| /* |
| * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project. |
| * |
| * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc. |
| * Copyright (c) 2001,2002 Richard Russon |
| * |
| * This program/include file is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as published |
| * by the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program/include file is distributed in the hope that it will be |
| * useful, but WITHOUT ANY WARRANTY; without even the implied warranty |
| * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program (in the main directory of the Linux-NTFS |
| * distribution in the file COPYING); if not, write to the Free Software |
| * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/stddef.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/spinlock.h> |
| #include <linux/blkdev.h> /* For bdev_logical_block_size(). */ |
| #include <linux/backing-dev.h> |
| #include <linux/buffer_head.h> |
| #include <linux/vfs.h> |
| #include <linux/moduleparam.h> |
| #include <linux/bitmap.h> |
| |
| #include "sysctl.h" |
| #include "logfile.h" |
| #include "quota.h" |
| #include "usnjrnl.h" |
| #include "dir.h" |
| #include "debug.h" |
| #include "index.h" |
| #include "inode.h" |
| #include "aops.h" |
| #include "layout.h" |
| #include "malloc.h" |
| #include "ntfs.h" |
| |
| /* Number of mounted filesystems which have compression enabled. */ |
| static unsigned long ntfs_nr_compression_users; |
| |
| /* A global default upcase table and a corresponding reference count. */ |
| static ntfschar *default_upcase; |
| static unsigned long ntfs_nr_upcase_users; |
| |
| /* Error constants/strings used in inode.c::ntfs_show_options(). */ |
| typedef enum { |
| /* One of these must be present, default is ON_ERRORS_CONTINUE. */ |
| ON_ERRORS_PANIC = 0x01, |
| ON_ERRORS_REMOUNT_RO = 0x02, |
| ON_ERRORS_CONTINUE = 0x04, |
| /* Optional, can be combined with any of the above. */ |
| ON_ERRORS_RECOVER = 0x10, |
| } ON_ERRORS_ACTIONS; |
| |
| const option_t on_errors_arr[] = { |
| { ON_ERRORS_PANIC, "panic" }, |
| { ON_ERRORS_REMOUNT_RO, "remount-ro", }, |
| { ON_ERRORS_CONTINUE, "continue", }, |
| { ON_ERRORS_RECOVER, "recover" }, |
| { 0, NULL } |
| }; |
| |
| /** |
| * simple_getbool - |
| * |
| * Copied from old ntfs driver (which copied from vfat driver). |
| */ |
| static int simple_getbool(char *s, bool *setval) |
| { |
| if (s) { |
| if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true")) |
| *setval = true; |
| else if (!strcmp(s, "0") || !strcmp(s, "no") || |
| !strcmp(s, "false")) |
| *setval = false; |
| else |
| return 0; |
| } else |
| *setval = true; |
| return 1; |
| } |
| |
| /** |
| * parse_options - parse the (re)mount options |
| * @vol: ntfs volume |
| * @opt: string containing the (re)mount options |
| * |
| * Parse the recognized options in @opt for the ntfs volume described by @vol. |
| */ |
| static bool parse_options(ntfs_volume *vol, char *opt) |
| { |
| char *p, *v, *ov; |
| static char *utf8 = "utf8"; |
| int errors = 0, sloppy = 0; |
| kuid_t uid = INVALID_UID; |
| kgid_t gid = INVALID_GID; |
| umode_t fmask = (umode_t)-1, dmask = (umode_t)-1; |
| int mft_zone_multiplier = -1, on_errors = -1; |
| int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1; |
| struct nls_table *nls_map = NULL, *old_nls; |
| |
| /* I am lazy... (-8 */ |
| #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \ |
| if (!strcmp(p, option)) { \ |
| if (!v || !*v) \ |
| variable = default_value; \ |
| else { \ |
| variable = simple_strtoul(ov = v, &v, 0); \ |
| if (*v) \ |
| goto needs_val; \ |
| } \ |
| } |
| #define NTFS_GETOPT(option, variable) \ |
| if (!strcmp(p, option)) { \ |
| if (!v || !*v) \ |
| goto needs_arg; \ |
| variable = simple_strtoul(ov = v, &v, 0); \ |
| if (*v) \ |
| goto needs_val; \ |
| } |
| #define NTFS_GETOPT_UID(option, variable) \ |
| if (!strcmp(p, option)) { \ |
| uid_t uid_value; \ |
| if (!v || !*v) \ |
| goto needs_arg; \ |
| uid_value = simple_strtoul(ov = v, &v, 0); \ |
| if (*v) \ |
| goto needs_val; \ |
| variable = make_kuid(current_user_ns(), uid_value); \ |
| if (!uid_valid(variable)) \ |
| goto needs_val; \ |
| } |
| #define NTFS_GETOPT_GID(option, variable) \ |
| if (!strcmp(p, option)) { \ |
| gid_t gid_value; \ |
| if (!v || !*v) \ |
| goto needs_arg; \ |
| gid_value = simple_strtoul(ov = v, &v, 0); \ |
| if (*v) \ |
| goto needs_val; \ |
| variable = make_kgid(current_user_ns(), gid_value); \ |
| if (!gid_valid(variable)) \ |
| goto needs_val; \ |
| } |
| #define NTFS_GETOPT_OCTAL(option, variable) \ |
| if (!strcmp(p, option)) { \ |
| if (!v || !*v) \ |
| goto needs_arg; \ |
| variable = simple_strtoul(ov = v, &v, 8); \ |
| if (*v) \ |
| goto needs_val; \ |
| } |
| #define NTFS_GETOPT_BOOL(option, variable) \ |
| if (!strcmp(p, option)) { \ |
| bool val; \ |
| if (!simple_getbool(v, &val)) \ |
| goto needs_bool; \ |
| variable = val; \ |
| } |
| #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \ |
| if (!strcmp(p, option)) { \ |
| int _i; \ |
| if (!v || !*v) \ |
| goto needs_arg; \ |
| ov = v; \ |
| if (variable == -1) \ |
| variable = 0; \ |
| for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \ |
| if (!strcmp(opt_array[_i].str, v)) { \ |
| variable |= opt_array[_i].val; \ |
| break; \ |
| } \ |
| if (!opt_array[_i].str || !*opt_array[_i].str) \ |
| goto needs_val; \ |
| } |
| if (!opt || !*opt) |
| goto no_mount_options; |
| ntfs_debug("Entering with mount options string: %s", opt); |
| while ((p = strsep(&opt, ","))) { |
| if ((v = strchr(p, '='))) |
| *v++ = 0; |
| NTFS_GETOPT_UID("uid", uid) |
| else NTFS_GETOPT_GID("gid", gid) |
| else NTFS_GETOPT_OCTAL("umask", fmask = dmask) |
| else NTFS_GETOPT_OCTAL("fmask", fmask) |
| else NTFS_GETOPT_OCTAL("dmask", dmask) |
| else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier) |
| else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true) |
| else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files) |
| else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive) |
| else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse) |
| else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors, |
| on_errors_arr) |
| else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes")) |
| ntfs_warning(vol->sb, "Ignoring obsolete option %s.", |
| p); |
| else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) { |
| if (!strcmp(p, "iocharset")) |
| ntfs_warning(vol->sb, "Option iocharset is " |
| "deprecated. Please use " |
| "option nls=<charsetname> in " |
| "the future."); |
| if (!v || !*v) |
| goto needs_arg; |
| use_utf8: |
| old_nls = nls_map; |
| nls_map = load_nls(v); |
| if (!nls_map) { |
| if (!old_nls) { |
| ntfs_error(vol->sb, "NLS character set " |
| "%s not found.", v); |
| return false; |
| } |
| ntfs_error(vol->sb, "NLS character set %s not " |
| "found. Using previous one %s.", |
| v, old_nls->charset); |
| nls_map = old_nls; |
| } else /* nls_map */ { |
| unload_nls(old_nls); |
| } |
| } else if (!strcmp(p, "utf8")) { |
| bool val = false; |
| ntfs_warning(vol->sb, "Option utf8 is no longer " |
| "supported, using option nls=utf8. Please " |
| "use option nls=utf8 in the future and " |
| "make sure utf8 is compiled either as a " |
| "module or into the kernel."); |
| if (!v || !*v) |
| val = true; |
| else if (!simple_getbool(v, &val)) |
| goto needs_bool; |
| if (val) { |
| v = utf8; |
| goto use_utf8; |
| } |
| } else { |
| ntfs_error(vol->sb, "Unrecognized mount option %s.", p); |
| if (errors < INT_MAX) |
| errors++; |
| } |
| #undef NTFS_GETOPT_OPTIONS_ARRAY |
| #undef NTFS_GETOPT_BOOL |
| #undef NTFS_GETOPT |
| #undef NTFS_GETOPT_WITH_DEFAULT |
| } |
| no_mount_options: |
| if (errors && !sloppy) |
| return false; |
| if (sloppy) |
| ntfs_warning(vol->sb, "Sloppy option given. Ignoring " |
| "unrecognized mount option(s) and continuing."); |
| /* Keep this first! */ |
| if (on_errors != -1) { |
| if (!on_errors) { |
| ntfs_error(vol->sb, "Invalid errors option argument " |
| "or bug in options parser."); |
| return false; |
| } |
| } |
| if (nls_map) { |
| if (vol->nls_map && vol->nls_map != nls_map) { |
| ntfs_error(vol->sb, "Cannot change NLS character set " |
| "on remount."); |
| return false; |
| } /* else (!vol->nls_map) */ |
