| /* |
| * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR |
| * policies) |
| */ |
| |
| /* |
| * Update the current task's runtime statistics. Skip current tasks that |
| * are not in our scheduling class. |
| */ |
| static void update_curr_rt(struct rq *rq) |
| { |
| struct task_struct *curr = rq->curr; |
| u64 delta_exec; |
| |
| if (!task_has_rt_policy(curr)) |
| return; |
| |
| delta_exec = rq->clock - curr->se.exec_start; |
| if (unlikely((s64)delta_exec < 0)) |
| delta_exec = 0; |
| |
| schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec)); |
| |
| curr->se.sum_exec_runtime += delta_exec; |
| curr->se.exec_start = rq->clock; |
| cpuacct_charge(curr, delta_exec); |
| } |
| |
| static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq) |
| { |
| WARN_ON(!rt_task(p)); |
| rq->rt.rt_nr_running++; |
| #ifdef CONFIG_SMP |
| if (p->prio < rq->rt.highest_prio) |
| rq->rt.highest_prio = p->prio; |
| #endif /* CONFIG_SMP */ |
| } |
| |
| static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq) |
| { |
| WARN_ON(!rt_task(p)); |
| WARN_ON(!rq->rt.rt_nr_running); |
| rq->rt.rt_nr_running--; |
| #ifdef CONFIG_SMP |
| if (rq->rt.rt_nr_running) { |
| struct rt_prio_array *array; |
| |
| WARN_ON(p->prio < rq->rt.highest_prio); |
| if (p->prio == rq->rt.highest_prio) { |
| /* recalculate */ |
| array = &rq->rt.active; |
| rq->rt.highest_prio = |
| sched_find_first_bit(array->bitmap); |
| } /* otherwise leave rq->highest prio alone */ |
| } else |
| rq->rt.highest_prio = MAX_RT_PRIO; |
| #endif /* CONFIG_SMP */ |
| } |
| |
| static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) |
| { |
| struct rt_prio_array *array = &rq->rt.active; |
| |
| list_add_tail(&p->run_list, array->queue + p->prio); |
| __set_bit(p->prio, array->bitmap); |
| inc_cpu_load(rq, p->se.load.weight); |
| |
| inc_rt_tasks(p, rq); |
| } |
| |
| /* |
| * Adding/removing a task to/from a priority array: |
| */ |
| static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) |
| { |
| struct rt_prio_array *array = &rq->rt.active; |
| |
| update_curr_rt(rq); |
| |
| list_del(&p->run_list); |
| if (list_empty(array->queue + p->prio)) |
| __clear_bit(p->prio, array->bitmap); |
| dec_cpu_load(rq, p->se.load.weight); |
| |
| dec_rt_tasks(p, rq); |
| } |
| |
| /* |
| * Put task to the end of the run list without the overhead of dequeue |
| * followed by enqueue. |
| */ |
| static void requeue_task_rt(struct rq *rq, struct task_struct *p) |
| { |
| struct rt_prio_array *array = &rq->rt.active; |
| |
| list_move_tail(&p->run_list, array->queue + p->prio); |
| } |
| |
| static void |
| yield_task_rt(struct rq *rq) |
| { |
| requeue_task_rt(rq, rq->curr); |
| } |
| |
| /* |
| * Preempt the current task with a newly woken task if needed: |
| */ |
| static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p) |
| { |
| if (p->prio < rq->curr->prio) |
| resched_task(rq->curr); |
| } |
| |
| static struct task_struct *pick_next_task_rt(struct rq *rq) |
| { |
| struct rt_prio_array *array = &rq->rt.active; |
| struct task_struct *next; |
| struct list_head *queue; |
| int idx; |
| |
| idx = sched_find_first_bit(array->bitmap); |
| if (idx >= MAX_RT_PRIO) |
| return NULL; |
| |
| queue = array->queue + idx; |
| next = list_entry(queue->next, struct task_struct, run_list); |
| |
| next->se.exec_start = rq->clock; |
| |
| return next; |
| } |
| |
| static void put_prev_task_rt(struct rq *rq, struct task_struct *p) |
| { |
