| */ |
| am_lookup = 0x70080000 << am; |
| if ((s32)am_lookup < 0) { |
| /* |
| * MK, MSK, MUSK |
| * Always TLB mapped, unless SegCtl.EU && ERL |
| */ |
| if (!eu || !(read_gc0_status() & ST0_ERL)) |
| return true; |
| } else { |
| am_lookup <<= 8; |
| if ((s32)am_lookup < 0) { |
| union mips_instruction inst; |
| unsigned int status; |
| u32 *opc; |
| |
| /* |
| * MUSUK |
| * TLB mapped if not in kernel mode |
| */ |
| status = read_gc0_status(); |
| if (!(status & (ST0_EXL | ST0_ERL)) && |
| (status & ST0_KSU)) |
| return true; |
| /* |
| * EVA access instructions in kernel |
| * mode access user address space. |
| */ |
| opc = (u32 *)vcpu->arch.pc; |
| if (vcpu->arch.host_cp0_cause & CAUSEF_BD) |
| opc += 1; |
| err = kvm_get_badinstr(opc, vcpu, &inst.word); |
| if (!err && is_eva_access(inst)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /** |
| * kvm_vz_gva_to_gpa() - Convert valid GVA to GPA. |
| * @vcpu: KVM VCPU state. |
| * @gva: Guest virtual address to convert. |
| * @gpa: Output guest physical address. |
| * |
| * Convert a guest virtual address (GVA) which is valid according to the guest |
| * context, to a guest physical address (GPA). |
| * |
| * Returns: 0 on success. |
| * -errno on failure. |
| */ |
| static int kvm_vz_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, |
| unsigned long *gpa) |
| { |
| u32 gva32 = gva; |
| unsigned long segctl; |
| |
| if ((long)gva == (s32)gva32) { |
| /* Handle canonical 32-bit virtual address */ |
| if (cpu_guest_has_segments) { |
| unsigned long mask, pa; |
| |
| switch (gva32 >> 29) { |
| case 0: |
| case 1: /* CFG5 (1GB) */ |
| segctl = read_gc0_segctl2() >> 16; |
| mask = (unsigned long)0xfc0000000ull; |
| break; |
| case 2: |
| case 3: /* CFG4 (1GB) */ |
| segctl = read_gc0_segctl2(); |
| mask = (unsigned long)0xfc0000000ull; |
| break; |
| case 4: /* CFG3 (512MB) */ |
| segctl = read_gc0_segctl1() >> 16; |
| mask = (unsigned long)0xfe0000000ull; |
| break; |
| case 5: /* CFG2 (512MB) */ |
| segctl = read_gc0_segctl1(); |
| mask = (unsigned long)0xfe0000000ull; |
| break; |
| case 6: /* CFG1 (512MB) */ |
| segctl = read_gc0_segctl0() >> 16; |
| mask = (unsigned long)0xfe0000000ull; |
| break; |
| case 7: /* CFG0 (512MB) */ |
| segctl = read_gc0_segctl0(); |
| mask = (unsigned long)0xfe0000000ull; |
| break; |
| default: |
| /* |
| * GCC 4.9 isn't smart enough to figure out that |
| * segctl and mask are always initialised. |
| */ |
| unreachable(); |
| } |
| |
| if (is_eva_am_mapped(vcpu, (segctl >> 4) & 0x7, |
| segctl & 0x0008)) |
| goto tlb_mapped; |
| |
| /* Unmapped, find guest physical address */ |
| pa = (segctl << 20) & mask; |
| pa |= gva32 & ~mask; |
| *gpa = pa; |
| return 0; |
| } else if ((s32)gva32 < (s32)0xc0000000) { |
| /* legacy unmapped KSeg0 or KSeg1 */ |
| *gpa = gva32 & 0x1fffffff; |
| return 0; |
| } |
| #ifdef CONFIG_64BIT |
| } else if ((gva & 0xc000000000000000) == 0x8000000000000000) { |
| /* XKPHYS */ |
| if (cpu_guest_has_segments) { |
| /* |
| * Each of the 8 regions can be overridden by SegCtl2.XR |
| * to use SegCtl1.XAM. |
| */ |
| segctl = read_gc0_segctl2(); |
| if (segctl & (1ull << (56 + ((gva >> 59) & 0x7)))) { |
| segctl = read_gc0_segctl1(); |
| if (is_eva_am_mapped(vcpu, (segctl >> 59) & 0x7, |
| 0)) |
| goto tlb_mapped; |
| } |
| |
| } |
| /* |
| * Traditionally fully unmapped. |
| * Bits 61:59 specify the CCA, which we can just mask off here. |
| * Bits 58:PABITS should be zero, but we shouldn't have got here |
| * if it wasn't. |
| */ |
| *gpa = gva & 0x07ffffffffffffff; |
| return 0; |
| #endif |
| } |
| |
| tlb_mapped: |
| return kvm_vz_guest_tlb_lookup(vcpu, gva, gpa); |
| } |
| |
| /** |
| * kvm_vz_badvaddr_to_gpa() - Convert GVA BadVAddr from root exception to GPA. |
| * @vcpu: KVM VCPU state. |
| * @badvaddr: Root BadVAddr. |
| * @gpa: Output guest physical address. |
| * |
| * VZ implementations are permitted to report guest virtual addresses (GVA) in |
| * BadVAddr on a root exception during guest execution, instead of the more |
| * convenient guest physical addresses (GPA). When we get a GVA, this function |
| * converts it to a GPA, taking into account guest segmentation and guest TLB |
| * state. |
| * |
| * Returns: 0 on success. |
| * -errno on failure. |
| */ |
| static int kvm_vz_badvaddr_to_gpa(struct kvm_vcpu *vcpu, unsigned long badvaddr, |
| unsigned long *gpa) |
| { |
| unsigned int gexccode = (vcpu->arch.host_cp0_guestctl0 & |
| MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT; |
| |
| /* If BadVAddr is GPA, then all is well in the world */ |
| if (likely(gexccode == MIPS_GCTL0_GEXC_GPA)) { |
| *gpa = badvaddr; |
| return 0; |
| } |
| |
| /* Otherwise we'd expect it to be GVA ... */ |
| if (WARN(gexccode != MIPS_GCTL0_GEXC_GVA, |
| "Unexpected gexccode %#x\n", gexccode)) |
| return -EINVAL; |
| |
| /* ... and we need to perform the GVA->GPA translation in software */ |
| return kvm_vz_gva_to_gpa(vcpu, badvaddr, gpa); |
| } |
| |
| static int kvm_trap_vz_no_handler(struct kvm_vcpu *vcpu) |
| { |
| u32 *opc = (u32 *) vcpu->arch.pc; |
| u32 cause = vcpu->arch.host_cp0_cause; |
| u32 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; |
| unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; |
| u32 inst = 0; |
| |
| /* |
| * Fetch the instruction. |
| */ |
| if (cause & CAUSEF_BD) |
| opc += 1; |
| kvm_get_badinstr(opc, vcpu, &inst); |
| |
| kvm_err("Exception Code: %d not handled @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n", |
| exccode, opc, inst, badvaddr, |
| read_gc0_status()); |
| kvm_arch_vcpu_dump_regs(vcpu); |
| vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| return RESUME_HOST; |
| } |
| |
| static unsigned long mips_process_maar(unsigned int op, unsigned long val) |
| { |
| /* Mask off unused bits */ |
| unsigned long mask = 0xfffff000 | MIPS_MAAR_S | MIPS_MAAR_VL; |
| |
| if (read_gc0_pagegrain() & PG_ELPA) |
| mask |= 0x00ffffff00000000ull; |
| if (cpu_guest_has_mvh) |
| mask |= MIPS_MAAR_VH; |
| |
| /* Set or clear VH */ |
| if (op == mtc_op) { |
| /* clear VH */ |
| val &= ~MIPS_MAAR_VH; |
| } else if (op == dmtc_op) { |
| /* set VH to match VL */ |
| val &= ~MIPS_MAAR_VH; |
| if (val & MIPS_MAAR_VL) |
| val |= MIPS_MAAR_VH; |
| } |
| |
| return val & mask; |
| } |
| |
| static void kvm_write_maari(struct kvm_vcpu *vcpu, unsigned long val) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| |
| val &= MIPS_MAARI_INDEX; |
| if (val == MIPS_MAARI_INDEX) |
| kvm_write_sw_gc0_maari(cop0, ARRAY_SIZE(vcpu->arch.maar) - 1); |
| else if (val < ARRAY_SIZE(vcpu->arch.maar)) |
| kvm_write_sw_gc0_maari(cop0, val); |
| } |
| |
| static enum emulation_result kvm_vz_gpsi_cop0(union mips_instruction inst, |
| u32 *opc, u32 cause, |
| struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| enum emulation_result er = EMULATE_DONE; |
| u32 rt, rd, sel; |
| unsigned long curr_pc; |
| unsigned long val; |
| |
| /* |
| * Update PC and hold onto current PC in case there is |
| * an error and we want to rollback the PC |
| */ |
| curr_pc = vcpu->arch.pc; |
| er = update_pc(vcpu, cause); |
| if (er == EMULATE_FAIL) |
| return er; |
| |
| if (inst.co_format.co) { |
| switch (inst.co_format.func) { |
| case wait_op: |
| er = kvm_mips_emul_wait(vcpu); |
| break; |
| default: |
| er = EMULATE_FAIL; |
| } |
| } else { |
| rt = inst.c0r_format.rt; |
| rd = inst.c0r_format.rd; |
| sel = inst.c0r_format.sel; |
| |
| switch (inst.c0r_format.rs) { |
| case dmfc_op: |
| case mfc_op: |
| #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS |
| cop0->stat[rd][sel]++; |
| #endif |
| if (rd == MIPS_CP0_COUNT && |
| sel == 0) { /* Count */ |
| val = kvm_mips_read_count(vcpu); |
| } else if (rd == MIPS_CP0_COMPARE && |
| sel == 0) { /* Compare */ |
| val = read_gc0_compare(); |
| } else if (rd == MIPS_CP0_LLADDR && |
| sel == 0) { /* LLAddr */ |
| if (cpu_guest_has_rw_llb) |
| val = read_gc0_lladdr() & |
| MIPS_LLADDR_LLB; |
| else |
| val = 0; |
| } else if (rd == MIPS_CP0_LLADDR && |
| sel == 1 && /* MAAR */ |
| cpu_guest_has_maar && |
| !cpu_guest_has_dyn_maar) { |
| /* MAARI must be in range */ |
| BUG_ON(kvm_read_sw_gc0_maari(cop0) >= |
| ARRAY_SIZE(vcpu->arch.maar)); |
| val = vcpu->arch.maar[ |
| kvm_read_sw_gc0_maari(cop0)]; |
| } else if ((rd == MIPS_CP0_PRID && |
| (sel == 0 || /* PRid */ |
| sel == 2 || /* CDMMBase */ |
| sel == 3)) || /* CMGCRBase */ |
| (rd == MIPS_CP0_STATUS && |
| (sel == 2 || /* SRSCtl */ |
| sel == 3)) || /* SRSMap */ |
| (rd == MIPS_CP0_CONFIG && |
| (sel == 7)) || /* Config7 */ |
| (rd == MIPS_CP0_LLADDR && |
| (sel == 2) && /* MAARI */ |
| cpu_guest_has_maar && |
| !cpu_guest_has_dyn_maar) || |
| (rd == MIPS_CP0_ERRCTL && |
| (sel == 0))) { /* ErrCtl */ |
| val = cop0->reg[rd][sel]; |
| } else { |
| val = 0; |
| er = EMULATE_FAIL; |
| } |
| |
| if (er != EMULATE_FAIL) { |
| /* Sign extend */ |
| if (inst.c0r_format.rs == mfc_op) |
| val = (int)val; |
| vcpu->arch.gprs[rt] = val; |
| } |
| |
| trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mfc_op) ? |
| KVM_TRACE_MFC0 : KVM_TRACE_DMFC0, |
| KVM_TRACE_COP0(rd, sel), val); |
