| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2008 David Daney |
| */ |
| |
| #include <linux/sched.h> |
| |
| #include <asm/processor.h> |
| #include <asm/watch.h> |
| |
| /* |
| * Install the watch registers for the current thread. A maximum of |
| * four registers are installed although the machine may have more. |
| */ |
| void mips_install_watch_registers(struct task_struct *t) |
| { |
| struct mips3264_watch_reg_state *watches = &t->thread.watch.mips3264; |
| switch (current_cpu_data.watch_reg_use_cnt) { |
| default: |
| BUG(); |
| case 4: |
| write_c0_watchlo3(watches->watchlo[3]); |
| /* Write 1 to the I, R, and W bits to clear them, and |
| 1 to G so all ASIDs are trapped. */ |
| write_c0_watchhi3(MIPS_WATCHHI_G | MIPS_WATCHHI_IRW | |
| watches->watchhi[3]); |
| case 3: |
| write_c0_watchlo2(watches->watchlo[2]); |
| write_c0_watchhi2(MIPS_WATCHHI_G | MIPS_WATCHHI_IRW | |
| watches->watchhi[2]); |
| case 2: |
| write_c0_watchlo1(watches->watchlo[1]); |
| write_c0_watchhi1(MIPS_WATCHHI_G | MIPS_WATCHHI_IRW | |
| watches->watchhi[1]); |
| case 1: |
| write_c0_watchlo0(watches->watchlo[0]); |
| write_c0_watchhi0(MIPS_WATCHHI_G | MIPS_WATCHHI_IRW | |
| watches->watchhi[0]); |
| } |
| } |
| |
| /* |
| * Read back the watchhi registers so the user space debugger has |
| * access to the I, R, and W bits. A maximum of four registers are |
| * read although the machine may have more. |
| */ |
| void mips_read_watch_registers(void) |
| { |
| struct mips3264_watch_reg_state *watches = |
| ¤t->thread.watch.mips3264; |
| switch (current_cpu_data.watch_reg_use_cnt) { |
| default: |
| BUG(); |
| case 4: |
| watches->watchhi[3] = (read_c0_watchhi3() & |
| (MIPS_WATCHHI_MASK | MIPS_WATCHHI_IRW)); |
| case 3: |
| watches->watchhi[2] = (read_c0_watchhi2() & |
| (MIPS_WATCHHI_MASK | MIPS_WATCHHI_IRW)); |
| case 2: |
| watches->watchhi[1] = (read_c0_watchhi1() & |
| (MIPS_WATCHHI_MASK | MIPS_WATCHHI_IRW)); |
| case 1: |
| watches->watchhi[0] = (read_c0_watchhi0() & |
| (MIPS_WATCHHI_MASK | MIPS_WATCHHI_IRW)); |
| } |
| if (current_cpu_data.watch_reg_use_cnt == 1 && |
| (watches->watchhi[0] & MIPS_WATCHHI_IRW) == 0) { |
| /* Pathological case of release 1 architecture that |
| * doesn't set the condition bits. We assume that |
| * since we got here, the watch condition was met and |
| * signal that the conditions requested in watchlo |
| * were met. */ |
| watches->watchhi[0] |= (watches->watchlo[0] & MIPS_WATCHHI_IRW); |
| } |
| } |
| |
| /* |
| * Disable all watch registers. Although only four registers are |
| * installed, all are cleared to eliminate the possibility of endless |
| * looping in the watch handler. |
| */ |
| void mips_clear_watch_registers(void) |
| { |
| switch (current_cpu_data.watch_reg_count) { |
| default: |
| BUG(); |
| case 8: |
| write_c0_watchlo7(0); |
| case 7: |
| write_c0_watchlo6(0); |
| case 6: |