| update_curr_rt(rq); |
| p->se.exec_start = 0; |
| } |
| |
| #ifdef CONFIG_SMP |
| /* Only try algorithms three times */ |
| #define RT_MAX_TRIES 3 |
| |
| static int double_lock_balance(struct rq *this_rq, struct rq *busiest); |
| static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep); |
| |
| /* Return the second highest RT task, NULL otherwise */ |
| static struct task_struct *pick_next_highest_task_rt(struct rq *rq) |
| { |
| struct rt_prio_array *array = &rq->rt.active; |
| struct task_struct *next; |
| struct list_head *queue; |
| int idx; |
| |
| assert_spin_locked(&rq->lock); |
| |
| if (likely(rq->rt.rt_nr_running < 2)) |
| return NULL; |
| |
| idx = sched_find_first_bit(array->bitmap); |
| if (unlikely(idx >= MAX_RT_PRIO)) { |
| WARN_ON(1); /* rt_nr_running is bad */ |
| return NULL; |
| } |
| |
| queue = array->queue + idx; |
| next = list_entry(queue->next, struct task_struct, run_list); |
| if (unlikely(next != rq->curr)) |
| return next; |
| |
| if (queue->next->next != queue) { |
| /* same prio task */ |
| next = list_entry(queue->next->next, struct task_struct, run_list); |
| return next; |
| } |
| |
| /* slower, but more flexible */ |
| idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); |
| if (unlikely(idx >= MAX_RT_PRIO)) { |
| WARN_ON(1); /* rt_nr_running was 2 and above! */ |
| return NULL; |
| } |
| |
| queue = array->queue + idx; |
| next = list_entry(queue->next, struct task_struct, run_list); |
| |
| return next; |
| } |
| |
| static DEFINE_PER_CPU(cpumask_t, local_cpu_mask); |
| |
| /* Will lock the rq it finds */ |
| static struct rq *find_lock_lowest_rq(struct task_struct *task, |
| struct rq *this_rq) |
| { |
| struct rq *lowest_rq = NULL; |
| int cpu; |
| int tries; |
| cpumask_t *cpu_mask = &__get_cpu_var(local_cpu_mask); |
| |
| cpus_and(*cpu_mask, cpu_online_map, task->cpus_allowed); |
| |
| for (tries = 0; tries < RT_MAX_TRIES; tries++) { |
| /* |
| * Scan each rq for the lowest prio. |
| */ |
| for_each_cpu_mask(cpu, *cpu_mask) { |
| struct rq *rq = &per_cpu(runqueues, cpu); |
| |
| if (cpu == this_rq->cpu) |
| continue; |
| |
| /* We look for lowest RT prio or non-rt CPU */ |
| if (rq->rt.highest_prio >= MAX_RT_PRIO) { |
| lowest_rq = rq; |
| break; |
| } |
| |
| /* no locking for now */ |
| if (rq->rt.highest_prio > task->prio && |
| (!lowest_rq || rq->rt.highest_prio > lowest_rq->rt.highest_prio)) { |
| lowest_rq = rq; |
| } |
| } |
| |
| if (!lowest_rq) |
| break; |
| |
| /* if the prio of this runqueue changed, try again */ |
| if (double_lock_balance(this_rq, lowest_rq)) { |
| /* |
| * We had to unlock the run queue. In |
| * the mean time, task could have |
| * migrated already or had its affinity changed. |
| * Also make sure that it wasn't scheduled on its rq. |
| */ |
| if (unlikely(task_rq(task) != this_rq || |
| !cpu_isset(lowest_rq->cpu, task->cpus_allowed) || |
| task_running(this_rq, task) || |
| !task->se.on_rq)) { |
| spin_unlock(&lowest_rq->lock); |
| lowest_rq = NULL; |
| break; |
| } |
| } |
| |
| /* If this rq is still suitable use it. */ |
| if (lowest_rq->rt.highest_prio > task->prio) |
| break; |
| |
| /* try again */ |
| spin_unlock(&lowest_rq->lock); |
| lowest_rq = NULL; |
| } |
| |
| return lowest_rq; |
| } |
| |
| /* |
| * If the current CPU has more than one RT task, see if the non |
| * running task can migrate over to a CPU that is running a task |
| * of lesser priority. |
| */ |