| break; |
| |
| case dmtc_op: |
| case mtc_op: |
| #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS |
| cop0->stat[rd][sel]++; |
| #endif |
| val = vcpu->arch.gprs[rt]; |
| trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mtc_op) ? |
| KVM_TRACE_MTC0 : KVM_TRACE_DMTC0, |
| KVM_TRACE_COP0(rd, sel), val); |
| |
| if (rd == MIPS_CP0_COUNT && |
| sel == 0) { /* Count */ |
| kvm_vz_lose_htimer(vcpu); |
| kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]); |
| } else if (rd == MIPS_CP0_COMPARE && |
| sel == 0) { /* Compare */ |
| kvm_mips_write_compare(vcpu, |
| vcpu->arch.gprs[rt], |
| true); |
| } else if (rd == MIPS_CP0_LLADDR && |
| sel == 0) { /* LLAddr */ |
| /* |
| * P5600 generates GPSI on guest MTC0 LLAddr. |
| * Only allow the guest to clear LLB. |
| */ |
| if (cpu_guest_has_rw_llb && |
| !(val & MIPS_LLADDR_LLB)) |
| write_gc0_lladdr(0); |
| } else if (rd == MIPS_CP0_LLADDR && |
| sel == 1 && /* MAAR */ |
| cpu_guest_has_maar && |
| !cpu_guest_has_dyn_maar) { |
| val = mips_process_maar(inst.c0r_format.rs, |
| val); |
| |
| /* MAARI must be in range */ |
| BUG_ON(kvm_read_sw_gc0_maari(cop0) >= |
| ARRAY_SIZE(vcpu->arch.maar)); |
| vcpu->arch.maar[kvm_read_sw_gc0_maari(cop0)] = |
| val; |
| } else if (rd == MIPS_CP0_LLADDR && |
| (sel == 2) && /* MAARI */ |
| cpu_guest_has_maar && |
| !cpu_guest_has_dyn_maar) { |
| kvm_write_maari(vcpu, val); |
| } else if (rd == MIPS_CP0_ERRCTL && |
| (sel == 0)) { /* ErrCtl */ |
| /* ignore the written value */ |
| } else { |
| er = EMULATE_FAIL; |
| } |
| break; |
| |
| default: |
| er = EMULATE_FAIL; |
| break; |
| } |
| } |
| /* Rollback PC only if emulation was unsuccessful */ |
| if (er == EMULATE_FAIL) { |
| kvm_err("[%#lx]%s: unsupported cop0 instruction 0x%08x\n", |
| curr_pc, __func__, inst.word); |
| |
| vcpu->arch.pc = curr_pc; |
| } |
| |
| return er; |
| } |
| |
| static enum emulation_result kvm_vz_gpsi_cache(union mips_instruction inst, |
| u32 *opc, u32 cause, |
| struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| enum emulation_result er = EMULATE_DONE; |
| u32 cache, op_inst, op, base; |
| s16 offset; |
| struct kvm_vcpu_arch *arch = &vcpu->arch; |
| unsigned long va, curr_pc; |
| |
| /* |
| * Update PC and hold onto current PC in case there is |
| * an error and we want to rollback the PC |
| */ |
| curr_pc = vcpu->arch.pc; |
| er = update_pc(vcpu, cause); |
| if (er == EMULATE_FAIL) |
| return er; |
| |
| base = inst.i_format.rs; |
| op_inst = inst.i_format.rt; |
| if (cpu_has_mips_r6) |
| offset = inst.spec3_format.simmediate; |
| else |
| offset = inst.i_format.simmediate; |
| cache = op_inst & CacheOp_Cache; |
| op = op_inst & CacheOp_Op; |
| |
| va = arch->gprs[base] + offset; |
| |
| kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", |
| cache, op, base, arch->gprs[base], offset); |
| |
| /* Secondary or tirtiary cache ops ignored */ |
| if (cache != Cache_I && cache != Cache_D) |
| return EMULATE_DONE; |
| |
| switch (op_inst) { |
| case Index_Invalidate_I: |
| flush_icache_line_indexed(va); |
| return EMULATE_DONE; |
| case Index_Writeback_Inv_D: |
| flush_dcache_line_indexed(va); |
| return EMULATE_DONE; |
| case Hit_Invalidate_I: |
| case Hit_Invalidate_D: |
| case Hit_Writeback_Inv_D: |
| if (boot_cpu_type() == CPU_CAVIUM_OCTEON3) { |
| /* We can just flush entire icache */ |
| local_flush_icache_range(0, 0); |
| return EMULATE_DONE; |
| } |
| |
| /* So far, other platforms support guest hit cache ops */ |
| break; |
| default: |
| break; |
| }; |
| |
| kvm_err("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", |
| curr_pc, vcpu->arch.gprs[31], cache, op, base, arch->gprs[base], |
| offset); |
| /* Rollback PC */ |
| vcpu->arch.pc = curr_pc; |
| |
| return EMULATE_FAIL; |
| } |
| |
| static enum emulation_result kvm_trap_vz_handle_gpsi(u32 cause, u32 *opc, |
| struct kvm_vcpu *vcpu) |
| { |
| enum emulation_result er = EMULATE_DONE; |
| struct kvm_vcpu_arch *arch = &vcpu->arch; |
| struct kvm_run *run = vcpu->run; |
| union mips_instruction inst; |
| int rd, rt, sel; |
| int err; |
| |
| /* |
| * Fetch the instruction. |
| */ |
| if (cause & CAUSEF_BD) |
| opc += 1; |
| err = kvm_get_badinstr(opc, vcpu, &inst.word); |
| if (err) |
| return EMULATE_FAIL; |
| |
| switch (inst.r_format.opcode) { |
| case cop0_op: |
| er = kvm_vz_gpsi_cop0(inst, opc, cause, run, vcpu); |
| break; |
| #ifndef CONFIG_CPU_MIPSR6 |
| case cache_op: |
| trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE); |
| er = kvm_vz_gpsi_cache(inst, opc, cause, run, vcpu); |
| break; |
| #endif |
| case spec3_op: |
| switch (inst.spec3_format.func) { |
| #ifdef CONFIG_CPU_MIPSR6 |
| case cache6_op: |
| trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE); |
| er = kvm_vz_gpsi_cache(inst, opc, cause, run, vcpu); |
| break; |
| #endif |
| case rdhwr_op: |
| if (inst.r_format.rs || (inst.r_format.re >> 3)) |
| goto unknown; |
| |
| rd = inst.r_format.rd; |
| rt = inst.r_format.rt; |
| sel = inst.r_format.re & 0x7; |
| |
| switch (rd) { |
| case MIPS_HWR_CC: /* Read count register */ |
| arch->gprs[rt] = |
| (long)(int)kvm_mips_read_count(vcpu); |
| break; |
| default: |
| trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, |
| KVM_TRACE_HWR(rd, sel), 0); |
| goto unknown; |
| }; |
| |
| trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, |
| KVM_TRACE_HWR(rd, sel), arch->gprs[rt]); |
| |
| er = update_pc(vcpu, cause); |
| break; |
| default: |
| goto unknown; |
| }; |
| break; |
| unknown: |
| |
| default: |
| kvm_err("GPSI exception not supported (%p/%#x)\n", |
| opc, inst.word); |
| kvm_arch_vcpu_dump_regs(vcpu); |
| er = EMULATE_FAIL; |
| break; |
| } |
| |
| return er; |
| } |
| |
| static enum emulation_result kvm_trap_vz_handle_gsfc(u32 cause, u32 *opc, |
| struct kvm_vcpu *vcpu) |
| { |
| enum emulation_result er = EMULATE_DONE; |
| struct kvm_vcpu_arch *arch = &vcpu->arch; |
| union mips_instruction inst; |
| int err; |
| |
| /* |
| * Fetch the instruction. |
| */ |
| if (cause & CAUSEF_BD) |
| opc += 1; |
| err = kvm_get_badinstr(opc, vcpu, &inst.word); |
| if (err) |
| return EMULATE_FAIL; |
| |
| /* complete MTC0 on behalf of guest and advance EPC */ |
| if (inst.c0r_format.opcode == cop0_op && |
| inst.c0r_format.rs == mtc_op && |
| inst.c0r_format.z == 0) { |
| int rt = inst.c0r_format.rt; |
| int rd = inst.c0r_format.rd; |
| int sel = inst.c0r_format.sel; |
| unsigned int val = arch->gprs[rt]; |
| unsigned int old_val, change; |
| |
| trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, KVM_TRACE_COP0(rd, sel), |
| val); |
| |
| if ((rd == MIPS_CP0_STATUS) && (sel == 0)) { |
| /* FR bit should read as zero if no FPU */ |
| if (!kvm_mips_guest_has_fpu(&vcpu->arch)) |
| val &= ~(ST0_CU1 | ST0_FR); |
| |
| /* |
| * Also don't allow FR to be set if host doesn't support |
| * it. |
| */ |
| if (!(boot_cpu_data.fpu_id & MIPS_FPIR_F64)) |
| val &= ~ST0_FR; |
| |
| old_val = read_gc0_status(); |
| change = val ^ old_val; |
| |
| if (change & ST0_FR) { |
| /* |
| * FPU and Vector register state is made |
| * UNPREDICTABLE by a change of FR, so don't |
| * even bother saving it. |
| */ |
| kvm_drop_fpu(vcpu); |
| } |
| |
| /* |
| * If MSA state is already live, it is undefined how it |
| * interacts with FR=0 FPU state, and we don't want to |
| * hit reserved instruction exceptions trying to save |
| * the MSA state later when CU=1 && FR=1, so play it |
| * safe and save it first. |
| */ |
| if (change & ST0_CU1 && !(val & ST0_FR) && |
| vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) |
| kvm_lose_fpu(vcpu); |
| |
| write_gc0_status(val); |
| } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) { |
| u32 old_cause = read_gc0_cause(); |
| u32 change = old_cause ^ val; |
| |
| /* DC bit enabling/disabling timer? */ |
| if (change & CAUSEF_DC) { |
| if (val & CAUSEF_DC) { |
| kvm_vz_lose_htimer(vcpu); |
| kvm_mips_count_disable_cause(vcpu); |
| } else { |
| kvm_mips_count_enable_cause(vcpu); |
| } |
| } |
| |
| /* Only certain bits are RW to the guest */ |
| change &= (CAUSEF_DC | CAUSEF_IV | CAUSEF_WP | |
| CAUSEF_IP0 | CAUSEF_IP1); |
| |
| /* WP can only be cleared */ |
| change &= ~CAUSEF_WP | old_cause; |
| |
| write_gc0_cause(old_cause ^ change); |
| } else if ((rd == MIPS_CP0_STATUS) && (sel == 1)) { /* IntCtl */ |
| write_gc0_intctl(val); |
| } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) { |
| old_val = read_gc0_config5(); |
| change = val ^ old_val; |
| /* Handle changes in FPU/MSA modes */ |
| preempt_disable(); |
| |
| /* |
| * Propagate FRE changes immediately if the FPU |
| * context is already loaded. |
| */ |
| if (change & MIPS_CONF5_FRE && |
| vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) |
| change_c0_config5(MIPS_CONF5_FRE, val); |
| |
| preempt_enable(); |
| |
| val = old_val ^ |
| (change & kvm_vz_config5_guest_wrmask(vcpu)); |
| write_gc0_config5(val); |
| } else { |
| kvm_err("Handle GSFC, unsupported field change @ %p: %#x\n", |
| opc, inst.word); |
| er = EMULATE_FAIL; |
| } |
| |
| if (er != EMULATE_FAIL) |
| er = update_pc(vcpu, cause); |
| } else { |