| write_c0_watchlo5(0); |
| case 5: |
| write_c0_watchlo4(0); |
| case 4: |
| write_c0_watchlo3(0); |
| case 3: |
| write_c0_watchlo2(0); |
| case 2: |
| write_c0_watchlo1(0); |
| case 1: |
| write_c0_watchlo0(0); |
| } |
| } |
| |
| void mips_probe_watch_registers(struct cpuinfo_mips *c) |
| { |
| unsigned int t; |
| |
| if ((c->options & MIPS_CPU_WATCH) == 0) |
| return; |
| /* |
| * Check which of the I,R and W bits are supported, then |
| * disable the register. |
| */ |
| write_c0_watchlo0(MIPS_WATCHLO_IRW); |
| back_to_back_c0_hazard(); |
| t = read_c0_watchlo0(); |
| write_c0_watchlo0(0); |
| c->watch_reg_masks[0] = t & MIPS_WATCHLO_IRW; |
| |
| /* Write the mask bits and read them back to determine which |
| * can be used. */ |
| c->watch_reg_count = 1; |
| c->watch_reg_use_cnt = 1; |
| t = read_c0_watchhi0(); |
| write_c0_watchhi0(t | MIPS_WATCHHI_MASK); |
| back_to_back_c0_hazard(); |
| t = read_c0_watchhi0(); |
| c->watch_reg_masks[0] |= (t & MIPS_WATCHHI_MASK); |
| if ((t & MIPS_WATCHHI_M) == 0) |
| return; |
| |
| write_c0_watchlo1(MIPS_WATCHLO_IRW); |
| back_to_back_c0_hazard(); |
| t = read_c0_watchlo1(); |
| write_c0_watchlo1(0); |
| c->watch_reg_masks[1] = t & MIPS_WATCHLO_IRW; |
| |
| c->watch_reg_count = 2; |
| c->watch_reg_use_cnt = 2; |
| t = read_c0_watchhi1(); |
| write_c0_watchhi1(t | MIPS_WATCHHI_MASK); |
| back_to_back_c0_hazard(); |
| t = read_c0_watchhi1(); |
| c->watch_reg_masks[1] |= (t & MIPS_WATCHHI_MASK); |
| if ((t & MIPS_WATCHHI_M) == 0) |
| return; |
| |
| write_c0_watchlo2(MIPS_WATCHLO_IRW); |
| back_to_back_c0_hazard(); |
| t = read_c0_watchlo2(); |
| write_c0_watchlo2(0); |
| c->watch_reg_masks[2] = t & MIPS_WATCHLO_IRW; |
| |
| c->watch_reg_count = 3; |
| c->watch_reg_use_cnt = 3; |
| t = read_c0_watchhi2(); |
| write_c0_watchhi2(t | MIPS_WATCHHI_MASK); |
| back_to_back_c0_hazard(); |
| t = read_c0_watchhi2(); |
| c->watch_reg_masks[2] |= (t & MIPS_WATCHHI_MASK); |
| if ((t & MIPS_WATCHHI_M) == 0) |
| return; |
| |
| write_c0_watchlo3(MIPS_WATCHLO_IRW); |
| back_to_back_c0_hazard(); |
| t = read_c0_watchlo3(); |
| write_c0_watchlo3(0); |
| c->watch_reg_masks[3] = t & MIPS_WATCHLO_IRW; |
| |
| c->watch_reg_count = 4; |
| c->watch_reg_use_cnt = 4; |
| t = read_c0_watchhi3(); |
| write_c0_watchhi3(t | MIPS_WATCHHI_MASK); |
| back_to_back_c0_hazard(); |
| t = read_c0_watchhi3(); |
| c->watch_reg_masks[3] |= (t & MIPS_WATCHHI_MASK); |
| if ((t & MIPS_WATCHHI_M) == 0) |
| return; |
| |
| /* We use at most 4, but probe and report up to 8. */ |
| c->watch_reg_count = 5; |
| t = read_c0_watchhi4(); |
| if ((t & MIPS_WATCHHI_M) == 0) |
| return; |
| |
| c->watch_reg_count = 6; |
| t = read_c0_watchhi5(); |
| if ((t & MIPS_WATCHHI_M) == 0) |
| return; |
| |
| c->watch_reg_count = 7; |
| t = read_c0_watchhi6(); |
| if ((t & MIPS_WATCHHI_M) == 0) |
| return; |
| |
| c->watch_reg_count = 8; |
| } |