| static int push_rt_task(struct rq *this_rq) |
| { |
| struct task_struct *next_task; |
| struct rq *lowest_rq; |
| int ret = 0; |
| int paranoid = RT_MAX_TRIES; |
| |
| assert_spin_locked(&this_rq->lock); |
| |
| next_task = pick_next_highest_task_rt(this_rq); |
| if (!next_task) |
| return 0; |
| |
| retry: |
| if (unlikely(next_task == this_rq->curr)) |
| return 0; |
| |
| /* |
| * It's possible that the next_task slipped in of |
| * higher priority than current. If that's the case |
| * just reschedule current. |
| */ |
| if (unlikely(next_task->prio < this_rq->curr->prio)) { |
| resched_task(this_rq->curr); |
| return 0; |
| } |
| |
| /* We might release this_rq lock */ |
| get_task_struct(next_task); |
| |
| /* find_lock_lowest_rq locks the rq if found */ |
| lowest_rq = find_lock_lowest_rq(next_task, this_rq); |
| if (!lowest_rq) { |
| struct task_struct *task; |
| /* |
| * find lock_lowest_rq releases this_rq->lock |
| * so it is possible that next_task has changed. |
| * If it has, then try again. |
| */ |
| task = pick_next_highest_task_rt(this_rq); |
| if (unlikely(task != next_task) && task && paranoid--) { |
| put_task_struct(next_task); |
| next_task = task; |
| goto retry; |
| } |
| goto out; |
| } |
| |
| assert_spin_locked(&lowest_rq->lock); |
| |
| deactivate_task(this_rq, next_task, 0); |
| set_task_cpu(next_task, lowest_rq->cpu); |
| activate_task(lowest_rq, next_task, 0); |
| |
| resched_task(lowest_rq->curr); |
| |
| spin_unlock(&lowest_rq->lock); |
| |
| ret = 1; |
| out: |
| put_task_struct(next_task); |
| |
| return ret; |
| } |
| |
| /* |
| * TODO: Currently we just use the second highest prio task on |
| * the queue, and stop when it can't migrate (or there's |
| * no more RT tasks). There may be a case where a lower |
| * priority RT task has a different affinity than the |
| * higher RT task. In this case the lower RT task could |
| * possibly be able to migrate where as the higher priority |
| * RT task could not. We currently ignore this issue. |
| * Enhancements are welcome! |
| */ |
| static void push_rt_tasks(struct rq *rq) |
| { |
| /* push_rt_task will return true if it moved an RT */ |
| while (push_rt_task(rq)) |
| ; |
| } |
| |
| static void schedule_tail_balance_rt(struct rq *rq) |
| { |
| /* |
| * If we have more than one rt_task queued, then |
| * see if we can push the other rt_tasks off to other CPUS. |
| * Note we may release the rq lock, and since |
| * the lock was owned by prev, we need to release it |
| * first via finish_lock_switch and then reaquire it here. |
| */ |
| if (unlikely(rq->rt.rt_nr_running > 1)) { |
| spin_lock_irq(&rq->lock); |
| push_rt_tasks(rq); |
| spin_unlock_irq(&rq->lock); |
| } |
| } |
| |
| /* |
| * Load-balancing iterator. Note: while the runqueue stays locked |
| * during the whole iteration, the current task might be |
| * dequeued so the iterator has to be dequeue-safe. Here we |
| * achieve that by always pre-iterating before returning |
| * the current task: |
| */ |
| static struct task_struct *load_balance_start_rt(void *arg) |
| { |
| struct rq *rq = arg; |
| struct rt_prio_array *array = &rq->rt.active; |
| struct list_head *head, *curr; |
| struct task_struct *p; |
| int idx; |
| |
| idx = sched_find_first_bit(array->bitmap); |
| if (idx >= MAX_RT_PRIO) |
| return NULL; |
| |
| head = array->queue + idx; |
| curr = head->prev; |
| |
| p = list_entry(curr, struct task_struct, run_list); |
| |
| curr = curr->prev; |
| |