| kvm_err("Handle GSFC, unrecognized instruction @ %p: %#x\n", |
| opc, inst.word); |
| er = EMULATE_FAIL; |
| } |
| |
| return er; |
| } |
| |
| static enum emulation_result kvm_trap_vz_handle_ghfc(u32 cause, u32 *opc, |
| struct kvm_vcpu *vcpu) |
| { |
| /* |
| * Presumably this is due to MC (guest mode change), so lets trace some |
| * relevant info. |
| */ |
| trace_kvm_guest_mode_change(vcpu); |
| |
| return EMULATE_DONE; |
| } |
| |
| static enum emulation_result kvm_trap_vz_handle_hc(u32 cause, u32 *opc, |
| struct kvm_vcpu *vcpu) |
| { |
| enum emulation_result er; |
| union mips_instruction inst; |
| unsigned long curr_pc; |
| int err; |
| |
| if (cause & CAUSEF_BD) |
| opc += 1; |
| err = kvm_get_badinstr(opc, vcpu, &inst.word); |
| if (err) |
| return EMULATE_FAIL; |
| |
| /* |
| * Update PC and hold onto current PC in case there is |
| * an error and we want to rollback the PC |
| */ |
| curr_pc = vcpu->arch.pc; |
| er = update_pc(vcpu, cause); |
| if (er == EMULATE_FAIL) |
| return er; |
| |
| er = kvm_mips_emul_hypcall(vcpu, inst); |
| if (er == EMULATE_FAIL) |
| vcpu->arch.pc = curr_pc; |
| |
| return er; |
| } |
| |
| static enum emulation_result kvm_trap_vz_no_handler_guest_exit(u32 gexccode, |
| u32 cause, |
| u32 *opc, |
| struct kvm_vcpu *vcpu) |
| { |
| u32 inst; |
| |
| /* |
| * Fetch the instruction. |
| */ |
| if (cause & CAUSEF_BD) |
| opc += 1; |
| kvm_get_badinstr(opc, vcpu, &inst); |
| |
| kvm_err("Guest Exception Code: %d not yet handled @ PC: %p, inst: 0x%08x Status: %#x\n", |
| gexccode, opc, inst, read_gc0_status()); |
| |
| return EMULATE_FAIL; |
| } |
| |
| static int kvm_trap_vz_handle_guest_exit(struct kvm_vcpu *vcpu) |
| { |
| u32 *opc = (u32 *) vcpu->arch.pc; |
| u32 cause = vcpu->arch.host_cp0_cause; |
| enum emulation_result er = EMULATE_DONE; |
| u32 gexccode = (vcpu->arch.host_cp0_guestctl0 & |
| MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT; |
| int ret = RESUME_GUEST; |
| |
| trace_kvm_exit(vcpu, KVM_TRACE_EXIT_GEXCCODE_BASE + gexccode); |
| switch (gexccode) { |
| case MIPS_GCTL0_GEXC_GPSI: |
| ++vcpu->stat.vz_gpsi_exits; |
| er = kvm_trap_vz_handle_gpsi(cause, opc, vcpu); |
| break; |
| case MIPS_GCTL0_GEXC_GSFC: |
| ++vcpu->stat.vz_gsfc_exits; |
| er = kvm_trap_vz_handle_gsfc(cause, opc, vcpu); |
| break; |
| case MIPS_GCTL0_GEXC_HC: |
| ++vcpu->stat.vz_hc_exits; |
| er = kvm_trap_vz_handle_hc(cause, opc, vcpu); |
| break; |
| case MIPS_GCTL0_GEXC_GRR: |
| ++vcpu->stat.vz_grr_exits; |
| er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, |
| vcpu); |
| break; |
| case MIPS_GCTL0_GEXC_GVA: |
| ++vcpu->stat.vz_gva_exits; |
| er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, |
| vcpu); |
| break; |
| case MIPS_GCTL0_GEXC_GHFC: |
| ++vcpu->stat.vz_ghfc_exits; |
| er = kvm_trap_vz_handle_ghfc(cause, opc, vcpu); |
| break; |
| case MIPS_GCTL0_GEXC_GPA: |
| ++vcpu->stat.vz_gpa_exits; |
| er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, |
| vcpu); |
| break; |
| default: |
| ++vcpu->stat.vz_resvd_exits; |
| er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, |
| vcpu); |
| break; |
| |
| } |
| |
| if (er == EMULATE_DONE) { |
| ret = RESUME_GUEST; |
| } else if (er == EMULATE_HYPERCALL) { |
| ret = kvm_mips_handle_hypcall(vcpu); |
| } else { |
| vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = RESUME_HOST; |
| } |
| return ret; |
| } |
| |
| /** |
| * kvm_trap_vz_handle_cop_unusuable() - Guest used unusable coprocessor. |
| * @vcpu: Virtual CPU context. |
| * |
| * Handle when the guest attempts to use a coprocessor which hasn't been allowed |
| * by the root context. |
| */ |
| static int kvm_trap_vz_handle_cop_unusable(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| u32 cause = vcpu->arch.host_cp0_cause; |
| enum emulation_result er = EMULATE_FAIL; |
| int ret = RESUME_GUEST; |
| |
| if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) { |
| /* |
| * If guest FPU not present, the FPU operation should have been |
| * treated as a reserved instruction! |
| * If FPU already in use, we shouldn't get this at all. |
| */ |
| if (WARN_ON(!kvm_mips_guest_has_fpu(&vcpu->arch) || |
| vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) { |
| preempt_enable(); |
| return EMULATE_FAIL; |
| } |
| |
| kvm_own_fpu(vcpu); |
| er = EMULATE_DONE; |
| } |
| /* other coprocessors not handled */ |
| |
| switch (er) { |
| case EMULATE_DONE: |
| ret = RESUME_GUEST; |
| break; |
| |
| case EMULATE_FAIL: |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = RESUME_HOST; |
| break; |
| |
| default: |
| BUG(); |
| } |
| return ret; |
| } |
| |
| /** |
| * kvm_trap_vz_handle_msa_disabled() - Guest used MSA while disabled in root. |
| * @vcpu: Virtual CPU context. |
| * |
| * Handle when the guest attempts to use MSA when it is disabled in the root |
| * context. |
| */ |
| static int kvm_trap_vz_handle_msa_disabled(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| |
| /* |
| * If MSA not present or not exposed to guest or FR=0, the MSA operation |
| * should have been treated as a reserved instruction! |
| * Same if CU1=1, FR=0. |
| * If MSA already in use, we shouldn't get this at all. |
| */ |
| if (!kvm_mips_guest_has_msa(&vcpu->arch) || |
| (read_gc0_status() & (ST0_CU1 | ST0_FR)) == ST0_CU1 || |
| !(read_gc0_config5() & MIPS_CONF5_MSAEN) || |
| vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| return RESUME_HOST; |
| } |
| |
| kvm_own_msa(vcpu); |
| |
| return RESUME_GUEST; |
| } |
| |
| static int kvm_trap_vz_handle_tlb_ld_miss(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| u32 *opc = (u32 *) vcpu->arch.pc; |
| u32 cause = vcpu->arch.host_cp0_cause; |
| ulong badvaddr = vcpu->arch.host_cp0_badvaddr; |
| union mips_instruction inst; |
| enum emulation_result er = EMULATE_DONE; |
| int err, ret = RESUME_GUEST; |
| |
| if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, false)) { |
| /* A code fetch fault doesn't count as an MMIO */ |
| if (kvm_is_ifetch_fault(&vcpu->arch)) { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| return RESUME_HOST; |
| } |
| |
| /* Fetch the instruction */ |
| if (cause & CAUSEF_BD) |
| opc += 1; |
| err = kvm_get_badinstr(opc, vcpu, &inst.word); |
| if (err) { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| return RESUME_HOST; |
| } |
| |
| /* Treat as MMIO */ |
| er = kvm_mips_emulate_load(inst, cause, run, vcpu); |
| if (er == EMULATE_FAIL) { |
| kvm_err("Guest Emulate Load from MMIO space failed: PC: %p, BadVaddr: %#lx\n", |
| opc, badvaddr); |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| } |
| } |
| |
| if (er == EMULATE_DONE) { |
| ret = RESUME_GUEST; |
| } else if (er == EMULATE_DO_MMIO) { |
| run->exit_reason = KVM_EXIT_MMIO; |
| ret = RESUME_HOST; |
| } else { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = RESUME_HOST; |
| } |
| return ret; |
| } |
| |
| static int kvm_trap_vz_handle_tlb_st_miss(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| u32 *opc = (u32 *) vcpu->arch.pc; |
| u32 cause = vcpu->arch.host_cp0_cause; |
| ulong badvaddr = vcpu->arch.host_cp0_badvaddr; |
| union mips_instruction inst; |
| enum emulation_result er = EMULATE_DONE; |
| int err; |
| int ret = RESUME_GUEST; |
| |
| /* Just try the access again if we couldn't do the translation */ |
| if (kvm_vz_badvaddr_to_gpa(vcpu, badvaddr, &badvaddr)) |
| return RESUME_GUEST; |
| vcpu->arch.host_cp0_badvaddr = badvaddr; |
| |
| if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, true)) { |
| /* Fetch the instruction */ |
| if (cause & CAUSEF_BD) |
| opc += 1; |
| err = kvm_get_badinstr(opc, vcpu, &inst.word); |
| if (err) { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| return RESUME_HOST; |
| } |
| |
| /* Treat as MMIO */ |
| er = kvm_mips_emulate_store(inst, cause, run, vcpu); |
| if (er == EMULATE_FAIL) { |
| kvm_err("Guest Emulate Store to MMIO space failed: PC: %p, BadVaddr: %#lx\n", |
| opc, badvaddr); |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| } |
| } |
| |
| if (er == EMULATE_DONE) { |
| ret = RESUME_GUEST; |
| } else if (er == EMULATE_DO_MMIO) { |
| run->exit_reason = KVM_EXIT_MMIO; |
| ret = RESUME_HOST; |
| } else { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = RESUME_HOST; |
| } |
| return ret; |
| } |
| |
| static u64 kvm_vz_get_one_regs[] = { |
| KVM_REG_MIPS_CP0_INDEX, |
| KVM_REG_MIPS_CP0_ENTRYLO0, |
| KVM_REG_MIPS_CP0_ENTRYLO1, |
| KVM_REG_MIPS_CP0_CONTEXT, |
| KVM_REG_MIPS_CP0_PAGEMASK, |
| KVM_REG_MIPS_CP0_PAGEGRAIN, |
| KVM_REG_MIPS_CP0_WIRED, |
| KVM_REG_MIPS_CP0_HWRENA, |
| KVM_REG_MIPS_CP0_BADVADDR, |
| KVM_REG_MIPS_CP0_COUNT, |
| KVM_REG_MIPS_CP0_ENTRYHI, |
| KVM_REG_MIPS_CP0_COMPARE, |
| KVM_REG_MIPS_CP0_STATUS, |
| KVM_REG_MIPS_CP0_INTCTL, |
| KVM_REG_MIPS_CP0_CAUSE, |
| KVM_REG_MIPS_CP0_EPC, |
| KVM_REG_MIPS_CP0_PRID, |
| KVM_REG_MIPS_CP0_EBASE, |
| KVM_REG_MIPS_CP0_CONFIG, |
| KVM_REG_MIPS_CP0_CONFIG1, |
| KVM_REG_MIPS_CP0_CONFIG2, |
| KVM_REG_MIPS_CP0_CONFIG3, |
| KVM_REG_MIPS_CP0_CONFIG4, |
| KVM_REG_MIPS_CP0_CONFIG5, |
| #ifdef CONFIG_64BIT |
| KVM_REG_MIPS_CP0_XCONTEXT, |
| #endif |
| KVM_REG_MIPS_CP0_ERROREPC, |