| ntfs_debug("Using NLS character set %s.", nls_map->charset); |
| vol->nls_map = nls_map; |
| } else /* (!nls_map) */ { |
| if (!vol->nls_map) { |
| vol->nls_map = load_nls_default(); |
| if (!vol->nls_map) { |
| ntfs_error(vol->sb, "Failed to load default " |
| "NLS character set."); |
| return false; |
| } |
| ntfs_debug("Using default NLS character set (%s).", |
| vol->nls_map->charset); |
| } |
| } |
| if (mft_zone_multiplier != -1) { |
| if (vol->mft_zone_multiplier && vol->mft_zone_multiplier != |
| mft_zone_multiplier) { |
| ntfs_error(vol->sb, "Cannot change mft_zone_multiplier " |
| "on remount."); |
| return false; |
| } |
| if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) { |
| ntfs_error(vol->sb, "Invalid mft_zone_multiplier. " |
| "Using default value, i.e. 1."); |
| mft_zone_multiplier = 1; |
| } |
| vol->mft_zone_multiplier = mft_zone_multiplier; |
| } |
| if (!vol->mft_zone_multiplier) |
| vol->mft_zone_multiplier = 1; |
| if (on_errors != -1) |
| vol->on_errors = on_errors; |
| if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER) |
| vol->on_errors |= ON_ERRORS_CONTINUE; |
| if (uid_valid(uid)) |
| vol->uid = uid; |
| if (gid_valid(gid)) |
| vol->gid = gid; |
| if (fmask != (umode_t)-1) |
| vol->fmask = fmask; |
| if (dmask != (umode_t)-1) |
| vol->dmask = dmask; |
| if (show_sys_files != -1) { |
| if (show_sys_files) |
| NVolSetShowSystemFiles(vol); |
| else |
| NVolClearShowSystemFiles(vol); |
| } |
| if (case_sensitive != -1) { |
| if (case_sensitive) |
| NVolSetCaseSensitive(vol); |
| else |
| NVolClearCaseSensitive(vol); |
| } |
| if (disable_sparse != -1) { |
| if (disable_sparse) |
| NVolClearSparseEnabled(vol); |
| else { |
| if (!NVolSparseEnabled(vol) && |
| vol->major_ver && vol->major_ver < 3) |
| ntfs_warning(vol->sb, "Not enabling sparse " |
| "support due to NTFS volume " |
| "version %i.%i (need at least " |
| "version 3.0).", vol->major_ver, |
| vol->minor_ver); |
| else |
| NVolSetSparseEnabled(vol); |
| } |
| } |
| return true; |
| needs_arg: |
| ntfs_error(vol->sb, "The %s option requires an argument.", p); |
| return false; |
| needs_bool: |
| ntfs_error(vol->sb, "The %s option requires a boolean argument.", p); |
| return false; |
| needs_val: |
| ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov); |
| return false; |
| } |
| |
| #ifdef NTFS_RW |
| |
| /** |
| * ntfs_write_volume_flags - write new flags to the volume information flags |
| * @vol: ntfs volume on which to modify the flags |
| * @flags: new flags value for the volume information flags |
| * |
| * Internal function. You probably want to use ntfs_{set,clear}_volume_flags() |
| * instead (see below). |
| * |
| * Replace the volume information flags on the volume @vol with the value |
| * supplied in @flags. Note, this overwrites the volume information flags, so |
| * make sure to combine the flags you want to modify with the old flags and use |
| * the result when calling ntfs_write_volume_flags(). |
| * |
| * Return 0 on success and -errno on error. |
| */ |
| static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags) |
| { |
| ntfs_inode *ni = NTFS_I(vol->vol_ino); |
| MFT_RECORD *m; |
| VOLUME_INFORMATION *vi; |
| ntfs_attr_search_ctx *ctx; |
| int err; |
| |
| ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.", |
| le16_to_cpu(vol->vol_flags), le16_to_cpu(flags)); |
| if (vol->vol_flags == flags) |
| goto done; |
| BUG_ON(!ni); |
| m = map_mft_record(ni); |
| if (IS_ERR(m)) { |
| err = PTR_ERR(m); |
| goto err_out; |
| } |
| ctx = ntfs_attr_get_search_ctx(ni, m); |
| if (!ctx) { |
| err = -ENOMEM; |
| goto put_unm_err_out; |
| } |
| err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0, |
| ctx); |
| if (err) |
| goto put_unm_err_out; |
| vi = (VOLUME_INFORMATION*)((u8*)ctx->attr + |
| le16_to_cpu(ctx->attr->data.resident.value_offset)); |
| vol->vol_flags = vi->flags = flags; |
| flush_dcache_mft_record_page(ctx->ntfs_ino); |
| mark_mft_record_dirty(ctx->ntfs_ino); |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(ni); |
| done: |
| ntfs_debug("Done."); |
| return 0; |
| put_unm_err_out: |
| if (ctx) |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(ni); |
| err_out: |
| ntfs_error(vol->sb, "Failed with error code %i.", -err); |
| return err; |
| } |
| |
| /** |
| * ntfs_set_volume_flags - set bits in the volume information flags |
| * @vol: ntfs volume on which to modify the flags |
| * @flags: flags to set on the volume |
| * |
| * Set the bits in @flags in the volume information flags on the volume @vol. |
| * |
| * Return 0 on success and -errno on error. |
| */ |
| static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags) |
| { |
| flags &= VOLUME_FLAGS_MASK; |
| return ntfs_write_volume_flags(vol, vol->vol_flags | flags); |
| } |
| |
| /** |
| * ntfs_clear_volume_flags - clear bits in the volume information flags |
| * @vol: ntfs volume on which to modify the flags |
| * @flags: flags to clear on the volume |
| * |
| * Clear the bits in @flags in the volume information flags on the volume @vol. |
| * |
| * Return 0 on success and -errno on error. |
| */ |
| static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags) |
| { |
| flags &= VOLUME_FLAGS_MASK; |
| flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags)); |
| return ntfs_write_volume_flags(vol, flags); |
| } |
| |
| #endif /* NTFS_RW */ |
| |
| /** |
| * ntfs_remount - change the mount options of a mounted ntfs filesystem |
| * @sb: superblock of mounted ntfs filesystem |
| * @flags: remount flags |
| * @opt: remount options string |
| * |
| * Change the mount options of an already mounted ntfs filesystem. |
| * |
| * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after |
| * ntfs_remount() returns successfully (i.e. returns 0). Otherwise, |
| * @sb->s_flags are not changed. |
| */ |
| static int ntfs_remount(struct super_block *sb, int *flags, char *opt) |
| { |
| ntfs_volume *vol = NTFS_SB(sb); |
| |
| ntfs_debug("Entering with remount options string: %s", opt); |
| |
| sync_filesystem(sb); |
| |
| #ifndef NTFS_RW |
| /* For read-only compiled driver, enforce read-only flag. */ |
| *flags |= MS_RDONLY; |
| #else /* NTFS_RW */ |
| /* |
| * For the read-write compiled driver, if we are remounting read-write, |
| * make sure there are no volume errors and that no unsupported volume |
| * flags are set. Also, empty the logfile journal as it would become |
| * stale as soon as something is written to the volume and mark the |
| * volume dirty so that chkdsk is run if the volume is not umounted |
| * cleanly. Finally, mark the quotas out of date so Windows rescans |
| * the volume on boot and updates them. |
| * |
| * When remounting read-only, mark the volume clean if no volume errors |
| * have occurred. |
| */ |
| if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) { |
| static const char *es = ". Cannot remount read-write."; |
| |
| /* Remounting read-write. */ |
| if (NVolErrors(vol)) { |
| ntfs_error(sb, "Volume has errors and is read-only%s", |
| es); |
| return -EROFS; |
| } |
| if (vol->vol_flags & VOLUME_IS_DIRTY) { |
| ntfs_error(sb, "Volume is dirty and read-only%s", es); |
| return -EROFS; |
| } |
| if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) { |
| ntfs_error(sb, "Volume has been modified by chkdsk " |
| "and is read-only%s", es); |
| return -EROFS; |
| } |
| if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) { |
| ntfs_error(sb, "Volume has unsupported flags set " |
| "(0x%x) and is read-only%s", |
| (unsigned)le16_to_cpu(vol->vol_flags), |
| es); |
| return -EROFS; |
| } |
| if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) { |
| ntfs_error(sb, "Failed to set dirty bit in volume " |
| "information flags%s", es); |
| return -EROFS; |
| } |
| #if 0 |
| // TODO: Enable this code once we start modifying anything that |
| // is different between NTFS 1.2 and 3.x... |
| /* Set NT4 compatibility flag on newer NTFS version volumes. */ |
| if ((vol->major_ver > 1)) { |
| if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) { |
| ntfs_error(sb, "Failed to set NT4 " |
| "compatibility flag%s", es); |
| NVolSetErrors(vol); |
| return -EROFS; |
| } |
| } |
| #endif |
| if (!ntfs_empty_logfile(vol->logfile_ino)) { |
| ntfs_error(sb, "Failed to empty journal $LogFile%s", |
| es); |