| rq->rt.rt_load_balance_idx = idx; |
| rq->rt.rt_load_balance_head = head; |
| rq->rt.rt_load_balance_curr = curr; |
| |
| return p; |
| } |
| |
| static struct task_struct *load_balance_next_rt(void *arg) |
| { |
| struct rq *rq = arg; |
| struct rt_prio_array *array = &rq->rt.active; |
| struct list_head *head, *curr; |
| struct task_struct *p; |
| int idx; |
| |
| idx = rq->rt.rt_load_balance_idx; |
| head = rq->rt.rt_load_balance_head; |
| curr = rq->rt.rt_load_balance_curr; |
| |
| /* |
| * If we arrived back to the head again then |
| * iterate to the next queue (if any): |
| */ |
| if (unlikely(head == curr)) { |
| int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); |
| |
| if (next_idx >= MAX_RT_PRIO) |
| return NULL; |
| |
| idx = next_idx; |
| head = array->queue + idx; |
| curr = head->prev; |
| |
| rq->rt.rt_load_balance_idx = idx; |
| rq->rt.rt_load_balance_head = head; |
| } |
| |
| p = list_entry(curr, struct task_struct, run_list); |
| |
| curr = curr->prev; |
| |
| rq->rt.rt_load_balance_curr = curr; |
| |
| return p; |
| } |
| |
| static unsigned long |
| load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest, |
| unsigned long max_load_move, |
| struct sched_domain *sd, enum cpu_idle_type idle, |
| int *all_pinned, int *this_best_prio) |
| { |
| struct rq_iterator rt_rq_iterator; |
| |
| rt_rq_iterator.start = load_balance_start_rt; |
| rt_rq_iterator.next = load_balance_next_rt; |
| /* pass 'busiest' rq argument into |
| * load_balance_[start|next]_rt iterators |
| */ |
| rt_rq_iterator.arg = busiest; |
| |
| return balance_tasks(this_rq, this_cpu, busiest, max_load_move, sd, |
| idle, all_pinned, this_best_prio, &rt_rq_iterator); |
| } |
| |
| static int |
| move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest, |
| struct sched_domain *sd, enum cpu_idle_type idle) |
| { |
| struct rq_iterator rt_rq_iterator; |
| |
| rt_rq_iterator.start = load_balance_start_rt; |
| rt_rq_iterator.next = load_balance_next_rt; |
| rt_rq_iterator.arg = busiest; |
| |
| return iter_move_one_task(this_rq, this_cpu, busiest, sd, idle, |
| &rt_rq_iterator); |
| } |
| #else /* CONFIG_SMP */ |
| # define schedule_tail_balance_rt(rq) do { } while (0) |
| #endif /* CONFIG_SMP */ |
| |
| static void task_tick_rt(struct rq *rq, struct task_struct *p) |
| { |
| update_curr_rt(rq); |
| |
| /* |
| * RR tasks need a special form of timeslice management. |
| * FIFO tasks have no timeslices. |
| */ |
| if (p->policy != SCHED_RR) |
| return; |
| |
| if (--p->time_slice) |
| return; |
| |
| p->time_slice = DEF_TIMESLICE; |
| |
| /* |
| * Requeue to the end of queue if we are not the only element |
| * on the queue: |
| */ |
| if (p->run_list.prev != p->run_list.next) { |
| requeue_task_rt(rq, p); |
| set_tsk_need_resched(p); |
| } |
| } |
| |
| static void set_curr_task_rt(struct rq *rq) |
| { |
| struct task_struct *p = rq->curr; |
| |
| p->se.exec_start = rq->clock; |
| } |
| |
| const struct sched_class rt_sched_class = { |
| .next = &fair_sched_class, |
| .enqueue_task = enqueue_task_rt, |
| .dequeue_task = dequeue_task_rt, |
| .yield_task = yield_task_rt, |
| |
| .check_preempt_curr = check_preempt_curr_rt, |
| |
| .pick_next_task = pick_next_task_rt, |
| .put_prev_task = put_prev_task_rt, |
| |
| #ifdef CONFIG_SMP |
| .load_balance = load_balance_rt, |
| .move_one_task = move_one_task_rt, |
| #endif |
| |
| .set_curr_task = set_curr_task_rt, |
| .task_tick = task_tick_rt, |
| }; |