| |
| KVM_REG_MIPS_COUNT_CTL, |
| KVM_REG_MIPS_COUNT_RESUME, |
| KVM_REG_MIPS_COUNT_HZ, |
| }; |
| |
| static u64 kvm_vz_get_one_regs_contextconfig[] = { |
| KVM_REG_MIPS_CP0_CONTEXTCONFIG, |
| #ifdef CONFIG_64BIT |
| KVM_REG_MIPS_CP0_XCONTEXTCONFIG, |
| #endif |
| }; |
| |
| static u64 kvm_vz_get_one_regs_segments[] = { |
| KVM_REG_MIPS_CP0_SEGCTL0, |
| KVM_REG_MIPS_CP0_SEGCTL1, |
| KVM_REG_MIPS_CP0_SEGCTL2, |
| }; |
| |
| static u64 kvm_vz_get_one_regs_htw[] = { |
| KVM_REG_MIPS_CP0_PWBASE, |
| KVM_REG_MIPS_CP0_PWFIELD, |
| KVM_REG_MIPS_CP0_PWSIZE, |
| KVM_REG_MIPS_CP0_PWCTL, |
| }; |
| |
| static u64 kvm_vz_get_one_regs_kscratch[] = { |
| KVM_REG_MIPS_CP0_KSCRATCH1, |
| KVM_REG_MIPS_CP0_KSCRATCH2, |
| KVM_REG_MIPS_CP0_KSCRATCH3, |
| KVM_REG_MIPS_CP0_KSCRATCH4, |
| KVM_REG_MIPS_CP0_KSCRATCH5, |
| KVM_REG_MIPS_CP0_KSCRATCH6, |
| }; |
| |
| static unsigned long kvm_vz_num_regs(struct kvm_vcpu *vcpu) |
| { |
| unsigned long ret; |
| |
| ret = ARRAY_SIZE(kvm_vz_get_one_regs); |
| if (cpu_guest_has_userlocal) |
| ++ret; |
| if (cpu_guest_has_badinstr) |
| ++ret; |
| if (cpu_guest_has_badinstrp) |
| ++ret; |
| if (cpu_guest_has_contextconfig) |
| ret += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig); |
| if (cpu_guest_has_segments) |
| ret += ARRAY_SIZE(kvm_vz_get_one_regs_segments); |
| if (cpu_guest_has_htw) |
| ret += ARRAY_SIZE(kvm_vz_get_one_regs_htw); |
| if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar) |
| ret += 1 + ARRAY_SIZE(vcpu->arch.maar); |
| ret += __arch_hweight8(cpu_data[0].guest.kscratch_mask); |
| |
| return ret; |
| } |
| |
| static int kvm_vz_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices) |
| { |
| u64 index; |
| unsigned int i; |
| |
| if (copy_to_user(indices, kvm_vz_get_one_regs, |
| sizeof(kvm_vz_get_one_regs))) |
| return -EFAULT; |
| indices += ARRAY_SIZE(kvm_vz_get_one_regs); |
| |
| if (cpu_guest_has_userlocal) { |
| index = KVM_REG_MIPS_CP0_USERLOCAL; |
| if (copy_to_user(indices, &index, sizeof(index))) |
| return -EFAULT; |
| ++indices; |
| } |
| if (cpu_guest_has_badinstr) { |
| index = KVM_REG_MIPS_CP0_BADINSTR; |
| if (copy_to_user(indices, &index, sizeof(index))) |
| return -EFAULT; |
| ++indices; |
| } |
| if (cpu_guest_has_badinstrp) { |
| index = KVM_REG_MIPS_CP0_BADINSTRP; |
| if (copy_to_user(indices, &index, sizeof(index))) |
| return -EFAULT; |
| ++indices; |
| } |
| if (cpu_guest_has_contextconfig) { |
| if (copy_to_user(indices, kvm_vz_get_one_regs_contextconfig, |
| sizeof(kvm_vz_get_one_regs_contextconfig))) |
| return -EFAULT; |
| indices += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig); |
| } |
| if (cpu_guest_has_segments) { |
| if (copy_to_user(indices, kvm_vz_get_one_regs_segments, |
| sizeof(kvm_vz_get_one_regs_segments))) |
| return -EFAULT; |
| indices += ARRAY_SIZE(kvm_vz_get_one_regs_segments); |
| } |
| if (cpu_guest_has_htw) { |
| if (copy_to_user(indices, kvm_vz_get_one_regs_htw, |
| sizeof(kvm_vz_get_one_regs_htw))) |
| return -EFAULT; |
| indices += ARRAY_SIZE(kvm_vz_get_one_regs_htw); |
| } |
| if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar) { |
| for (i = 0; i < ARRAY_SIZE(vcpu->arch.maar); ++i) { |
| index = KVM_REG_MIPS_CP0_MAAR(i); |
| if (copy_to_user(indices, &index, sizeof(index))) |
| return -EFAULT; |
| ++indices; |
| } |
| |
| index = KVM_REG_MIPS_CP0_MAARI; |
| if (copy_to_user(indices, &index, sizeof(index))) |
| return -EFAULT; |
| ++indices; |
| } |
| for (i = 0; i < 6; ++i) { |
| if (!cpu_guest_has_kscr(i + 2)) |
| continue; |
| |
| if (copy_to_user(indices, &kvm_vz_get_one_regs_kscratch[i], |
| sizeof(kvm_vz_get_one_regs_kscratch[i]))) |
| return -EFAULT; |
| ++indices; |
| } |
| |
| return 0; |
| } |
| |
| static inline s64 entrylo_kvm_to_user(unsigned long v) |
| { |
| s64 mask, ret = v; |
| |
| if (BITS_PER_LONG == 32) { |
| /* |
| * KVM API exposes 64-bit version of the register, so move the |
| * RI/XI bits up into place. |
| */ |
| mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI; |
| ret &= ~mask; |
| ret |= ((s64)v & mask) << 32; |
| } |
| return ret; |
| } |
| |
| static inline unsigned long entrylo_user_to_kvm(s64 v) |
| { |
| unsigned long mask, ret = v; |
| |
| if (BITS_PER_LONG == 32) { |
| /* |
| * KVM API exposes 64-bit versiono of the register, so move the |
| * RI/XI bits down into place. |
| */ |
| mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI; |
| ret &= ~mask; |
| ret |= (v >> 32) & mask; |
| } |
| return ret; |
| } |
| |
| static int kvm_vz_get_one_reg(struct kvm_vcpu *vcpu, |
| const struct kvm_one_reg *reg, |
| s64 *v) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| unsigned int idx; |
| |
| switch (reg->id) { |
| case KVM_REG_MIPS_CP0_INDEX: |
| *v = (long)read_gc0_index(); |
| break; |
| case KVM_REG_MIPS_CP0_ENTRYLO0: |
| *v = entrylo_kvm_to_user(read_gc0_entrylo0()); |
| break; |
| case KVM_REG_MIPS_CP0_ENTRYLO1: |
| *v = entrylo_kvm_to_user(read_gc0_entrylo1()); |
| break; |
| case KVM_REG_MIPS_CP0_CONTEXT: |
| *v = (long)read_gc0_context(); |
| break; |
| case KVM_REG_MIPS_CP0_CONTEXTCONFIG: |
| if (!cpu_guest_has_contextconfig) |
| return -EINVAL; |
| *v = read_gc0_contextconfig(); |
| break; |
| case KVM_REG_MIPS_CP0_USERLOCAL: |
| if (!cpu_guest_has_userlocal) |
| return -EINVAL; |
| *v = read_gc0_userlocal(); |
| break; |
| #ifdef CONFIG_64BIT |
| case KVM_REG_MIPS_CP0_XCONTEXTCONFIG: |
| if (!cpu_guest_has_contextconfig) |
| return -EINVAL; |
| *v = read_gc0_xcontextconfig(); |
| break; |
| #endif |
| case KVM_REG_MIPS_CP0_PAGEMASK: |
| *v = (long)read_gc0_pagemask(); |
| break; |
| case KVM_REG_MIPS_CP0_PAGEGRAIN: |
| *v = (long)read_gc0_pagegrain(); |
| break; |
| case KVM_REG_MIPS_CP0_SEGCTL0: |
| if (!cpu_guest_has_segments) |
| return -EINVAL; |
| *v = read_gc0_segctl0(); |
| break; |
| case KVM_REG_MIPS_CP0_SEGCTL1: |
| if (!cpu_guest_has_segments) |
| return -EINVAL; |
| *v = read_gc0_segctl1(); |
| break; |
| case KVM_REG_MIPS_CP0_SEGCTL2: |
| if (!cpu_guest_has_segments) |
| return -EINVAL; |
| *v = read_gc0_segctl2(); |
| break; |
| case KVM_REG_MIPS_CP0_PWBASE: |
| if (!cpu_guest_has_htw) |
| return -EINVAL; |
| *v = read_gc0_pwbase(); |
| break; |
| case KVM_REG_MIPS_CP0_PWFIELD: |
| if (!cpu_guest_has_htw) |
| return -EINVAL; |
| *v = read_gc0_pwfield(); |
| break; |
| case KVM_REG_MIPS_CP0_PWSIZE: |
| if (!cpu_guest_has_htw) |
| return -EINVAL; |
| *v = read_gc0_pwsize(); |
| break; |
| case KVM_REG_MIPS_CP0_WIRED: |
| *v = (long)read_gc0_wired(); |
| break; |
| case KVM_REG_MIPS_CP0_PWCTL: |
| if (!cpu_guest_has_htw) |
| return -EINVAL; |
| *v = read_gc0_pwctl(); |
| break; |
| case KVM_REG_MIPS_CP0_HWRENA: |
| *v = (long)read_gc0_hwrena(); |
| break; |
| case KVM_REG_MIPS_CP0_BADVADDR: |
| *v = (long)read_gc0_badvaddr(); |
| break; |
| case KVM_REG_MIPS_CP0_BADINSTR: |
| if (!cpu_guest_has_badinstr) |
| return -EINVAL; |
| *v = read_gc0_badinstr(); |
| break; |
| case KVM_REG_MIPS_CP0_BADINSTRP: |
| if (!cpu_guest_has_badinstrp) |
| return -EINVAL; |
| *v = read_gc0_badinstrp(); |
| break; |
| case KVM_REG_MIPS_CP0_COUNT: |
| *v = kvm_mips_read_count(vcpu); |
| break; |
| case KVM_REG_MIPS_CP0_ENTRYHI: |
| *v = (long)read_gc0_entryhi(); |
| break; |
| case KVM_REG_MIPS_CP0_COMPARE: |
| *v = (long)read_gc0_compare(); |
| break; |
| case KVM_REG_MIPS_CP0_STATUS: |
| *v = (long)read_gc0_status(); |
| break; |
| case KVM_REG_MIPS_CP0_INTCTL: |
| *v = read_gc0_intctl(); |
| break; |
| case KVM_REG_MIPS_CP0_CAUSE: |
| *v = (long)read_gc0_cause(); |
| break; |
| case KVM_REG_MIPS_CP0_EPC: |
| *v = (long)read_gc0_epc(); |
| break; |
| case KVM_REG_MIPS_CP0_PRID: |
| switch (boot_cpu_type()) { |
| case CPU_CAVIUM_OCTEON3: |
| /* Octeon III has a read-only guest.PRid */ |
| *v = read_gc0_prid(); |
| break; |
| default: |
| *v = (long)kvm_read_c0_guest_prid(cop0); |
| break; |
| }; |
| break; |
| case KVM_REG_MIPS_CP0_EBASE: |
| *v = kvm_vz_read_gc0_ebase(); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG: |
| *v = read_gc0_config(); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG1: |
| if (!cpu_guest_has_conf1) |
| return -EINVAL; |
| *v = read_gc0_config1(); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG2: |
| if (!cpu_guest_has_conf2) |
| return -EINVAL; |
| *v = read_gc0_config2(); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG3: |
| if (!cpu_guest_has_conf3) |
| return -EINVAL; |
| *v = read_gc0_config3(); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG4: |
| if (!cpu_guest_has_conf4) |
| return -EINVAL; |
| *v = read_gc0_config4(); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG5: |
| if (!cpu_guest_has_conf5) |
| return -EINVAL; |
| *v = read_gc0_config5(); |
| break; |
| case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f): |
| if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar) |
| return -EINVAL; |
| idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0); |
| if (idx >= ARRAY_SIZE(vcpu->arch.maar)) |
| return -EINVAL; |
| *v = vcpu->arch.maar[idx]; |
| break; |
| case KVM_REG_MIPS_CP0_MAARI: |
| if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar) |