| NVolSetErrors(vol); |
| return -EROFS; |
| } |
| if (!ntfs_mark_quotas_out_of_date(vol)) { |
| ntfs_error(sb, "Failed to mark quotas out of date%s", |
| es); |
| NVolSetErrors(vol); |
| return -EROFS; |
| } |
| if (!ntfs_stamp_usnjrnl(vol)) { |
| ntfs_error(sb, "Failed to stamp transaction log " |
| "($UsnJrnl)%s", es); |
| NVolSetErrors(vol); |
| return -EROFS; |
| } |
| } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) { |
| /* Remounting read-only. */ |
| if (!NVolErrors(vol)) { |
| if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY)) |
| ntfs_warning(sb, "Failed to clear dirty bit " |
| "in volume information " |
| "flags. Run chkdsk."); |
| } |
| } |
| #endif /* NTFS_RW */ |
| |
| // TODO: Deal with *flags. |
| |
| if (!parse_options(vol, opt)) |
| return -EINVAL; |
| |
| ntfs_debug("Done."); |
| return 0; |
| } |
| |
| /** |
| * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector |
| * @sb: Super block of the device to which @b belongs. |
| * @b: Boot sector of device @sb to check. |
| * @silent: If 'true', all output will be silenced. |
| * |
| * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot |
| * sector. Returns 'true' if it is valid and 'false' if not. |
| * |
| * @sb is only needed for warning/error output, i.e. it can be NULL when silent |
| * is 'true'. |
| */ |
| static bool is_boot_sector_ntfs(const struct super_block *sb, |
| const NTFS_BOOT_SECTOR *b, const bool silent) |
| { |
| /* |
| * Check that checksum == sum of u32 values from b to the checksum |
| * field. If checksum is zero, no checking is done. We will work when |
| * the checksum test fails, since some utilities update the boot sector |
| * ignoring the checksum which leaves the checksum out-of-date. We |
| * report a warning if this is the case. |
| */ |
| if ((void*)b < (void*)&b->checksum && b->checksum && !silent) { |
| le32 *u; |
| u32 i; |
| |
| for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u) |
| i += le32_to_cpup(u); |
| if (le32_to_cpu(b->checksum) != i) |
| ntfs_warning(sb, "Invalid boot sector checksum."); |
| } |
| /* Check OEMidentifier is "NTFS " */ |
| if (b->oem_id != magicNTFS) |
| goto not_ntfs; |
| /* Check bytes per sector value is between 256 and 4096. */ |
| if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 || |
| le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000) |
| goto not_ntfs; |
| /* Check sectors per cluster value is valid. */ |
| switch (b->bpb.sectors_per_cluster) { |
| case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128: |
| break; |
| default: |
| goto not_ntfs; |
| } |
| /* Check the cluster size is not above the maximum (64kiB). */ |
| if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) * |
| b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE) |
| goto not_ntfs; |
| /* Check reserved/unused fields are really zero. */ |
| if (le16_to_cpu(b->bpb.reserved_sectors) || |
| le16_to_cpu(b->bpb.root_entries) || |
| le16_to_cpu(b->bpb.sectors) || |
| le16_to_cpu(b->bpb.sectors_per_fat) || |
| le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats) |
| goto not_ntfs; |
| /* Check clusters per file mft record value is valid. */ |
| if ((u8)b->clusters_per_mft_record < 0xe1 || |
| (u8)b->clusters_per_mft_record > 0xf7) |
| switch (b->clusters_per_mft_record) { |
| case 1: case 2: case 4: case 8: case 16: case 32: case 64: |
| break; |
| default: |
| goto not_ntfs; |
| } |
| /* Check clusters per index block value is valid. */ |
| if ((u8)b->clusters_per_index_record < 0xe1 || |
| (u8)b->clusters_per_index_record > 0xf7) |
| switch (b->clusters_per_index_record) { |
| case 1: case 2: case 4: case 8: case 16: case 32: case 64: |
| break; |
| default: |
| goto not_ntfs; |
| } |
| /* |
| * Check for valid end of sector marker. We will work without it, but |
| * many BIOSes will refuse to boot from a bootsector if the magic is |
| * incorrect, so we emit a warning. |
| */ |
| if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55)) |
| ntfs_warning(sb, "Invalid end of sector marker."); |
| return true; |
| not_ntfs: |
| return false; |
| } |
| |
| /** |
| * read_ntfs_boot_sector - read the NTFS boot sector of a device |
| * @sb: super block of device to read the boot sector from |
| * @silent: if true, suppress all output |
| * |
| * Reads the boot sector from the device and validates it. If that fails, tries |
| * to read the backup boot sector, first from the end of the device a-la NT4 and |
| * later and then from the middle of the device a-la NT3.51 and before. |
| * |
| * If a valid boot sector is found but it is not the primary boot sector, we |
| * repair the primary boot sector silently (unless the device is read-only or |
| * the primary boot sector is not accessible). |
| * |
| * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super |
| * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized |
| * to their respective values. |
| * |
| * Return the unlocked buffer head containing the boot sector or NULL on error. |
| */ |
| static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb, |
| const int silent) |
| { |
| const char *read_err_str = "Unable to read %s boot sector."; |
| struct buffer_head *bh_primary, *bh_backup; |
| sector_t nr_blocks = NTFS_SB(sb)->nr_blocks; |
| |
| /* Try to read primary boot sector. */ |
| if ((bh_primary = sb_bread(sb, 0))) { |
| if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) |
| bh_primary->b_data, silent)) |
| return bh_primary; |
| if (!silent) |
| ntfs_error(sb, "Primary boot sector is invalid."); |
| } else if (!silent) |
| ntfs_error(sb, read_err_str, "primary"); |
| if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) { |
| if (bh_primary) |
| brelse(bh_primary); |
| if (!silent) |
| ntfs_error(sb, "Mount option errors=recover not used. " |
| "Aborting without trying to recover."); |
| return NULL; |
| } |
| /* Try to read NT4+ backup boot sector. */ |
| if ((bh_backup = sb_bread(sb, nr_blocks - 1))) { |
| if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) |
| bh_backup->b_data, silent)) |
| goto hotfix_primary_boot_sector; |
| brelse(bh_backup); |
| } else if (!silent) |
| ntfs_error(sb, read_err_str, "backup"); |
| /* Try to read NT3.51- backup boot sector. */ |
| if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) { |
| if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*) |
| bh_backup->b_data, silent)) |
| goto hotfix_primary_boot_sector; |
| if (!silent) |
| ntfs_error(sb, "Could not find a valid backup boot " |
| "sector."); |
| brelse(bh_backup); |
| } else if (!silent) |
| ntfs_error(sb, read_err_str, "backup"); |
| /* We failed. Cleanup and return. */ |
| if (bh_primary) |
| brelse(bh_primary); |
| return NULL; |
| hotfix_primary_boot_sector: |
| if (bh_primary) { |
| /* |
| * If we managed to read sector zero and the volume is not |
| * read-only, copy the found, valid backup boot sector to the |
| * primary boot sector. Note we only copy the actual boot |
| * sector structure, not the actual whole device sector as that |
| * may be bigger and would potentially damage the $Boot system |
| * file (FIXME: Would be nice to know if the backup boot sector |
| * on a large sector device contains the whole boot loader or |
| * just the first 512 bytes). |
| */ |
| if (!(sb->s_flags & MS_RDONLY)) { |
| ntfs_warning(sb, "Hot-fix: Recovering invalid primary " |
| "boot sector from backup copy."); |
| memcpy(bh_primary->b_data, bh_backup->b_data, |
| NTFS_BLOCK_SIZE); |
| mark_buffer_dirty(bh_primary); |
| sync_dirty_buffer(bh_primary); |
| if (buffer_uptodate(bh_primary)) { |
| brelse(bh_backup); |
| return bh_primary; |
| } |
| ntfs_error(sb, "Hot-fix: Device write error while " |
| "recovering primary boot sector."); |
| } else { |
| ntfs_warning(sb, "Hot-fix: Recovery of primary boot " |
| "sector failed: Read-only mount."); |
| } |
| brelse(bh_primary); |
| } |
| ntfs_warning(sb, "Using backup boot sector."); |
| return bh_backup; |
| } |
| |
| /** |
| * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol |
| * @vol: volume structure to initialise with data from boot sector |
| * @b: boot sector to parse |
| * |
| * Parse the ntfs boot sector @b and store all imporant information therein in |
| * the ntfs super block @vol. Return 'true' on success and 'false' on error. |
