| // SPDX-License-Identifier: GPL-2.0 |
| #include <linux/highmem.h> |
| #include <linux/kdebug.h> |
| #include <linux/types.h> |
| #include <linux/notifier.h> |
| #include <linux/sched.h> |
| #include <linux/uprobes.h> |
| |
| #include <asm/branch.h> |
| #include <asm/cpu-features.h> |
| #include <asm/ptrace.h> |
| |
| #include "probes-common.h" |
| |
| static inline int insn_has_delay_slot(const union mips_instruction insn) |
| { |
| return __insn_has_delay_slot(insn); |
| } |
| |
| /** |
| * arch_uprobe_analyze_insn - instruction analysis including validity and fixups. |
| * @mm: the probed address space. |
| * @arch_uprobe: the probepoint information. |
| * @addr: virtual address at which to install the probepoint |
| * Return 0 on success or a -ve number on error. |
| */ |
| int arch_uprobe_analyze_insn(struct arch_uprobe *aup, |
| struct mm_struct *mm, unsigned long addr) |
| { |
| union mips_instruction inst; |
| |
| /* |
| * For the time being this also blocks attempts to use uprobes with |
| * MIPS16 and microMIPS. |
| */ |
| if (addr & 0x03) |
| return -EINVAL; |
| |
| inst.word = aup->insn[0]; |
| |
| if (__insn_is_compact_branch(inst)) { |
| pr_notice("Uprobes for compact branches are not supported\n"); |
| return -EINVAL; |
| } |
| |
| aup->ixol[0] = aup->insn[insn_has_delay_slot(inst)]; |
| aup->ixol[1] = UPROBE_BRK_UPROBE_XOL; /* NOP */ |
| |
| return 0; |
| } |
| |
| /** |
| * is_trap_insn - check if the instruction is a trap variant |
| * @insn: instruction to be checked. |
| * Returns true if @insn is a trap variant. |
| * |
| * This definition overrides the weak definition in kernel/events/uprobes.c. |
| * and is needed for the case where an architecture has multiple trap |
| * instructions (like PowerPC or MIPS). We treat BREAK just like the more |
| * modern conditional trap instructions. |
| */ |
| bool is_trap_insn(uprobe_opcode_t *insn) |
| { |
| union mips_instruction inst; |
| |
| inst.word = *insn; |
| |
| switch (inst.i_format.opcode) { |
| case spec_op: |
| switch (inst.r_format.func) { |
| case break_op: |
| case teq_op: |
| case tge_op: |
| case tgeu_op: |
| case tlt_op: |
| case tltu_op: |
| case tne_op: |
| return 1; |
| } |
| break; |
| |
| case bcond_op: /* Yes, really ... */ |
| switch (inst.u_format.rt) { |
| case teqi_op: |
| case tgei_op: |
| case tgeiu_op: |
| case tlti_op: |
| case tltiu_op: |
| case tnei_op: |
| return 1; |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| #define UPROBE_TRAP_NR ULONG_MAX |
| |
| /* |
| * arch_uprobe_pre_xol - prepare to execute out of line. |
| * @auprobe: the probepoint information. |
| * @regs: reflects the saved user state of current task. |
| */ |
| int arch_uprobe_pre_xol(struct arch_uprobe *aup, struct pt_regs *regs) |
| { |
| struct uprobe_task *utask = current->utask; |
| |
| /* |
| * Now find the EPC where to resume after the breakpoint has been |
| * dealt with. This may require emulation of a branch. |
| */ |
| aup->resume_epc = regs->cp0_epc + 4; |
| if (insn_has_delay_slot((union mips_instruction) aup->insn[0])) { |
| __compute_return_epc_for_insn(regs, |
| (union mips_instruction) aup->insn[0]); |
| aup->resume_epc = regs->cp0_epc; |
| } |
| utask->autask.saved_trap_nr = current->thread.trap_nr; |
| current->thread.trap_nr = UPROBE_TRAP_NR; |
| regs->cp0_epc = current->utask->xol_vaddr; |
| |
| return 0; |
| } |
| |
| int arch_uprobe_post_xol(struct arch_uprobe *aup, struct pt_regs *regs) |
| { |
| struct uprobe_task *utask = current->utask; |
| |
| current->thread.trap_nr = utask->autask.saved_trap_nr; |
| regs->cp0_epc = aup->resume_epc; |
| |
| return 0; |
| } |
| |
| /* |
| * If xol insn itself traps and generates a signal(Say, |
| * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped |
| * instruction jumps back to its own address. It is assumed that anything |
| * like do_page_fault/do_trap/etc sets thread.trap_nr != -1. |
| * |
| * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr, |
| * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to |
| * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol(). |
| */ |
| bool arch_uprobe_xol_was_trapped(struct task_struct *tsk) |
| { |
| if (tsk->thread.trap_nr != UPROBE_TRAP_NR) |
| return true; |
| |
| return false; |
| } |
| |
| int arch_uprobe_exception_notify(struct notifier_block *self, |
| unsigned long val, void *data) |
| { |
| struct die_args *args = data; |
| struct pt_regs *regs = args->regs; |
| |
| /* regs == NULL is a kernel bug */ |
| if (WARN_ON(!regs)) |
| return NOTIFY_DONE; |
| |
| /* We are only interested in userspace traps */ |
| if (!user_mode(regs)) |
| return NOTIFY_DONE; |
| |
| switch (val) { |
| case DIE_UPROBE: |
| if (uprobe_pre_sstep_notifier(regs)) |
| return NOTIFY_STOP; |
| break; |
| case DIE_UPROBE_XOL: |
| if (uprobe_post_sstep_notifier(regs)) |
| return NOTIFY_STOP; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * This function gets called when XOL instruction either gets trapped or |
| * the thread has a fatal signal. Reset the instruction pointer to its |
| * probed address for the potential restart or for post mortem analysis. |
| */ |
| void arch_uprobe_abort_xol(struct arch_uprobe *aup, |
| struct pt_regs *regs) |
| { |
| struct uprobe_task *utask = current->utask; |
| |
| instruction_pointer_set(regs, utask->vaddr); |
| } |
| |
| unsigned long arch_uretprobe_hijack_return_addr( |
| unsigned long trampoline_vaddr, struct pt_regs *regs) |
| { |
| unsigned long ra; |
| |
| ra = regs->regs[31]; |
| |
| /* Replace the return address with the trampoline address */ |
| regs->regs[31] = trampoline_vaddr; |
| |
| return ra; |
| } |
| |
| /** |
| * set_swbp - store breakpoint at a given address. |
| * @auprobe: arch specific probepoint information. |
| * @mm: the probed process address space. |
| * @vaddr: the virtual address to insert the opcode. |
| * |
| * For mm @mm, store the breakpoint instruction at @vaddr. |
| * Return 0 (success) or a negative errno. |
| * |
| * This version overrides the weak version in kernel/events/uprobes.c. |
| * It is required to handle MIPS16 and microMIPS. |
| */ |
| int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, |
| unsigned long vaddr) |
| { |
| return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN); |
| } |
| |
| void arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, |
| void *src, unsigned long len) |
| { |
| unsigned long kaddr, kstart; |
| |
| /* Initialize the slot */ |
| kaddr = (unsigned long)kmap_atomic(page); |
| kstart = kaddr + (vaddr & ~PAGE_MASK); |
| memcpy((void *)kstart, src, len); |
| flush_icache_range(kstart, kstart + len); |
| kunmap_atomic((void *)kaddr); |
| } |
| |
| /** |
| * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs |
| * @regs: Reflects the saved state of the task after it has hit a breakpoint |
| * instruction. |
| * Return the address of the breakpoint instruction. |
| * |
| * This overrides the weak version in kernel/events/uprobes.c. |
| */ |
| unsigned long uprobe_get_swbp_addr(struct pt_regs *regs) |
| { |
| return instruction_pointer(regs); |
| } |
| |
| /* |
| * See if the instruction can be emulated. |
| * Returns true if instruction was emulated, false otherwise. |
| * |
| * For now we always emulate so this function just returns 0. |
| */ |
| bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| { |
| return 0; |
| } |