| return -EINVAL; |
| *v = kvm_read_sw_gc0_maari(vcpu->arch.cop0); |
| break; |
| #ifdef CONFIG_64BIT |
| case KVM_REG_MIPS_CP0_XCONTEXT: |
| *v = read_gc0_xcontext(); |
| break; |
| #endif |
| case KVM_REG_MIPS_CP0_ERROREPC: |
| *v = (long)read_gc0_errorepc(); |
| break; |
| case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6: |
| idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2; |
| if (!cpu_guest_has_kscr(idx)) |
| return -EINVAL; |
| switch (idx) { |
| case 2: |
| *v = (long)read_gc0_kscratch1(); |
| break; |
| case 3: |
| *v = (long)read_gc0_kscratch2(); |
| break; |
| case 4: |
| *v = (long)read_gc0_kscratch3(); |
| break; |
| case 5: |
| *v = (long)read_gc0_kscratch4(); |
| break; |
| case 6: |
| *v = (long)read_gc0_kscratch5(); |
| break; |
| case 7: |
| *v = (long)read_gc0_kscratch6(); |
| break; |
| } |
| break; |
| case KVM_REG_MIPS_COUNT_CTL: |
| *v = vcpu->arch.count_ctl; |
| break; |
| case KVM_REG_MIPS_COUNT_RESUME: |
| *v = ktime_to_ns(vcpu->arch.count_resume); |
| break; |
| case KVM_REG_MIPS_COUNT_HZ: |
| *v = vcpu->arch.count_hz; |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int kvm_vz_set_one_reg(struct kvm_vcpu *vcpu, |
| const struct kvm_one_reg *reg, |
| s64 v) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| unsigned int idx; |
| int ret = 0; |
| unsigned int cur, change; |
| |
| switch (reg->id) { |
| case KVM_REG_MIPS_CP0_INDEX: |
| write_gc0_index(v); |
| break; |
| case KVM_REG_MIPS_CP0_ENTRYLO0: |
| write_gc0_entrylo0(entrylo_user_to_kvm(v)); |
| break; |
| case KVM_REG_MIPS_CP0_ENTRYLO1: |
| write_gc0_entrylo1(entrylo_user_to_kvm(v)); |
| break; |
| case KVM_REG_MIPS_CP0_CONTEXT: |
| write_gc0_context(v); |
| break; |
| case KVM_REG_MIPS_CP0_CONTEXTCONFIG: |
| if (!cpu_guest_has_contextconfig) |
| return -EINVAL; |
| write_gc0_contextconfig(v); |
| break; |
| case KVM_REG_MIPS_CP0_USERLOCAL: |
| if (!cpu_guest_has_userlocal) |
| return -EINVAL; |
| write_gc0_userlocal(v); |
| break; |
| #ifdef CONFIG_64BIT |
| case KVM_REG_MIPS_CP0_XCONTEXTCONFIG: |
| if (!cpu_guest_has_contextconfig) |
| return -EINVAL; |
| write_gc0_xcontextconfig(v); |
| break; |
| #endif |
| case KVM_REG_MIPS_CP0_PAGEMASK: |
| write_gc0_pagemask(v); |
| break; |
| case KVM_REG_MIPS_CP0_PAGEGRAIN: |
| write_gc0_pagegrain(v); |
| break; |
| case KVM_REG_MIPS_CP0_SEGCTL0: |
| if (!cpu_guest_has_segments) |
| return -EINVAL; |
| write_gc0_segctl0(v); |
| break; |
| case KVM_REG_MIPS_CP0_SEGCTL1: |
| if (!cpu_guest_has_segments) |
| return -EINVAL; |
| write_gc0_segctl1(v); |
| break; |
| case KVM_REG_MIPS_CP0_SEGCTL2: |
| if (!cpu_guest_has_segments) |
| return -EINVAL; |
| write_gc0_segctl2(v); |
| break; |
| case KVM_REG_MIPS_CP0_PWBASE: |
| if (!cpu_guest_has_htw) |
| return -EINVAL; |
| write_gc0_pwbase(v); |
| break; |
| case KVM_REG_MIPS_CP0_PWFIELD: |
| if (!cpu_guest_has_htw) |
| return -EINVAL; |
| write_gc0_pwfield(v); |
| break; |
| case KVM_REG_MIPS_CP0_PWSIZE: |
| if (!cpu_guest_has_htw) |
| return -EINVAL; |
| write_gc0_pwsize(v); |
| break; |
| case KVM_REG_MIPS_CP0_WIRED: |
| change_gc0_wired(MIPSR6_WIRED_WIRED, v); |
| break; |
| case KVM_REG_MIPS_CP0_PWCTL: |
| if (!cpu_guest_has_htw) |
| return -EINVAL; |
| write_gc0_pwctl(v); |
| break; |
| case KVM_REG_MIPS_CP0_HWRENA: |
| write_gc0_hwrena(v); |
| break; |
| case KVM_REG_MIPS_CP0_BADVADDR: |
| write_gc0_badvaddr(v); |
| break; |
| case KVM_REG_MIPS_CP0_BADINSTR: |
| if (!cpu_guest_has_badinstr) |
| return -EINVAL; |
| write_gc0_badinstr(v); |
| break; |
| case KVM_REG_MIPS_CP0_BADINSTRP: |
| if (!cpu_guest_has_badinstrp) |
| return -EINVAL; |
| write_gc0_badinstrp(v); |
| break; |
| case KVM_REG_MIPS_CP0_COUNT: |
| kvm_mips_write_count(vcpu, v); |
| break; |
| case KVM_REG_MIPS_CP0_ENTRYHI: |
| write_gc0_entryhi(v); |
| break; |
| case KVM_REG_MIPS_CP0_COMPARE: |
| kvm_mips_write_compare(vcpu, v, false); |
| break; |
| case KVM_REG_MIPS_CP0_STATUS: |
| write_gc0_status(v); |
| break; |
| case KVM_REG_MIPS_CP0_INTCTL: |
| write_gc0_intctl(v); |
| break; |
| case KVM_REG_MIPS_CP0_CAUSE: |
| /* |
| * If the timer is stopped or started (DC bit) it must look |
| * atomic with changes to the timer interrupt pending bit (TI). |
| * A timer interrupt should not happen in between. |
| */ |
| if ((read_gc0_cause() ^ v) & CAUSEF_DC) { |
| if (v & CAUSEF_DC) { |
| /* disable timer first */ |
| kvm_mips_count_disable_cause(vcpu); |
| change_gc0_cause((u32)~CAUSEF_DC, v); |
| } else { |
| /* enable timer last */ |
| change_gc0_cause((u32)~CAUSEF_DC, v); |
| kvm_mips_count_enable_cause(vcpu); |
| } |
| } else { |
| write_gc0_cause(v); |
| } |
| break; |
| case KVM_REG_MIPS_CP0_EPC: |
| write_gc0_epc(v); |
| break; |
| case KVM_REG_MIPS_CP0_PRID: |
| switch (boot_cpu_type()) { |
| case CPU_CAVIUM_OCTEON3: |
| /* Octeon III has a guest.PRid, but its read-only */ |
| break; |
| default: |
| kvm_write_c0_guest_prid(cop0, v); |
| break; |
| }; |
| break; |
| case KVM_REG_MIPS_CP0_EBASE: |
| kvm_vz_write_gc0_ebase(v); |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG: |
| cur = read_gc0_config(); |
| change = (cur ^ v) & kvm_vz_config_user_wrmask(vcpu); |
| if (change) { |
| v = cur ^ change; |
| write_gc0_config(v); |
| } |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG1: |
| if (!cpu_guest_has_conf1) |
| break; |
| cur = read_gc0_config1(); |
| change = (cur ^ v) & kvm_vz_config1_user_wrmask(vcpu); |
| if (change) { |
| v = cur ^ change; |
| write_gc0_config1(v); |
| } |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG2: |
| if (!cpu_guest_has_conf2) |
| break; |
| cur = read_gc0_config2(); |
| change = (cur ^ v) & kvm_vz_config2_user_wrmask(vcpu); |
| if (change) { |
| v = cur ^ change; |
| write_gc0_config2(v); |
| } |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG3: |
| if (!cpu_guest_has_conf3) |
| break; |
| cur = read_gc0_config3(); |
| change = (cur ^ v) & kvm_vz_config3_user_wrmask(vcpu); |
| if (change) { |
| v = cur ^ change; |
| write_gc0_config3(v); |
| } |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG4: |
| if (!cpu_guest_has_conf4) |
| break; |
| cur = read_gc0_config4(); |
| change = (cur ^ v) & kvm_vz_config4_user_wrmask(vcpu); |
| if (change) { |
| v = cur ^ change; |
| write_gc0_config4(v); |
| } |
| break; |
| case KVM_REG_MIPS_CP0_CONFIG5: |
| if (!cpu_guest_has_conf5) |
| break; |
| cur = read_gc0_config5(); |
| change = (cur ^ v) & kvm_vz_config5_user_wrmask(vcpu); |
| if (change) { |
| v = cur ^ change; |
| write_gc0_config5(v); |
| } |
| break; |
| case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f): |
| if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar) |
| return -EINVAL; |
| idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0); |
| if (idx >= ARRAY_SIZE(vcpu->arch.maar)) |
| return -EINVAL; |
| vcpu->arch.maar[idx] = mips_process_maar(dmtc_op, v); |
| break; |
| case KVM_REG_MIPS_CP0_MAARI: |
| if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar) |
| return -EINVAL; |
| kvm_write_maari(vcpu, v); |
| break; |
| #ifdef CONFIG_64BIT |
| case KVM_REG_MIPS_CP0_XCONTEXT: |
| write_gc0_xcontext(v); |
| break; |
| #endif |
| case KVM_REG_MIPS_CP0_ERROREPC: |
| write_gc0_errorepc(v); |
| break; |
| case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6: |
| idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2; |
| if (!cpu_guest_has_kscr(idx)) |
| return -EINVAL; |
| switch (idx) { |
| case 2: |
| write_gc0_kscratch1(v); |
| break; |
| case 3: |
| write_gc0_kscratch2(v); |
| break; |
| case 4: |
| write_gc0_kscratch3(v); |
| break; |
| case 5: |
| write_gc0_kscratch4(v); |
| break; |
| case 6: |
| write_gc0_kscratch5(v); |
| break; |
| case 7: |
| write_gc0_kscratch6(v); |
| break; |
| } |
| break; |
| case KVM_REG_MIPS_COUNT_CTL: |
| ret = kvm_mips_set_count_ctl(vcpu, v); |
| break; |
| case KVM_REG_MIPS_COUNT_RESUME: |
| ret = kvm_mips_set_count_resume(vcpu, v); |
| break; |
| case KVM_REG_MIPS_COUNT_HZ: |
| ret = kvm_mips_set_count_hz(vcpu, v); |
| break; |
| default: |
| return -EINVAL; |
| } |
| return ret; |
| } |
| |
| #define guestid_cache(cpu) (cpu_data[cpu].guestid_cache) |
| static void kvm_vz_get_new_guestid(unsigned long cpu, struct kvm_vcpu *vcpu) |
| { |
| unsigned long guestid = guestid_cache(cpu); |
| |
| if (!(++guestid & GUESTID_MASK)) { |
| if (cpu_has_vtag_icache) |
| flush_icache_all(); |
| |
| if (!guestid) /* fix version if needed */ |
| guestid = GUESTID_FIRST_VERSION; |
| |
| ++guestid; /* guestid 0 reserved for root */ |
| |
| /* start new guestid cycle */ |
| kvm_vz_local_flush_roottlb_all_guests(); |
| kvm_vz_local_flush_guesttlb_all(); |
| } |
| |
| guestid_cache(cpu) = guestid; |
| } |
| |
| /* Returns 1 if the guest TLB may be clobbered */ |
| static int kvm_vz_check_requests(struct kvm_vcpu *vcpu, int cpu) |
| { |
| int ret = 0; |
| int i; |
| |
| if (!kvm_request_pending(vcpu)) |
| return 0; |
| |
| if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { |
| if (cpu_has_guestid) { |
| /* Drop all GuestIDs for this VCPU */ |
| for_each_possible_cpu(i) |
| vcpu->arch.vzguestid[i] = 0; |
| /* This will clobber guest TLB contents too */ |