| */ |
| static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b) |
| { |
| unsigned int sectors_per_cluster_bits, nr_hidden_sects; |
| int clusters_per_mft_record, clusters_per_index_record; |
| s64 ll; |
| |
| vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector); |
| vol->sector_size_bits = ffs(vol->sector_size) - 1; |
| ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size, |
| vol->sector_size); |
| ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits, |
| vol->sector_size_bits); |
| if (vol->sector_size < vol->sb->s_blocksize) { |
| ntfs_error(vol->sb, "Sector size (%i) is smaller than the " |
| "device block size (%lu). This is not " |
| "supported. Sorry.", vol->sector_size, |
| vol->sb->s_blocksize); |
| return false; |
| } |
| ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster); |
| sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1; |
| ntfs_debug("sectors_per_cluster_bits = 0x%x", |
| sectors_per_cluster_bits); |
| nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors); |
| ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects); |
| vol->cluster_size = vol->sector_size << sectors_per_cluster_bits; |
| vol->cluster_size_mask = vol->cluster_size - 1; |
| vol->cluster_size_bits = ffs(vol->cluster_size) - 1; |
| ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size, |
| vol->cluster_size); |
| ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask); |
| ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits); |
| if (vol->cluster_size < vol->sector_size) { |
| ntfs_error(vol->sb, "Cluster size (%i) is smaller than the " |
| "sector size (%i). This is not supported. " |
| "Sorry.", vol->cluster_size, vol->sector_size); |
| return false; |
| } |
| clusters_per_mft_record = b->clusters_per_mft_record; |
| ntfs_debug("clusters_per_mft_record = %i (0x%x)", |
| clusters_per_mft_record, clusters_per_mft_record); |
| if (clusters_per_mft_record > 0) |
| vol->mft_record_size = vol->cluster_size << |
| (ffs(clusters_per_mft_record) - 1); |
| else |
| /* |
| * When mft_record_size < cluster_size, clusters_per_mft_record |
| * = -log2(mft_record_size) bytes. mft_record_size normaly is |
| * 1024 bytes, which is encoded as 0xF6 (-10 in decimal). |
| */ |
| vol->mft_record_size = 1 << -clusters_per_mft_record; |
| vol->mft_record_size_mask = vol->mft_record_size - 1; |
| vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1; |
| ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size, |
| vol->mft_record_size); |
| ntfs_debug("vol->mft_record_size_mask = 0x%x", |
| vol->mft_record_size_mask); |
| ntfs_debug("vol->mft_record_size_bits = %i (0x%x)", |
| vol->mft_record_size_bits, vol->mft_record_size_bits); |
| /* |
| * We cannot support mft record sizes above the PAGE_CACHE_SIZE since |
| * we store $MFT/$DATA, the table of mft records in the page cache. |
| */ |
| if (vol->mft_record_size > PAGE_CACHE_SIZE) { |
| ntfs_error(vol->sb, "Mft record size (%i) exceeds the " |
| "PAGE_CACHE_SIZE on your system (%lu). " |
| "This is not supported. Sorry.", |
| vol->mft_record_size, PAGE_CACHE_SIZE); |
| return false; |
| } |
| /* We cannot support mft record sizes below the sector size. */ |
| if (vol->mft_record_size < vol->sector_size) { |
| ntfs_error(vol->sb, "Mft record size (%i) is smaller than the " |
| "sector size (%i). This is not supported. " |
| "Sorry.", vol->mft_record_size, |
| vol->sector_size); |
| return false; |
| } |
| clusters_per_index_record = b->clusters_per_index_record; |
| ntfs_debug("clusters_per_index_record = %i (0x%x)", |
| clusters_per_index_record, clusters_per_index_record); |
| if (clusters_per_index_record > 0) |
| vol->index_record_size = vol->cluster_size << |
| (ffs(clusters_per_index_record) - 1); |
| else |
| /* |
| * When index_record_size < cluster_size, |
| * clusters_per_index_record = -log2(index_record_size) bytes. |
| * index_record_size normaly equals 4096 bytes, which is |
| * encoded as 0xF4 (-12 in decimal). |
| */ |
| vol->index_record_size = 1 << -clusters_per_index_record; |
| vol->index_record_size_mask = vol->index_record_size - 1; |
| vol->index_record_size_bits = ffs(vol->index_record_size) - 1; |
| ntfs_debug("vol->index_record_size = %i (0x%x)", |
| vol->index_record_size, vol->index_record_size); |
| ntfs_debug("vol->index_record_size_mask = 0x%x", |
| vol->index_record_size_mask); |
| ntfs_debug("vol->index_record_size_bits = %i (0x%x)", |
| vol->index_record_size_bits, |
| vol->index_record_size_bits); |
| /* We cannot support index record sizes below the sector size. */ |
| if (vol->index_record_size < vol->sector_size) { |
| ntfs_error(vol->sb, "Index record size (%i) is smaller than " |
| "the sector size (%i). This is not " |
| "supported. Sorry.", vol->index_record_size, |
| vol->sector_size); |
| return false; |
| } |
| /* |
| * Get the size of the volume in clusters and check for 64-bit-ness. |
| * Windows currently only uses 32 bits to save the clusters so we do |
| * the same as it is much faster on 32-bit CPUs. |
| */ |
| ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits; |
| if ((u64)ll >= 1ULL << 32) { |
| ntfs_error(vol->sb, "Cannot handle 64-bit clusters. Sorry."); |
| return false; |
| } |
| vol->nr_clusters = ll; |
| ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters); |
| /* |
| * On an architecture where unsigned long is 32-bits, we restrict the |
| * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler |
| * will hopefully optimize the whole check away. |
| */ |
| if (sizeof(unsigned long) < 8) { |
| if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) { |
| ntfs_error(vol->sb, "Volume size (%lluTiB) is too " |
| "large for this architecture. " |
| "Maximum supported is 2TiB. Sorry.", |
| (unsigned long long)ll >> (40 - |
| vol->cluster_size_bits)); |
| return false; |
| } |
| } |
| ll = sle64_to_cpu(b->mft_lcn); |
| if (ll >= vol->nr_clusters) { |
| ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of " |
| "volume. Weird.", (unsigned long long)ll, |
| (unsigned long long)ll); |
| return false; |
| } |
| vol->mft_lcn = ll; |
| ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn); |
| ll = sle64_to_cpu(b->mftmirr_lcn); |
| if (ll >= vol->nr_clusters) { |
| ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end " |
| "of volume. Weird.", (unsigned long long)ll, |
| (unsigned long long)ll); |
| return false; |
| } |
| vol->mftmirr_lcn = ll; |
| ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn); |
| #ifdef NTFS_RW |
| /* |
| * Work out the size of the mft mirror in number of mft records. If the |
| * cluster size is less than or equal to the size taken by four mft |
| * records, the mft mirror stores the first four mft records. If the |
| * cluster size is bigger than the size taken by four mft records, the |
| * mft mirror contains as many mft records as will fit into one |
| * cluster. |
| */ |
| if (vol->cluster_size <= (4 << vol->mft_record_size_bits)) |
| vol->mftmirr_size = 4; |
| else |
| vol->mftmirr_size = vol->cluster_size >> |
| vol->mft_record_size_bits; |
| ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size); |
| #endif /* NTFS_RW */ |
| vol->serial_no = le64_to_cpu(b->volume_serial_number); |
| ntfs_debug("vol->serial_no = 0x%llx", |
| (unsigned long long)vol->serial_no); |
| return true; |
| } |
| |
| /** |
| * ntfs_setup_allocators - initialize the cluster and mft allocators |
| * @vol: volume structure for which to setup the allocators |
| * |
| * Setup the cluster (lcn) and mft allocators to the starting values. |
| */ |
| static void ntfs_setup_allocators(ntfs_volume *vol) |
| { |
| #ifdef NTFS_RW |
| LCN mft_zone_size, mft_lcn; |
| #endif /* NTFS_RW */ |
| |
| ntfs_debug("vol->mft_zone_multiplier = 0x%x", |
| vol->mft_zone_multiplier); |
| #ifdef NTFS_RW |
| /* Determine the size of the MFT zone. */ |
| mft_zone_size = vol->nr_clusters; |
| switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */ |
| case 4: |
| mft_zone_size >>= 1; /* 50% */ |
| break; |
| case 3: |
| mft_zone_size = (mft_zone_size + |
| (mft_zone_size >> 1)) >> 2; /* 37.5% */ |
| break; |
| case 2: |
| mft_zone_size >>= 2; /* 25% */ |
| break; |
| /* case 1: */ |
| default: |
| mft_zone_size >>= 3; /* 12.5% */ |
| break; |
| } |
| /* Setup the mft zone. */ |
| vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn; |
| ntfs_debug("vol->mft_zone_pos = 0x%llx", |
| (unsigned long long)vol->mft_zone_pos); |
| /* |
| * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs |
| * source) and if the actual mft_lcn is in the expected place or even |
| * further to the front of the volume, extend the mft_zone to cover the |
| * beginning of the volume as well. This is in order to protect the |
| * area reserved for the mft bitmap as well within the mft_zone itself. |
| * On non-standard volumes we do not protect it as the overhead would |
| * be higher than the speed increase we would get by doing it. |
| */ |
| mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size; |
| if (mft_lcn * vol->cluster_size < 16 * 1024) |
| mft_lcn = (16 * 1024 + vol->cluster_size - 1) / |
| vol->cluster_size; |
| if (vol->mft_zone_start <= mft_lcn) |
| vol->mft_zone_start = 0; |
| ntfs_debug("vol->mft_zone_start = 0x%llx", |
| (unsigned long long)vol->mft_zone_start); |
| /* |
| * Need to cap the mft zone on non-standard volumes so that it does |
| * not point outside the boundaries of the volume. We do this by |
| * halving the zone size until we are inside the volume. |
| */ |
| vol->mft_zone_end = vol->mft_lcn + mft_zone_size; |
| while (vol->mft_zone_end >= vol->nr_clusters) { |
| mft_zone_size >>= 1; |
| vol->mft_zone_end = vol->mft_lcn + mft_zone_size; |
| } |
| ntfs_debug("vol->mft_zone_end = 0x%llx", |
| (unsigned long long)vol->mft_zone_end); |
| /* |
| * Set the current position within each data zone to the start of the |
| * respective zone. |
| */ |
| vol->data1_zone_pos = vol->mft_zone_end; |
| ntfs_debug("vol->data1_zone_pos = 0x%llx", |
| (unsigned long long)vol->data1_zone_pos); |
| vol->data2_zone_pos = 0; |
| ntfs_debug("vol->data2_zone_pos = 0x%llx", |
| (unsigned long long)vol->data2_zone_pos); |
| |
| /* Set the mft data allocation position to mft record 24. */ |
| vol->mft_data_pos = 24; |
| ntfs_debug("vol->mft_data_pos = 0x%llx", |
| (unsigned long long)vol->mft_data_pos); |
| #endif /* NTFS_RW */ |
| } |
| |
| #ifdef NTFS_RW |
| |
| /** |
| * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume |
| * @vol: ntfs super block describing device whose mft mirror to load |
| * |
| * Return 'true' on success or 'false' on error. |
| */ |
| static bool load_and_init_mft_mirror(ntfs_volume *vol) |
| { |
| struct inode *tmp_ino; |
| ntfs_inode *tmp_ni; |
| |
| ntfs_debug("Entering."); |
| /* Get mft mirror inode. */ |
| tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr); |
| if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { |
| if (!IS_ERR(tmp_ino)) |
| iput(tmp_ino); |
| /* Caller will display error message. */ |
| return false; |
| } |
| /* |
| * Re-initialize some specifics about $MFTMirr's inode as |
| * ntfs_read_inode() will have set up the default ones. |
| */ |
| /* Set uid and gid to root. */ |
| tmp_ino->i_uid = GLOBAL_ROOT_UID; |
| tmp_ino->i_gid = GLOBAL_ROOT_GID; |
| /* Regular file. No access for anyone. */ |
| tmp_ino->i_mode = S_IFREG; |
| /* No VFS initiated operations allowed for $MFTMirr. */ |
| tmp_ino->i_op = &ntfs_empty_inode_ops; |
| tmp_ino->i_fop = &ntfs_empty_file_ops; |
| /* Put in our special address space operations. */ |
| tmp_ino->i_mapping->a_ops = &ntfs_mst_aops; |
| tmp_ni = NTFS_I(tmp_ino); |
| /* The $MFTMirr, like the $MFT is multi sector transfer protected. */ |
| NInoSetMstProtected(tmp_ni); |
| NInoSetSparseDisabled(tmp_ni); |
| /* |
| * Set up our little cheat allowing us to reuse the async read io |
| * completion handler for directories. |
| */ |
| tmp_ni->itype.index.block_size = vol->mft_record_size; |
| tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits; |
| vol->mftmirr_ino = tmp_ino; |
| ntfs_debug("Done."); |
| return true; |
| } |
| |
| /** |
| * check_mft_mirror - compare contents of the mft mirror with the mft |
| * @vol: ntfs super block describing device whose mft mirror to check |
| * |
| * Return 'true' on success or 'false' on error. |
| * |
| * Note, this function also results in the mft mirror runlist being completely |
| * mapped into memory. The mft mirror write code requires this and will BUG() |
| * should it find an unmapped runlist element. |
| */ |
| static bool check_mft_mirror(ntfs_volume *vol) |
| { |
| struct super_block *sb = vol->sb; |
| ntfs_inode *mirr_ni; |
| struct page *mft_page, *mirr_page; |
| u8 *kmft, *kmirr; |
| runlist_element *rl, rl2[2]; |
| pgoff_t index; |
| int mrecs_per_page, i; |
| |
| ntfs_debug("Entering."); |
| /* Compare contents of $MFT and $MFTMirr. */ |
| mrecs_per_page = PAGE_CACHE_SIZE / vol->mft_record_size; |
| BUG_ON(!mrecs_per_page); |
| BUG_ON(!vol->mftmirr_size); |
| mft_page = mirr_page = NULL; |
| kmft = kmirr = NULL; |
| index = i = 0; |
| do { |
| u32 bytes; |
| |
| /* Switch pages if necessary. */ |
| if (!(i % mrecs_per_page)) { |
| if (index) { |
| ntfs_unmap_page(mft_page); |
| ntfs_unmap_page(mirr_page); |
| } |
| /* Get the $MFT page. */ |
| mft_page = ntfs_map_page(vol->mft_ino->i_mapping, |
| index); |
| if (IS_ERR(mft_page)) { |
| ntfs_error(sb, "Failed to read $MFT."); |
| return false; |
| } |
| kmft = page_address(mft_page); |
| /* Get the $MFTMirr page. */ |
| mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping, |
| index); |
| if (IS_ERR(mirr_page)) { |
| ntfs_error(sb, "Failed to read $MFTMirr."); |
| goto mft_unmap_out; |
| } |
| kmirr = page_address(mirr_page); |
| ++index; |
| } |
| /* Do not check the record if it is not in use. */ |
| if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) { |
| /* Make sure the record is ok. */ |
| if (ntfs_is_baad_recordp((le32*)kmft)) { |
| ntfs_error(sb, "Incomplete multi sector " |
| "transfer detected in mft " |
| "record %i.", i); |
| mm_unmap_out: |
| ntfs_unmap_page(mirr_page); |
| mft_unmap_out: |
| ntfs_unmap_page(mft_page); |
| return false; |
| } |
| } |
| /* Do not check the mirror record if it is not in use. */ |
| if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) { |
| if (ntfs_is_baad_recordp((le32*)kmirr)) { |
| ntfs_error(sb, "Incomplete multi sector " |
| "transfer detected in mft " |
| "mirror record %i.", i); |
| goto mm_unmap_out; |
| } |
| } |
| /* Get the amount of data in the current record. */ |
| bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use); |
| if (bytes < sizeof(MFT_RECORD_OLD) || |
| bytes > vol->mft_record_size || |
| ntfs_is_baad_recordp((le32*)kmft)) { |
| bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use); |
| if (bytes < sizeof(MFT_RECORD_OLD) || |
| bytes > vol->mft_record_size || |
| ntfs_is_baad_recordp((le32*)kmirr)) |
| bytes = vol->mft_record_size; |
| } |
| /* Compare the two records. */ |
| if (memcmp(kmft, kmirr, bytes)) { |
| ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not " |
| "match. Run ntfsfix or chkdsk.", i); |
| goto mm_unmap_out; |
| } |
| kmft += vol->mft_record_size; |
| kmirr += vol->mft_record_size; |
| } while (++i < vol->mftmirr_size); |
| /* Release the last pages. */ |
| ntfs_unmap_page(mft_page); |
| ntfs_unmap_page(mirr_page); |
| |
| /* Construct the mft mirror runlist by hand. */ |
| rl2[0].vcn = 0; |
| rl2[0].lcn = vol->mftmirr_lcn; |
| rl2[0].length = (vol->mftmirr_size * vol->mft_record_size + |
| vol->cluster_size - 1) / vol->cluster_size; |
| rl2[1].vcn = rl2[0].length; |
| rl2[1].lcn = LCN_ENOENT; |
| rl2[1].length = 0; |
| /* |
| * Because we have just read all of the mft mirror, we know we have |
| * mapped the full runlist for it. |
| */ |
| mirr_ni = NTFS_I(vol->mftmirr_ino); |
| down_read(&mirr_ni->runlist.lock); |
| rl = mirr_ni->runlist.rl; |
| /* Compare the two runlists. They must be identical. */ |
| i = 0; |
| do { |
| if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn || |
| rl2[i].length != rl[i].length) { |
| ntfs_error(sb, "$MFTMirr location mismatch. " |
| "Run chkdsk."); |
| up_read(&mirr_ni->runlist.lock); |
| return false; |
| } |
| } while (rl2[i++].length); |
| up_read(&mirr_ni->runlist.lock); |
| ntfs_debug("Done."); |
| return true; |
| } |
| |
| /** |
| * load_and_check_logfile - load and check the logfile inode for a volume |
| * @vol: ntfs super block describing device whose logfile to load |
| * |
| * Return 'true' on success or 'false' on error. |
| */ |