| ret = 1; |
| } |
| /* |
| * For Root ASID Dealias (RAD) we don't do anything here, but we |
| * still need the request to ensure we recheck asid_flush_mask. |
| * We can still return 0 as only the root TLB will be affected |
| * by a root ASID flush. |
| */ |
| } |
| |
| return ret; |
| } |
| |
| static void kvm_vz_vcpu_save_wired(struct kvm_vcpu *vcpu) |
| { |
| unsigned int wired = read_gc0_wired(); |
| struct kvm_mips_tlb *tlbs; |
| int i; |
| |
| /* Expand the wired TLB array if necessary */ |
| wired &= MIPSR6_WIRED_WIRED; |
| if (wired > vcpu->arch.wired_tlb_limit) { |
| tlbs = krealloc(vcpu->arch.wired_tlb, wired * |
| sizeof(*vcpu->arch.wired_tlb), GFP_ATOMIC); |
| if (WARN_ON(!tlbs)) { |
| /* Save whatever we can */ |
| wired = vcpu->arch.wired_tlb_limit; |
| } else { |
| vcpu->arch.wired_tlb = tlbs; |
| vcpu->arch.wired_tlb_limit = wired; |
| } |
| } |
| |
| if (wired) |
| /* Save wired entries from the guest TLB */ |
| kvm_vz_save_guesttlb(vcpu->arch.wired_tlb, 0, wired); |
| /* Invalidate any dropped entries since last time */ |
| for (i = wired; i < vcpu->arch.wired_tlb_used; ++i) { |
| vcpu->arch.wired_tlb[i].tlb_hi = UNIQUE_GUEST_ENTRYHI(i); |
| vcpu->arch.wired_tlb[i].tlb_lo[0] = 0; |
| vcpu->arch.wired_tlb[i].tlb_lo[1] = 0; |
| vcpu->arch.wired_tlb[i].tlb_mask = 0; |
| } |
| vcpu->arch.wired_tlb_used = wired; |
| } |
| |
| static void kvm_vz_vcpu_load_wired(struct kvm_vcpu *vcpu) |
| { |
| /* Load wired entries into the guest TLB */ |
| if (vcpu->arch.wired_tlb) |
| kvm_vz_load_guesttlb(vcpu->arch.wired_tlb, 0, |
| vcpu->arch.wired_tlb_used); |
| } |
| |
| static void kvm_vz_vcpu_load_tlb(struct kvm_vcpu *vcpu, int cpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct mm_struct *gpa_mm = &kvm->arch.gpa_mm; |
| bool migrated; |
| |
| /* |
| * Are we entering guest context on a different CPU to last time? |
| * If so, the VCPU's guest TLB state on this CPU may be stale. |
| */ |
| migrated = (vcpu->arch.last_exec_cpu != cpu); |
| vcpu->arch.last_exec_cpu = cpu; |
| |
| /* |
| * A vcpu's GuestID is set in GuestCtl1.ID when the vcpu is loaded and |
| * remains set until another vcpu is loaded in. As a rule GuestRID |
| * remains zeroed when in root context unless the kernel is busy |
| * manipulating guest tlb entries. |
| */ |
| if (cpu_has_guestid) { |
| /* |
| * Check if our GuestID is of an older version and thus invalid. |
| * |
| * We also discard the stored GuestID if we've executed on |
| * another CPU, as the guest mappings may have changed without |
| * hypervisor knowledge. |
| */ |
| if (migrated || |
| (vcpu->arch.vzguestid[cpu] ^ guestid_cache(cpu)) & |
| GUESTID_VERSION_MASK) { |
| kvm_vz_get_new_guestid(cpu, vcpu); |
| vcpu->arch.vzguestid[cpu] = guestid_cache(cpu); |
| trace_kvm_guestid_change(vcpu, |
| vcpu->arch.vzguestid[cpu]); |
| } |
| |
| /* Restore GuestID */ |
| change_c0_guestctl1(GUESTID_MASK, vcpu->arch.vzguestid[cpu]); |
| } else { |
| /* |
| * The Guest TLB only stores a single guest's TLB state, so |
| * flush it if another VCPU has executed on this CPU. |
| * |
| * We also flush if we've executed on another CPU, as the guest |
| * mappings may have changed without hypervisor knowledge. |
| */ |
| if (migrated || last_exec_vcpu[cpu] != vcpu) |
| kvm_vz_local_flush_guesttlb_all(); |
| last_exec_vcpu[cpu] = vcpu; |
| |
| /* |
| * Root ASID dealiases guest GPA mappings in the root TLB. |
| * Allocate new root ASID if needed. |
| */ |
| if (cpumask_test_and_clear_cpu(cpu, &kvm->arch.asid_flush_mask) |
| || (cpu_context(cpu, gpa_mm) ^ asid_cache(cpu)) & |
| asid_version_mask(cpu)) |
| get_new_mmu_context(gpa_mm, cpu); |
| } |
| } |
| |
| static int kvm_vz_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| bool migrated, all; |
| |
| /* |
| * Have we migrated to a different CPU? |
| * If so, any old guest TLB state may be stale. |
| */ |
| migrated = (vcpu->arch.last_sched_cpu != cpu); |
| |
| /* |
| * Was this the last VCPU to run on this CPU? |
| * If not, any old guest state from this VCPU will have been clobbered. |
| */ |
| all = migrated || (last_vcpu[cpu] != vcpu); |
| last_vcpu[cpu] = vcpu; |
| |
| /* |
| * Restore CP0_Wired unconditionally as we clear it after use, and |
| * restore wired guest TLB entries (while in guest context). |
| */ |
| kvm_restore_gc0_wired(cop0); |
| if (current->flags & PF_VCPU) { |
| tlbw_use_hazard(); |
| kvm_vz_vcpu_load_tlb(vcpu, cpu); |
| kvm_vz_vcpu_load_wired(vcpu); |
| } |
| |
| /* |
| * Restore timer state regardless, as e.g. Cause.TI can change over time |
| * if left unmaintained. |
| */ |
| kvm_vz_restore_timer(vcpu); |
| |
| /* Set MC bit if we want to trace guest mode changes */ |
| if (kvm_trace_guest_mode_change) |
| set_c0_guestctl0(MIPS_GCTL0_MC); |
| else |
| clear_c0_guestctl0(MIPS_GCTL0_MC); |
| |
| /* Don't bother restoring registers multiple times unless necessary */ |
| if (!all) |
| return 0; |
| |
| /* |
| * Restore config registers first, as some implementations restrict |
| * writes to other registers when the corresponding feature bits aren't |
| * set. For example Status.CU1 cannot be set unless Config1.FP is set. |
| */ |
| kvm_restore_gc0_config(cop0); |
| if (cpu_guest_has_conf1) |
| kvm_restore_gc0_config1(cop0); |
| if (cpu_guest_has_conf2) |
| kvm_restore_gc0_config2(cop0); |
| if (cpu_guest_has_conf3) |
| kvm_restore_gc0_config3(cop0); |
| if (cpu_guest_has_conf4) |
| kvm_restore_gc0_config4(cop0); |
| if (cpu_guest_has_conf5) |
| kvm_restore_gc0_config5(cop0); |
| if (cpu_guest_has_conf6) |
| kvm_restore_gc0_config6(cop0); |
| if (cpu_guest_has_conf7) |
| kvm_restore_gc0_config7(cop0); |
| |
| kvm_restore_gc0_index(cop0); |
| kvm_restore_gc0_entrylo0(cop0); |
| kvm_restore_gc0_entrylo1(cop0); |
| kvm_restore_gc0_context(cop0); |
| if (cpu_guest_has_contextconfig) |
| kvm_restore_gc0_contextconfig(cop0); |
| #ifdef CONFIG_64BIT |
| kvm_restore_gc0_xcontext(cop0); |
| if (cpu_guest_has_contextconfig) |
| kvm_restore_gc0_xcontextconfig(cop0); |
| #endif |
| kvm_restore_gc0_pagemask(cop0); |
| kvm_restore_gc0_pagegrain(cop0); |
| kvm_restore_gc0_hwrena(cop0); |
| kvm_restore_gc0_badvaddr(cop0); |
| kvm_restore_gc0_entryhi(cop0); |
| kvm_restore_gc0_status(cop0); |
| kvm_restore_gc0_intctl(cop0); |
| kvm_restore_gc0_epc(cop0); |
| kvm_vz_write_gc0_ebase(kvm_read_sw_gc0_ebase(cop0)); |
| if (cpu_guest_has_userlocal) |
| kvm_restore_gc0_userlocal(cop0); |
| |
| kvm_restore_gc0_errorepc(cop0); |
| |
| /* restore KScratch registers if enabled in guest */ |
| if (cpu_guest_has_conf4) { |
| if (cpu_guest_has_kscr(2)) |
| kvm_restore_gc0_kscratch1(cop0); |
| if (cpu_guest_has_kscr(3)) |
| kvm_restore_gc0_kscratch2(cop0); |
| if (cpu_guest_has_kscr(4)) |
| kvm_restore_gc0_kscratch3(cop0); |
| if (cpu_guest_has_kscr(5)) |
| kvm_restore_gc0_kscratch4(cop0); |
| if (cpu_guest_has_kscr(6)) |
| kvm_restore_gc0_kscratch5(cop0); |
| if (cpu_guest_has_kscr(7)) |
| kvm_restore_gc0_kscratch6(cop0); |
| } |
| |
| if (cpu_guest_has_badinstr) |
| kvm_restore_gc0_badinstr(cop0); |
| if (cpu_guest_has_badinstrp) |
| kvm_restore_gc0_badinstrp(cop0); |
| |
| if (cpu_guest_has_segments) { |
| kvm_restore_gc0_segctl0(cop0); |
| kvm_restore_gc0_segctl1(cop0); |
| kvm_restore_gc0_segctl2(cop0); |
| } |
| |
| /* restore HTW registers */ |
| if (cpu_guest_has_htw) { |
| kvm_restore_gc0_pwbase(cop0); |
| kvm_restore_gc0_pwfield(cop0); |
| kvm_restore_gc0_pwsize(cop0); |
| kvm_restore_gc0_pwctl(cop0); |
| } |
| |
| /* restore Root.GuestCtl2 from unused Guest guestctl2 register */ |
| if (cpu_has_guestctl2) |
| write_c0_guestctl2( |
| cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL]); |
| |
| /* |
| * We should clear linked load bit to break interrupted atomics. This |
| * prevents a SC on the next VCPU from succeeding by matching a LL on |
| * the previous VCPU. |
| */ |
| if (cpu_guest_has_rw_llb) |
| write_gc0_lladdr(0); |
| |
| return 0; |
| } |
| |
| static int kvm_vz_vcpu_put(struct kvm_vcpu *vcpu, int cpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| |
| if (current->flags & PF_VCPU) |
| kvm_vz_vcpu_save_wired(vcpu); |
| |
| kvm_lose_fpu(vcpu); |
| |
| kvm_save_gc0_index(cop0); |
| kvm_save_gc0_entrylo0(cop0); |
| kvm_save_gc0_entrylo1(cop0); |
| kvm_save_gc0_context(cop0); |
| if (cpu_guest_has_contextconfig) |
| kvm_save_gc0_contextconfig(cop0); |
| #ifdef CONFIG_64BIT |
| kvm_save_gc0_xcontext(cop0); |
| if (cpu_guest_has_contextconfig) |
| kvm_save_gc0_xcontextconfig(cop0); |
| #endif |
| kvm_save_gc0_pagemask(cop0); |
| kvm_save_gc0_pagegrain(cop0); |
| kvm_save_gc0_wired(cop0); |
| /* allow wired TLB entries to be overwritten */ |
| clear_gc0_wired(MIPSR6_WIRED_WIRED); |
| kvm_save_gc0_hwrena(cop0); |
| kvm_save_gc0_badvaddr(cop0); |
| kvm_save_gc0_entryhi(cop0); |
| kvm_save_gc0_status(cop0); |
| kvm_save_gc0_intctl(cop0); |
| kvm_save_gc0_epc(cop0); |
| kvm_write_sw_gc0_ebase(cop0, kvm_vz_read_gc0_ebase()); |
| if (cpu_guest_has_userlocal) |
| kvm_save_gc0_userlocal(cop0); |
| |
| /* only save implemented config registers */ |
| kvm_save_gc0_config(cop0); |
| if (cpu_guest_has_conf1) |
| kvm_save_gc0_config1(cop0); |
| if (cpu_guest_has_conf2) |
| kvm_save_gc0_config2(cop0); |
| if (cpu_guest_has_conf3) |
| kvm_save_gc0_config3(cop0); |
| if (cpu_guest_has_conf4) |
| kvm_save_gc0_config4(cop0); |
| if (cpu_guest_has_conf5) |
| kvm_save_gc0_config5(cop0); |
| if (cpu_guest_has_conf6) |
| kvm_save_gc0_config6(cop0); |
| if (cpu_guest_has_conf7) |
| kvm_save_gc0_config7(cop0); |
| |
| kvm_save_gc0_errorepc(cop0); |
| |
| /* save KScratch registers if enabled in guest */ |
| if (cpu_guest_has_conf4) { |
| if (cpu_guest_has_kscr(2)) |
| kvm_save_gc0_kscratch1(cop0); |
| if (cpu_guest_has_kscr(3)) |
| kvm_save_gc0_kscratch2(cop0); |
| if (cpu_guest_has_kscr(4)) |
| kvm_save_gc0_kscratch3(cop0); |
| if (cpu_guest_has_kscr(5)) |
| kvm_save_gc0_kscratch4(cop0); |
| if (cpu_guest_has_kscr(6)) |
| kvm_save_gc0_kscratch5(cop0); |
| if (cpu_guest_has_kscr(7)) |
| kvm_save_gc0_kscratch6(cop0); |
| } |
| |
| if (cpu_guest_has_badinstr) |
| kvm_save_gc0_badinstr(cop0); |
| if (cpu_guest_has_badinstrp) |
| kvm_save_gc0_badinstrp(cop0); |
| |
| if (cpu_guest_has_segments) { |
| kvm_save_gc0_segctl0(cop0); |
| kvm_save_gc0_segctl1(cop0); |
| kvm_save_gc0_segctl2(cop0); |
| } |
| |
| /* save HTW registers if enabled in guest */ |
| if (cpu_guest_has_htw && |
| kvm_read_sw_gc0_config3(cop0) & MIPS_CONF3_PW) { |
| kvm_save_gc0_pwbase(cop0); |
| kvm_save_gc0_pwfield(cop0); |
| kvm_save_gc0_pwsize(cop0); |
| kvm_save_gc0_pwctl(cop0); |
| } |
| |
| kvm_vz_save_timer(vcpu); |
| |
| /* save Root.GuestCtl2 in unused Guest guestctl2 register */ |
| if (cpu_has_guestctl2) |
| cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = |
| read_c0_guestctl2(); |
| |
| return 0; |
| } |
| |
| /** |
| * kvm_vz_resize_guest_vtlb() - Attempt to resize guest VTLB. |
| * @size: Number of guest VTLB entries (0 < @size <= root VTLB entries). |
| * |
| * Attempt to resize the guest VTLB by writing guest Config registers. This is |
| * necessary for cores with a shared root/guest TLB to avoid overlap with wired |
| * entries in the root VTLB. |
| * |
| * Returns: The resulting guest VTLB size. |
| */ |
| static unsigned int kvm_vz_resize_guest_vtlb(unsigned int size) |
| { |
| unsigned int config4 = 0, ret = 0, limit; |
| |
| /* Write MMUSize - 1 into guest Config registers */ |
| if (cpu_guest_has_conf1) |
| change_gc0_config1(MIPS_CONF1_TLBS, |
| (size - 1) << MIPS_CONF1_TLBS_SHIFT); |
| if (cpu_guest_has_conf4) { |
| config4 = read_gc0_config4(); |
| if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) == |
| MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) { |
| config4 &= ~MIPS_CONF4_VTLBSIZEEXT; |
| config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) << |
| MIPS_CONF4_VTLBSIZEEXT_SHIFT; |
| } else if ((config4 & MIPS_CONF4_MMUEXTDEF) == |
| MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) { |
| config4 &= ~MIPS_CONF4_MMUSIZEEXT; |
| config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) << |
| MIPS_CONF4_MMUSIZEEXT_SHIFT; |
| } |
| write_gc0_config4(config4); |
| } |
| |
| /* |
| * Set Guest.Wired.Limit = 0 (no limit up to Guest.MMUSize-1), unless it |
| * would exceed Root.Wired.Limit (clearing Guest.Wired.Wired so write |
| * not dropped) |
| */ |
| if (cpu_has_mips_r6) { |
| limit = (read_c0_wired() & MIPSR6_WIRED_LIMIT) >> |
| MIPSR6_WIRED_LIMIT_SHIFT; |
| if (size - 1 <= limit) |
| limit = 0; |
| write_gc0_wired(limit << MIPSR6_WIRED_LIMIT_SHIFT); |
| } |
| |
| /* Read back MMUSize - 1 */ |
| back_to_back_c0_hazard(); |
| if (cpu_guest_has_conf1) |
| ret = (read_gc0_config1() & MIPS_CONF1_TLBS) >> |
| MIPS_CONF1_TLBS_SHIFT; |
| if (config4) { |
| if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) == |
| MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) |
| ret |= ((config4 & MIPS_CONF4_VTLBSIZEEXT) >> |
| MIPS_CONF4_VTLBSIZEEXT_SHIFT) << |
| MIPS_CONF1_TLBS_SIZE; |
| else if ((config4 & MIPS_CONF4_MMUEXTDEF) == |
| MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) |
| ret |= ((config4 & MIPS_CONF4_MMUSIZEEXT) >> |
| MIPS_CONF4_MMUSIZEEXT_SHIFT) << |
| MIPS_CONF1_TLBS_SIZE; |
| } |
| return ret + 1; |
| } |
| |
| static int kvm_vz_hardware_enable(void) |
| { |
| unsigned int mmu_size, guest_mmu_size, ftlb_size; |
| u64 guest_cvmctl, cvmvmconfig; |
| |
| switch (current_cpu_type()) { |
| case CPU_CAVIUM_OCTEON3: |
| /* Set up guest timer/perfcount IRQ lines */ |
| guest_cvmctl = read_gc0_cvmctl(); |
| guest_cvmctl &= ~CVMCTL_IPTI; |
| guest_cvmctl |= 7ull << CVMCTL_IPTI_SHIFT; |
| guest_cvmctl &= ~CVMCTL_IPPCI; |
| guest_cvmctl |= 6ull << CVMCTL_IPPCI_SHIFT; |
| write_gc0_cvmctl(guest_cvmctl); |
| |
| cvmvmconfig = read_c0_cvmvmconfig(); |
| /* No I/O hole translation. */ |
| cvmvmconfig |= CVMVMCONF_DGHT; |
| /* Halve the root MMU size */ |
| mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1) |
| >> CVMVMCONF_MMUSIZEM1_S) + 1; |
| guest_mmu_size = mmu_size / 2; |
| mmu_size -= guest_mmu_size; |
| cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1; |
| cvmvmconfig |= mmu_size - 1; |
| write_c0_cvmvmconfig(cvmvmconfig); |
| |
| /* Update our records */ |
| current_cpu_data.tlbsize = mmu_size; |
| current_cpu_data.tlbsizevtlb = mmu_size; |
| current_cpu_data.guest.tlbsize = guest_mmu_size; |
| |
| /* Flush moved entries in new (guest) context */ |
| kvm_vz_local_flush_guesttlb_all(); |
| break; |
| default: |
| /* |
| * ImgTec cores tend to use a shared root/guest TLB. To avoid |
| * overlap of root wired and guest entries, the guest TLB may |
| * need resizing. |
| */ |
| mmu_size = current_cpu_data.tlbsizevtlb; |
| ftlb_size = current_cpu_data.tlbsize - mmu_size; |
| |
| /* Try switching to maximum guest VTLB size for flush */ |
| guest_mmu_size = kvm_vz_resize_guest_vtlb(mmu_size); |
| current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size; |
| kvm_vz_local_flush_guesttlb_all(); |
| |
| /* |
| * Reduce to make space for root wired entries and at least 2 |
| * root non-wired entries. This does assume that long-term wired |
| * entries won't be added later. |
| */ |
| guest_mmu_size = mmu_size - num_wired_entries() - 2; |
| guest_mmu_size = kvm_vz_resize_guest_vtlb(guest_mmu_size); |
| current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size; |
| |
| /* |
| * Write the VTLB size, but if another CPU has already written, |
| * check it matches or we won't provide a consistent view to the |
| * guest. If this ever happens it suggests an asymmetric number |
| * of wired entries. |
| */ |
| if (cmpxchg(&kvm_vz_guest_vtlb_size, 0, guest_mmu_size) && |
| WARN(guest_mmu_size != kvm_vz_guest_vtlb_size, |
| "Available guest VTLB size mismatch")) |
| return -EINVAL; |
| break; |
| } |
| |
| /* |
| * Enable virtualization features granting guest direct control of |
| * certain features: |
| * CP0=1: Guest coprocessor 0 context. |
| * AT=Guest: Guest MMU. |
| * CG=1: Hit (virtual address) CACHE operations (optional). |
| * CF=1: Guest Config registers. |
| * CGI=1: Indexed flush CACHE operations (optional). |
| */ |
| write_c0_guestctl0(MIPS_GCTL0_CP0 | |
| (MIPS_GCTL0_AT_GUEST << MIPS_GCTL0_AT_SHIFT) | |
| MIPS_GCTL0_CG | MIPS_GCTL0_CF); |
| if (cpu_has_guestctl0ext) |
| set_c0_guestctl0ext(MIPS_GCTL0EXT_CGI); |
| |
| if (cpu_has_guestid) { |
| write_c0_guestctl1(0); |
| kvm_vz_local_flush_roottlb_all_guests(); |
| |
| GUESTID_MASK = current_cpu_data.guestid_mask; |
| GUESTID_FIRST_VERSION = GUESTID_MASK + 1; |
| GUESTID_VERSION_MASK = ~GUESTID_MASK; |
| |
| current_cpu_data.guestid_cache = GUESTID_FIRST_VERSION; |
| } |
| |
| /* clear any pending injected virtual guest interrupts */ |
| if (cpu_has_guestctl2) |
| clear_c0_guestctl2(0x3f << 10); |
| |
| return 0; |
| } |
| |
| static void kvm_vz_hardware_disable(void) |
| { |
| u64 cvmvmconfig; |
| unsigned int mmu_size; |
| |
| /* Flush any remaining guest TLB entries */ |
| kvm_vz_local_flush_guesttlb_all(); |
| |
| switch (current_cpu_type()) { |
| case CPU_CAVIUM_OCTEON3: |
| /* |
| * Allocate whole TLB for root. Existing guest TLB entries will |
| * change ownership to the root TLB. We should be safe though as |
| * they've already been flushed above while in guest TLB. |
| */ |
| cvmvmconfig = read_c0_cvmvmconfig(); |
| mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1) |
| >> CVMVMCONF_MMUSIZEM1_S) + 1; |
| cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1; |
| cvmvmconfig |= mmu_size - 1; |
| write_c0_cvmvmconfig(cvmvmconfig); |
| |
| /* Update our records */ |
| current_cpu_data.tlbsize = mmu_size; |
| current_cpu_data.tlbsizevtlb = mmu_size; |
| current_cpu_data.guest.tlbsize = 0; |
| |
| /* Flush moved entries in new (root) context */ |
| local_flush_tlb_all(); |
| break; |
| } |
| |
| if (cpu_has_guestid) { |
| write_c0_guestctl1(0); |
| kvm_vz_local_flush_roottlb_all_guests(); |
| } |
| } |
| |
| static int kvm_vz_check_extension(struct kvm *kvm, long ext) |
| { |
| int r; |
| |
| switch (ext) { |
| case KVM_CAP_MIPS_VZ: |
| /* we wouldn't be here unless cpu_has_vz */ |
| r = 1; |
| break; |
| #ifdef CONFIG_64BIT |
| case KVM_CAP_MIPS_64BIT: |