| static bool load_and_check_logfile(ntfs_volume *vol, |
| RESTART_PAGE_HEADER **rp) |
| { |
| struct inode *tmp_ino; |
| |
| ntfs_debug("Entering."); |
| tmp_ino = ntfs_iget(vol->sb, FILE_LogFile); |
| if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { |
| if (!IS_ERR(tmp_ino)) |
| iput(tmp_ino); |
| /* Caller will display error message. */ |
| return false; |
| } |
| if (!ntfs_check_logfile(tmp_ino, rp)) { |
| iput(tmp_ino); |
| /* ntfs_check_logfile() will have displayed error output. */ |
| return false; |
| } |
| NInoSetSparseDisabled(NTFS_I(tmp_ino)); |
| vol->logfile_ino = tmp_ino; |
| ntfs_debug("Done."); |
| return true; |
| } |
| |
| #define NTFS_HIBERFIL_HEADER_SIZE 4096 |
| |
| /** |
| * check_windows_hibernation_status - check if Windows is suspended on a volume |
| * @vol: ntfs super block of device to check |
| * |
| * Check if Windows is hibernated on the ntfs volume @vol. This is done by |
| * looking for the file hiberfil.sys in the root directory of the volume. If |
| * the file is not present Windows is definitely not suspended. |
| * |
| * If hiberfil.sys exists and is less than 4kiB in size it means Windows is |
| * definitely suspended (this volume is not the system volume). Caveat: on a |
| * system with many volumes it is possible that the < 4kiB check is bogus but |
| * for now this should do fine. |
| * |
| * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the |
| * hiberfil header (which is the first 4kiB). If this begins with "hibr", |
| * Windows is definitely suspended. If it is completely full of zeroes, |
| * Windows is definitely not hibernated. Any other case is treated as if |
| * Windows is suspended. This caters for the above mentioned caveat of a |
| * system with many volumes where no "hibr" magic would be present and there is |
| * no zero header. |
| * |
| * Return 0 if Windows is not hibernated on the volume, >0 if Windows is |
| * hibernated on the volume, and -errno on error. |
| */ |
| static int check_windows_hibernation_status(ntfs_volume *vol) |
| { |
| MFT_REF mref; |
| struct inode *vi; |
| struct page *page; |
| u32 *kaddr, *kend; |
| ntfs_name *name = NULL; |
| int ret = 1; |
| static const ntfschar hiberfil[13] = { cpu_to_le16('h'), |
| cpu_to_le16('i'), cpu_to_le16('b'), |
| cpu_to_le16('e'), cpu_to_le16('r'), |
| cpu_to_le16('f'), cpu_to_le16('i'), |
| cpu_to_le16('l'), cpu_to_le16('.'), |
| cpu_to_le16('s'), cpu_to_le16('y'), |
| cpu_to_le16('s'), 0 }; |
| |
| ntfs_debug("Entering."); |
| /* |
| * Find the inode number for the hibernation file by looking up the |
| * filename hiberfil.sys in the root directory. |
| */ |
| mutex_lock(&vol->root_ino->i_mutex); |
| mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12, |
| &name); |
| mutex_unlock(&vol->root_ino->i_mutex); |
| if (IS_ERR_MREF(mref)) { |
| ret = MREF_ERR(mref); |
| /* If the file does not exist, Windows is not hibernated. */ |
| if (ret == -ENOENT) { |
| ntfs_debug("hiberfil.sys not present. Windows is not " |
| "hibernated on the volume."); |
| return 0; |
| } |
| /* A real error occurred. */ |
| ntfs_error(vol->sb, "Failed to find inode number for " |
| "hiberfil.sys."); |
| return ret; |
| } |
| /* We do not care for the type of match that was found. */ |
| kfree(name); |
| /* Get the inode. */ |
| vi = ntfs_iget(vol->sb, MREF(mref)); |
| if (IS_ERR(vi) || is_bad_inode(vi)) { |
| if (!IS_ERR(vi)) |
| iput(vi); |
| ntfs_error(vol->sb, "Failed to load hiberfil.sys."); |
| return IS_ERR(vi) ? PTR_ERR(vi) : -EIO; |
| } |
| if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) { |
| ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). " |
| "Windows is hibernated on the volume. This " |
| "is not the system volume.", i_size_read(vi)); |
| goto iput_out; |
| } |
| page = ntfs_map_page(vi->i_mapping, 0); |
| if (IS_ERR(page)) { |
| ntfs_error(vol->sb, "Failed to read from hiberfil.sys."); |
| ret = PTR_ERR(page); |
| goto iput_out; |
| } |
| kaddr = (u32*)page_address(page); |
| if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) { |
| ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is " |
| "hibernated on the volume. This is the " |
| "system volume."); |
| goto unm_iput_out; |
| } |
| kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr); |
| do { |
| if (unlikely(*kaddr)) { |
| ntfs_debug("hiberfil.sys is larger than 4kiB " |
| "(0x%llx), does not contain the " |
| "\"hibr\" magic, and does not have a " |
| "zero header. Windows is hibernated " |
| "on the volume. This is not the " |
| "system volume.", i_size_read(vi)); |
| goto unm_iput_out; |
| } |
| } while (++kaddr < kend); |
| ntfs_debug("hiberfil.sys contains a zero header. Windows is not " |
| "hibernated on the volume. This is the system " |
| "volume."); |
| ret = 0; |
| unm_iput_out: |
| ntfs_unmap_page(page); |
| iput_out: |
| iput(vi); |
| return ret; |
| } |
| |
| /** |
| * load_and_init_quota - load and setup the quota file for a volume if present |
| * @vol: ntfs super block describing device whose quota file to load |
| * |
| * Return 'true' on success or 'false' on error. If $Quota is not present, we |
| * leave vol->quota_ino as NULL and return success. |
| */ |
| static bool load_and_init_quota(ntfs_volume *vol) |
| { |
| MFT_REF mref; |
| struct inode *tmp_ino; |
| ntfs_name *name = NULL; |
| static const ntfschar Quota[7] = { cpu_to_le16('$'), |
| cpu_to_le16('Q'), cpu_to_le16('u'), |
| cpu_to_le16('o'), cpu_to_le16('t'), |
| cpu_to_le16('a'), 0 }; |
| static ntfschar Q[3] = { cpu_to_le16('$'), |
| cpu_to_le16('Q'), 0 }; |
| |
| ntfs_debug("Entering."); |
| /* |
| * Find the inode number for the quota file by looking up the filename |
| * $Quota in the extended system files directory $Extend. |
| */ |
| mutex_lock(&vol->extend_ino->i_mutex); |
| mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6, |
| &name); |
| mutex_unlock(&vol->extend_ino->i_mutex); |
| if (IS_ERR_MREF(mref)) { |
| /* |
| * If the file does not exist, quotas are disabled and have |
| * never been enabled on this volume, just return success. |
| */ |
| if (MREF_ERR(mref) == -ENOENT) { |
| ntfs_debug("$Quota not present. Volume does not have " |
| "quotas enabled."); |
| /* |
| * No need to try to set quotas out of date if they are |
| * not enabled. |
| */ |
| NVolSetQuotaOutOfDate(vol); |
| return true; |
| } |
| /* A real error occurred. */ |
| ntfs_error(vol->sb, "Failed to find inode number for $Quota."); |
| return false; |
| } |
| /* We do not care for the type of match that was found. */ |
| kfree(name); |
| /* Get the inode. */ |
| tmp_ino = ntfs_iget(vol->sb, MREF(mref)); |
| if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) { |
| if (!IS_ERR(tmp_ino)) |
| iput(tmp_ino); |
| ntfs_error(vol->sb, "Failed to load $Quota."); |
| return false; |
| } |
| vol->quota_ino = tmp_ino; |
| /* Get the $Q index allocation attribute. */ |
| tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2); |
| if (IS_ERR(tmp_ino)) { |
| ntfs_error(vol->sb, "Failed to load $Quota/$Q index."); |
| return false; |
| } |
| vol->quota_q_ino = tmp_ino; |
| ntfs_debug("Done."); |
| return true; |
| } |
| |
| /** |
| * load_and_init_usnjrnl - load and setup the transaction log if present |
| * @vol: ntfs super block describing device whose usnjrnl file to load |
| * |
| * Return 'true' on success or 'false' on error. |
| * |
| * If $UsnJrnl is not present or in the process of being disabled, we set |
| * NVolUsnJrnlStamped() and return success. |
| * |
| * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn, |
| * i.e. transaction logging has only just been enabled or the journal has been |
| * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped() |
| * and return success. |
| */ |
| static bool load_and_init_usnjrnl(ntfs_volume *vol) |
| { |
| MFT_REF mref; |
| struct inode *tmp_ino; |
| ntfs_inode *tmp_ni; |
| struct page *page; |
| ntfs_name *name = NULL; |
| USN_HEADER *uh; |
| static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'), |
| cpu_to_le16('U'), cpu_to_le16('s'), |
| cpu_to_le16('n'), cpu_to_le16('J'), |
| cpu_to_le16('r'), cpu_to_le16('n'), |
| cpu_to_le16('l'), 0 }; |
| static ntfschar Max[5] = { cpu_to_le16('$'), |
| cpu_to_le16('M'), cpu_to_le16('a'), |
| cpu_to_le16('x'), 0 }; |
| static ntfschar J[3] = { cpu_to_le16('$'), |
| cpu_to_le16('J'), 0 }; |