| /* We support 64-bit registers/operations and addresses */ |
| r = 2; |
| break; |
| #endif |
| default: |
| r = 0; |
| break; |
| } |
| |
| return r; |
| } |
| |
| static int kvm_vz_vcpu_init(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| |
| for_each_possible_cpu(i) |
| vcpu->arch.vzguestid[i] = 0; |
| |
| return 0; |
| } |
| |
| static void kvm_vz_vcpu_uninit(struct kvm_vcpu *vcpu) |
| { |
| int cpu; |
| |
| /* |
| * If the VCPU is freed and reused as another VCPU, we don't want the |
| * matching pointer wrongly hanging around in last_vcpu[] or |
| * last_exec_vcpu[]. |
| */ |
| for_each_possible_cpu(cpu) { |
| if (last_vcpu[cpu] == vcpu) |
| last_vcpu[cpu] = NULL; |
| if (last_exec_vcpu[cpu] == vcpu) |
| last_exec_vcpu[cpu] = NULL; |
| } |
| } |
| |
| static int kvm_vz_vcpu_setup(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| unsigned long count_hz = 100*1000*1000; /* default to 100 MHz */ |
| |
| /* |
| * Start off the timer at the same frequency as the host timer, but the |
| * soft timer doesn't handle frequencies greater than 1GHz yet. |
| */ |
| if (mips_hpt_frequency && mips_hpt_frequency <= NSEC_PER_SEC) |
| count_hz = mips_hpt_frequency; |
| kvm_mips_init_count(vcpu, count_hz); |
| |
| /* |
| * Initialize guest register state to valid architectural reset state. |
| */ |
| |
| /* PageGrain */ |
| if (cpu_has_mips_r6) |
| kvm_write_sw_gc0_pagegrain(cop0, PG_RIE | PG_XIE | PG_IEC); |
| /* Wired */ |
| if (cpu_has_mips_r6) |
| kvm_write_sw_gc0_wired(cop0, |
| read_gc0_wired() & MIPSR6_WIRED_LIMIT); |
| /* Status */ |
| kvm_write_sw_gc0_status(cop0, ST0_BEV | ST0_ERL); |
| if (cpu_has_mips_r6) |
| kvm_change_sw_gc0_status(cop0, ST0_FR, read_gc0_status()); |
| /* IntCtl */ |
| kvm_write_sw_gc0_intctl(cop0, read_gc0_intctl() & |
| (INTCTLF_IPFDC | INTCTLF_IPPCI | INTCTLF_IPTI)); |
| /* PRId */ |
| kvm_write_sw_gc0_prid(cop0, boot_cpu_data.processor_id); |
| /* EBase */ |
| kvm_write_sw_gc0_ebase(cop0, (s32)0x80000000 | vcpu->vcpu_id); |
| /* Config */ |
| kvm_save_gc0_config(cop0); |
| /* architecturally writable (e.g. from guest) */ |
| kvm_change_sw_gc0_config(cop0, CONF_CM_CMASK, |
| _page_cachable_default >> _CACHE_SHIFT); |
| /* architecturally read only, but maybe writable from root */ |
| kvm_change_sw_gc0_config(cop0, MIPS_CONF_MT, read_c0_config()); |
| if (cpu_guest_has_conf1) { |
| kvm_set_sw_gc0_config(cop0, MIPS_CONF_M); |
| /* Config1 */ |
| kvm_save_gc0_config1(cop0); |
| /* architecturally read only, but maybe writable from root */ |
| kvm_clear_sw_gc0_config1(cop0, MIPS_CONF1_C2 | |
| MIPS_CONF1_MD | |
| MIPS_CONF1_PC | |
| MIPS_CONF1_WR | |
| MIPS_CONF1_CA | |
| MIPS_CONF1_FP); |
| } |
| if (cpu_guest_has_conf2) { |
| kvm_set_sw_gc0_config1(cop0, MIPS_CONF_M); |
| /* Config2 */ |
| kvm_save_gc0_config2(cop0); |
| } |
| if (cpu_guest_has_conf3) { |
| kvm_set_sw_gc0_config2(cop0, MIPS_CONF_M); |
| /* Config3 */ |
| kvm_save_gc0_config3(cop0); |
| /* architecturally writable (e.g. from guest) */ |
| kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_ISA_OE); |
| /* architecturally read only, but maybe writable from root */ |
| kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_MSA | |
| MIPS_CONF3_BPG | |
| MIPS_CONF3_ULRI | |
| MIPS_CONF3_DSP | |
| MIPS_CONF3_CTXTC | |
| MIPS_CONF3_ITL | |
| MIPS_CONF3_LPA | |
| MIPS_CONF3_VEIC | |
| MIPS_CONF3_VINT | |
| MIPS_CONF3_SP | |
| MIPS_CONF3_CDMM | |
| MIPS_CONF3_MT | |
| MIPS_CONF3_SM | |
| MIPS_CONF3_TL); |
| } |
| if (cpu_guest_has_conf4) { |
| kvm_set_sw_gc0_config3(cop0, MIPS_CONF_M); |
| /* Config4 */ |
| kvm_save_gc0_config4(cop0); |
| } |
| if (cpu_guest_has_conf5) { |
| kvm_set_sw_gc0_config4(cop0, MIPS_CONF_M); |
| /* Config5 */ |
| kvm_save_gc0_config5(cop0); |
| /* architecturally writable (e.g. from guest) */ |
| kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_K | |
| MIPS_CONF5_CV | |
| MIPS_CONF5_MSAEN | |
| MIPS_CONF5_UFE | |
| MIPS_CONF5_FRE | |
| MIPS_CONF5_SBRI | |
| MIPS_CONF5_UFR); |
| /* architecturally read only, but maybe writable from root */ |
| kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_MRP); |
| } |
| |
| if (cpu_guest_has_contextconfig) { |
| /* ContextConfig */ |
| kvm_write_sw_gc0_contextconfig(cop0, 0x007ffff0); |
| #ifdef CONFIG_64BIT |
| /* XContextConfig */ |
| /* bits SEGBITS-13+3:4 set */ |
| kvm_write_sw_gc0_xcontextconfig(cop0, |
| ((1ull << (cpu_vmbits - 13)) - 1) << 4); |
| #endif |
| } |
| |
| /* Implementation dependent, use the legacy layout */ |
| if (cpu_guest_has_segments) { |
| /* SegCtl0, SegCtl1, SegCtl2 */ |
| kvm_write_sw_gc0_segctl0(cop0, 0x00200010); |
| kvm_write_sw_gc0_segctl1(cop0, 0x00000002 | |
| (_page_cachable_default >> _CACHE_SHIFT) << |
| (16 + MIPS_SEGCFG_C_SHIFT)); |
| kvm_write_sw_gc0_segctl2(cop0, 0x00380438); |
| } |
| |
| /* reset HTW registers */ |
| if (cpu_guest_has_htw && cpu_has_mips_r6) { |
| /* PWField */ |
| kvm_write_sw_gc0_pwfield(cop0, 0x0c30c302); |
| /* PWSize */ |
| kvm_write_sw_gc0_pwsize(cop0, 1 << MIPS_PWSIZE_PTW_SHIFT); |
| } |
| |
| /* start with no pending virtual guest interrupts */ |
| if (cpu_has_guestctl2) |
| cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = 0; |
| |
| /* Put PC at reset vector */ |
| vcpu->arch.pc = CKSEG1ADDR(0x1fc00000); |
| |
| return 0; |
| } |
| |
| static void kvm_vz_flush_shadow_all(struct kvm *kvm) |
| { |
| if (cpu_has_guestid) { |
| /* Flush GuestID for each VCPU individually */ |
| kvm_flush_remote_tlbs(kvm); |
| } else { |
| /* |
| * For each CPU there is a single GPA ASID used by all VCPUs in |
| * the VM, so it doesn't make sense for the VCPUs to handle |
| * invalidation of these ASIDs individually. |
| * |
| * Instead mark all CPUs as needing ASID invalidation in |
| * asid_flush_mask, and just use kvm_flush_remote_tlbs(kvm) to |
| * kick any running VCPUs so they check asid_flush_mask. |
| */ |
| cpumask_setall(&kvm->arch.asid_flush_mask); |
| kvm_flush_remote_tlbs(kvm); |
| } |
| } |
| |
| static void kvm_vz_flush_shadow_memslot(struct kvm *kvm, |
| const struct kvm_memory_slot *slot) |
| { |
| kvm_vz_flush_shadow_all(kvm); |
| } |
| |
| static void kvm_vz_vcpu_reenter(struct kvm_run *run, struct kvm_vcpu *vcpu) |
| { |
| int cpu = smp_processor_id(); |
| int preserve_guest_tlb; |
| |
| preserve_guest_tlb = kvm_vz_check_requests(vcpu, cpu); |
| |
| if (preserve_guest_tlb) |
| kvm_vz_vcpu_save_wired(vcpu); |
| |
| kvm_vz_vcpu_load_tlb(vcpu, cpu); |
| |
| if (preserve_guest_tlb) |
| kvm_vz_vcpu_load_wired(vcpu); |
| } |
| |
| static int kvm_vz_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu) |
| { |
| int cpu = smp_processor_id(); |
| int r; |
| |
| kvm_vz_acquire_htimer(vcpu); |
| /* Check if we have any exceptions/interrupts pending */ |
| kvm_mips_deliver_interrupts(vcpu, read_gc0_cause()); |
| |
| kvm_vz_check_requests(vcpu, cpu); |
| kvm_vz_vcpu_load_tlb(vcpu, cpu); |
| kvm_vz_vcpu_load_wired(vcpu); |
| |
| r = vcpu->arch.vcpu_run(run, vcpu); |
| |
| kvm_vz_vcpu_save_wired(vcpu); |
| |
| return r; |
| } |
| |
| static struct kvm_mips_callbacks kvm_vz_callbacks = { |
| .handle_cop_unusable = kvm_trap_vz_handle_cop_unusable, |
| .handle_tlb_mod = kvm_trap_vz_handle_tlb_st_miss, |
| .handle_tlb_ld_miss = kvm_trap_vz_handle_tlb_ld_miss, |
| .handle_tlb_st_miss = kvm_trap_vz_handle_tlb_st_miss, |
| .handle_addr_err_st = kvm_trap_vz_no_handler, |
| .handle_addr_err_ld = kvm_trap_vz_no_handler, |
| .handle_syscall = kvm_trap_vz_no_handler, |
| .handle_res_inst = kvm_trap_vz_no_handler, |
| .handle_break = kvm_trap_vz_no_handler, |
| .handle_msa_disabled = kvm_trap_vz_handle_msa_disabled, |
| .handle_guest_exit = kvm_trap_vz_handle_guest_exit, |
| |
| .hardware_enable = kvm_vz_hardware_enable, |
| .hardware_disable = kvm_vz_hardware_disable, |
| .check_extension = kvm_vz_check_extension, |
| .vcpu_init = kvm_vz_vcpu_init, |
| .vcpu_uninit = kvm_vz_vcpu_uninit, |
| .vcpu_setup = kvm_vz_vcpu_setup, |
| .flush_shadow_all = kvm_vz_flush_shadow_all, |
| .flush_shadow_memslot = kvm_vz_flush_shadow_memslot, |
| .gva_to_gpa = kvm_vz_gva_to_gpa_cb, |
| .queue_timer_int = kvm_vz_queue_timer_int_cb, |
| .dequeue_timer_int = kvm_vz_dequeue_timer_int_cb, |
| .queue_io_int = kvm_vz_queue_io_int_cb, |
| .dequeue_io_int = kvm_vz_dequeue_io_int_cb, |
| .irq_deliver = kvm_vz_irq_deliver_cb, |
| .irq_clear = kvm_vz_irq_clear_cb, |
| .num_regs = kvm_vz_num_regs, |
| .copy_reg_indices = kvm_vz_copy_reg_indices, |
| .get_one_reg = kvm_vz_get_one_reg, |
| .set_one_reg = kvm_vz_set_one_reg, |
| .vcpu_load = kvm_vz_vcpu_load, |
| .vcpu_put = kvm_vz_vcpu_put, |
| .vcpu_run = kvm_vz_vcpu_run, |
| .vcpu_reenter = kvm_vz_vcpu_reenter, |
| }; |
| |
| int kvm_mips_emulation_init(struct kvm_mips_callbacks **install_callbacks) |
| { |
| if (!cpu_has_vz) |
| return -ENODEV; |
| |
| /* |
| * VZ requires at least 2 KScratch registers, so it should have been |
| * possible to allocate pgd_reg. |
| */ |
| if (WARN(pgd_reg == -1, |
| "pgd_reg not allocated even though cpu_has_vz\n")) |
| return -ENODEV; |
| |
| pr_info("Starting KVM with MIPS VZ extensions\n"); |
| |
| *install_callbacks = &kvm_vz_callbacks; |
| return 0; |
| } |