| |
| ntfs_debug("Entering."); |
| /* |
| * Find the inode number for the transaction log file by looking up the |
| * filename $UsnJrnl in the extended system files directory $Extend. |
| */ |
| mutex_lock(&vol->extend_ino->i_mutex); |
| mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8, |
| &name); |
| mutex_unlock(&vol->extend_ino->i_mutex); |
| if (IS_ERR_MREF(mref)) { |
| /* |
| * If the file does not exist, transaction logging is disabled, |
| * just return success. |
| */ |
| if (MREF_ERR(mref) == -ENOENT) { |
| ntfs_debug("$UsnJrnl not present. Volume does not " |
| "have transaction logging enabled."); |
| not_enabled: |
| /* |
| * No need to try to stamp the transaction log if |
| * transaction logging is not enabled. |
| */ |
| NVolSetUsnJrnlStamped(vol); |
| return true; |
| } |
| /* A real error occurred. */ |
| ntfs_error(vol->sb, "Failed to find inode number for " |
| "$UsnJrnl."); |
| return false; |
| } |
| /* We do not care for the type of match that was found. */ |
| kfree(name); |
| /* Get the inode. */ |
| tmp_ino = ntfs_iget(vol->sb, MREF(mref)); |
| if (unlikely(IS_ERR(tmp_ino) || is_bad_inode(tmp_ino))) { |
| if (!IS_ERR(tmp_ino)) |
| iput(tmp_ino); |
| ntfs_error(vol->sb, "Failed to load $UsnJrnl."); |
| return false; |
| } |
| vol->usnjrnl_ino = tmp_ino; |
| /* |
| * If the transaction log is in the process of being deleted, we can |
| * ignore it. |
| */ |
| if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) { |
| ntfs_debug("$UsnJrnl in the process of being disabled. " |
| "Volume does not have transaction logging " |
| "enabled."); |
| goto not_enabled; |
| } |
| /* Get the $DATA/$Max attribute. */ |
| tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4); |
| if (IS_ERR(tmp_ino)) { |
| ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max " |
| "attribute."); |
| return false; |
| } |
| vol->usnjrnl_max_ino = tmp_ino; |
| if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) { |
| ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max " |
| "attribute (size is 0x%llx but should be at " |
| "least 0x%zx bytes).", i_size_read(tmp_ino), |
| sizeof(USN_HEADER)); |
| return false; |
| } |
| /* Get the $DATA/$J attribute. */ |
| tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2); |
| if (IS_ERR(tmp_ino)) { |
| ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J " |
| "attribute."); |
| return false; |
| } |
| vol->usnjrnl_j_ino = tmp_ino; |
| /* Verify $J is non-resident and sparse. */ |
| tmp_ni = NTFS_I(vol->usnjrnl_j_ino); |
| if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) { |
| ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident " |
| "and/or not sparse."); |
| return false; |
| } |
| /* Read the USN_HEADER from $DATA/$Max. */ |
| page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0); |
| if (IS_ERR(page)) { |
| ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max " |
| "attribute."); |
| return false; |
| } |
| uh = (USN_HEADER*)page_address(page); |
| /* Sanity check the $Max. */ |
| if (unlikely(sle64_to_cpu(uh->allocation_delta) > |
| sle64_to_cpu(uh->maximum_size))) { |
| ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds " |
| "maximum size (0x%llx). $UsnJrnl is corrupt.", |
| (long long)sle64_to_cpu(uh->allocation_delta), |
| (long long)sle64_to_cpu(uh->maximum_size)); |
| ntfs_unmap_page(page); |
| return false; |
| } |
| /* |
| * If the transaction log has been stamped and nothing has been written |
| * to it since, we do not need to stamp it. |
| */ |
| if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >= |
| i_size_read(vol->usnjrnl_j_ino))) { |
| if (likely(sle64_to_cpu(uh->lowest_valid_usn) == |
| i_size_read(vol->usnjrnl_j_ino))) { |
| ntfs_unmap_page(page); |
| ntfs_debug("$UsnJrnl is enabled but nothing has been " |
| "logged since it was last stamped. " |
| "Treating this as if the volume does " |
| "not have transaction logging " |
| "enabled."); |
| goto not_enabled; |
| } |
| ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) " |
| "which is out of bounds (0x%llx). $UsnJrnl " |
| "is corrupt.", |
| (long long)sle64_to_cpu(uh->lowest_valid_usn), |
| i_size_read(vol->usnjrnl_j_ino)); |
| ntfs_unmap_page(page); |
| return false; |
| } |
| ntfs_unmap_page(page); |
| ntfs_debug("Done."); |
| return true; |
| } |
| |
| /** |
| * load_and_init_attrdef - load the attribute definitions table for a volume |
| * @vol: ntfs super block describing device whose attrdef to load |
| * |
| * Return 'true' on success or 'false' on error. |
| */ |
| static bool load_and_init_attrdef(ntfs_volume *vol) |
| { |
| loff_t i_size; |
| struct super_block *sb = vol->sb; |
| struct inode *ino; |
| struct page *page; |
| pgoff_t index, max_index; |
| unsigned int size; |
| |
| ntfs_debug("Entering."); |
| /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */ |
| ino = ntfs_iget(sb, FILE_AttrDef); |
| if (IS_ERR(ino) || is_bad_inode(ino)) { |
| if (!IS_ERR(ino)) |
| iput(ino); |
| goto failed; |
| } |
| NInoSetSparseDisabled(NTFS_I(ino)); |
| /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */ |
| i_size = i_size_read(ino); |
| if (i_size <= 0 || i_size > 0x7fffffff) |
| goto iput_failed; |
| vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size); |
| if (!vol->attrdef) |
| goto iput_failed; |
| index = 0; |
| max_index = i_size >> PAGE_CACHE_SHIFT; |
| size = PAGE_CACHE_SIZE; |
| while (index < max_index) { |
| /* Read the attrdef table and copy it into the linear buffer. */ |
| read_partial_attrdef_page: |
| page = ntfs_map_page(ino->i_mapping, index); |
| if (IS_ERR(page)) |
| goto free_iput_failed; |
| memcpy((u8*)vol->attrdef + (index++ << PAGE_CACHE_SHIFT), |
| page_address(page), size); |
| ntfs_unmap_page(page); |
| }; |
| if (size == PAGE_CACHE_SIZE) { |
| size = i_size & ~PAGE_CACHE_MASK; |
| if (size) |
| goto read_partial_attrdef_page; |
| } |
| vol->attrdef_size = i_size; |
| ntfs_debug("Read %llu bytes from $AttrDef.", i_size); |
| iput(ino); |
| return true; |
| free_iput_failed: |
| ntfs_free(vol->attrdef); |
| vol->attrdef = NULL; |
| iput_failed: |
| iput(ino); |
| failed: |
| ntfs_error(sb, "Failed to initialize attribute definition table."); |
| return false; |
| } |
| |
| #endif /* NTFS_RW */ |
| |
| /** |
| * load_and_init_upcase - load the upcase table for an ntfs volume |
| * @vol: ntfs super block describing device whose upcase to load |
| * |
| * Return 'true' on success or 'false' on error. |
| */ |
| static bool load_and_init_upcase(ntfs_volume *vol) |
| { |
| loff_t i_size; |
| struct super_block *sb = vol->sb; |
| struct inode *ino; |
| struct page *page; |
| pgoff_t index, max_index; |
| unsigned int size; |
| int i, max; |
| |
| ntfs_debug("Entering."); |
| /* Read upcase table and setup vol->upcase and vol->upcase_len. */ |
| ino = ntfs_iget(sb, FILE_UpCase); |
| if (IS_ERR(ino) || is_bad_inode(ino)) { |
| if (!IS_ERR(ino)) |
| iput(ino); |
| goto upcase_failed; |
| } |
| /* |
| * The upcase size must not be above 64k Unicode characters, must not |
| * be zero and must be a multiple of sizeof(ntfschar). |
| */ |
| i_size = i_size_read(ino); |
| if (!i_size || i_size & (sizeof(ntfschar) - 1) || |
| i_size > 64ULL * 1024 * sizeof(ntfschar)) |
| goto iput_upcase_failed; |
| vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size); |
| if (!vol->upcase) |
| goto iput_upcase_failed; |
| index = 0; |
| max_index = i_size >> PAGE_CACHE_SHIFT; |
| size = PAGE_CACHE_SIZE; |
| while (index < max_index) { |
| /* Read the upcase table and copy it into the linear buffer. */ |
| read_partial_upcase_page: |
| page = ntfs_map_page(ino->i_mapping, index); |
| if (IS_ERR(page)) |
| goto iput_upcase_failed; |
| memcpy((char*)vol->upcase + (index++ << PAGE_CACHE_SHIFT), |
| page_address(page), size); |
| ntfs_unmap_page(page); |
| }; |
| if (size == PAGE_CACHE_SIZE) { |
| size = i_size & ~PAGE_CACHE_MASK; |
| if (size) |
| goto read_partial_upcase_page; |
| } |
| vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS; |
| ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).", |
| i_size, 64 * 1024 * sizeof(ntfschar)); |
| iput(ino); |
| mutex_lock(&ntfs_lock); |
| if (!default_upcase) { |
| ntfs_debug("Using volume specified $UpCase since default is " |
| "not present."); |
| mutex_unlock(&ntfs_lock); |
| return true; |
| } |
| max = default_upcase_len; |
| if (max > vol->upcase_len) |
| max = vol->upcase_len; |
| for (i = 0; i < max; i++) |
| if (vol->upcase[i] != default_upcase[i]) |
| break; |
| if (i == max) { |
| ntfs_free(vol->upcase); |
| vol->upcase = default_upcase; |
| vol->upcase_len = max; |
| ntfs_nr_upcase_users++; |
| mutex_unlock(&ntfs_lock); |
| ntfs_debug("Volume specified $UpCase matches default. Using " |
| "default."); |
| return true; |
| } |
| mutex_unlock(&ntfs_lock); |
| ntfs_debug("Using volume specified $UpCase since it does not match " |
| "the default."); |
| return true; |
| iput_upcase_failed: |
| iput(ino); |
| ntfs_free(vol->upcase); |
| vol->upcase = NULL; |
| upcase_failed: |
| mutex_lock(&ntfs_lock); |
| if (default_upcase) { |
| vol->upcase = default_upcase; |
| vol->upcase_len = default_upcase_len; |
| ntfs_nr_upcase_users++; |
| mutex_unlock(&ntfs_lock); |
| ntfs_error(sb, "Failed to load $UpCase from the volume. Using " |
| "default."); |
| return true; |
| } |
| mutex_unlock(&ntfs_lock); |
| ntfs_error(sb, "Failed to initialize upcase table."); |
| return false; |
| } |
| |
| /* |
| * The lcn and mft bitmap inodes are NTFS-internal inodes with |
| * their own special locking rules: |
| */ |
| static struct lock_class_key |
| lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key, |
| mftbmp_runlist_lock_key, mftbmp_mrec_lock_key; |
| |
| /** |
| * load_system_files - open the system files using normal functions |
| * @vol: ntfs super block describing device whose system files to load |
| * |
| * Open the system files with normal access functions and complete setting up |
| * the ntfs super block @vol. |
| * |
| * Return 'true' on success or 'false' on error. |
| */ |
| static bool load_system_files(ntfs_volume *vol) |
| { |
| struct super_block *sb = vol->sb; |
| MFT_RECORD *m; |
| VOLUME_INFORMATION *vi; |
| ntfs_attr_search_ctx *ctx; |
| #ifdef NTFS_RW |
| RESTART_PAGE_HEADER *rp; |
| int err; |
| #endif /* NTFS_RW */ |
| |
| ntfs_debug("Entering."); |
| #ifdef NTFS_RW |
| /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */ |
| if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) { |
| static const char *es1 = "Failed to load $MFTMirr"; |
| static const char *es2 = "$MFTMirr does not match $MFT"; |
| static const char *es3 = ". Run ntfsfix and/or chkdsk."; |
| |
| /* If a read-write mount, convert it to a read-only mount. */ |
| if (!(sb->s_flags & MS_RDONLY)) { |
| if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | |
| ON_ERRORS_CONTINUE))) { |
| ntfs_error(sb, "%s and neither on_errors=" |
| "continue nor on_errors=" |
| "remount-ro was specified%s", |
| !vol->mftmirr_ino ? es1 : es2, |
| es3); |
| goto iput_mirr_err_out; |
| } |
| sb->s_flags |= MS_RDONLY; |
| ntfs_error(sb, "%s. Mounting read-only%s", |
| !vol->mftmirr_ino ? es1 : es2, es3); |
| } else |
| ntfs_warning(sb, "%s. Will not be able to remount " |
| "read-write%s", |
| !vol->mftmirr_ino ? es1 : es2, es3); |
| /* This will prevent a read-write remount. */ |
| NVolSetErrors(vol); |
| } |
| #endif /* NTFS_RW */ |
| /* Get mft bitmap attribute inode. */ |
| vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0); |
| if (IS_ERR(vol->mftbmp_ino)) { |
| ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute."); |
| goto iput_mirr_err_out; |
| } |
| lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock, |
| &mftbmp_runlist_lock_key); |
| lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock, |
| &mftbmp_mrec_lock_key); |
| /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */ |
| if (!load_and_init_upcase(vol)) |
| goto iput_mftbmp_err_out; |
| #ifdef NTFS_RW |
| /* |
| * Read attribute definitions table and setup @vol->attrdef and |
| * @vol->attrdef_size. |
| */ |
| if (!load_and_init_attrdef(vol)) |
| goto iput_upcase_err_out; |
| #endif /* NTFS_RW */ |
| /* |
| * Get the cluster allocation bitmap inode and verify the size, no |
| * need for any locking at this stage as we are already running |
| * exclusively as we are mount in progress task. |
| */ |
| vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap); |
| if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) { |
| if (!IS_ERR(vol->lcnbmp_ino)) |
| iput(vol->lcnbmp_ino); |
| goto bitmap_failed; |
| } |
| lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock, |
| &lcnbmp_runlist_lock_key); |
| lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock, |
| &lcnbmp_mrec_lock_key); |
| |
| NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino)); |
| if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) { |
| iput(vol->lcnbmp_ino); |
| bitmap_failed: |
| ntfs_error(sb, "Failed to load $Bitmap."); |
| goto iput_attrdef_err_out; |
| } |
| /* |
| * Get the volume inode and setup our cache of the volume flags and |
| * version. |
| */ |
| vol->vol_ino = ntfs_iget(sb, FILE_Volume); |
| if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) { |
| if (!IS_ERR(vol->vol_ino)) |
| iput(vol->vol_ino); |
| volume_failed: |
| ntfs_error(sb, "Failed to load $Volume."); |
| goto iput_lcnbmp_err_out; |
| } |
| m = map_mft_record(NTFS_I(vol->vol_ino)); |
| if (IS_ERR(m)) { |
| iput_volume_failed: |
| iput(vol->vol_ino); |
| goto volume_failed; |
| } |
| if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) { |
| ntfs_error(sb, "Failed to get attribute search context."); |
| goto get_ctx_vol_failed; |
| } |
| if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0, |
| ctx) || ctx->attr->non_resident || ctx->attr->flags) { |
| err_put_vol: |
| ntfs_attr_put_search_ctx(ctx); |
| get_ctx_vol_failed: |
| unmap_mft_record(NTFS_I(vol->vol_ino)); |
| goto iput_volume_failed; |
| } |
| vi = (VOLUME_INFORMATION*)((char*)ctx->attr + |
| le16_to_cpu(ctx->attr->data.resident.value_offset)); |
| /* Some bounds checks. */ |
| if ((u8*)vi < (u8*)ctx->attr || (u8*)vi + |
| le32_to_cpu(ctx->attr->data.resident.value_length) > |
| (u8*)ctx->attr + le32_to_cpu(ctx->attr->length)) |
| goto err_put_vol; |
| /* Copy the volume flags and version to the ntfs_volume structure. */ |
| vol->vol_flags = vi->flags; |
| vol->major_ver = vi->major_ver; |
| vol->minor_ver = vi->minor_ver; |
| ntfs_attr_put_search_ctx(ctx); |
| unmap_mft_record(NTFS_I(vol->vol_ino)); |
| pr_info("volume version %i.%i.\n", vol->major_ver, |
| vol->minor_ver); |
| if (vol->major_ver < 3 && NVolSparseEnabled(vol)) { |
| ntfs_warning(vol->sb, "Disabling sparse support due to NTFS " |
| "volume version %i.%i (need at least version " |
| "3.0).", vol->major_ver, vol->minor_ver); |
| NVolClearSparseEnabled(vol); |
| } |
| #ifdef NTFS_RW |
| /* Make sure that no unsupported volume flags are set. */ |
| if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) { |
| static const char *es1a = "Volume is dirty"; |
| static const char *es1b = "Volume has been modified by chkdsk"; |
| static const char *es1c = "Volume has unsupported flags set"; |
| static const char *es2a = ". Run chkdsk and mount in Windows."; |
| static const char *es2b = ". Mount in Windows."; |
| const char *es1, *es2; |
| |
| es2 = es2a; |
| if (vol->vol_flags & VOLUME_IS_DIRTY) |
| es1 = es1a; |
| else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) { |
| es1 = es1b; |
| es2 = es2b; |
| } else { |
| es1 = es1c; |
| ntfs_warning(sb, "Unsupported volume flags 0x%x " |
| "encountered.", |
| (unsigned)le16_to_cpu(vol->vol_flags)); |
| } |
| /* If a read-write mount, convert it to a read-only mount. */ |
| if (!(sb->s_flags & MS_RDONLY)) { |
| if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | |
| ON_ERRORS_CONTINUE))) { |
| ntfs_error(sb, "%s and neither on_errors=" |
| "continue nor on_errors=" |
| "remount-ro was specified%s", |
| es1, es2); |
| goto iput_vol_err_out; |
| } |
| sb->s_flags |= MS_RDONLY; |
| ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); |
| } else |
| ntfs_warning(sb, "%s. Will not be able to remount " |
| "read-write%s", es1, es2); |
| /* |
| * Do not set NVolErrors() because ntfs_remount() re-checks the |
| * flags which we need to do in case any flags have changed. |
| */ |
| } |
| /* |
| * Get the inode for the logfile, check it and determine if the volume |
| * was shutdown cleanly. |
| */ |
| rp = NULL; |
| if (!load_and_check_logfile(vol, &rp) || |
| !ntfs_is_logfile_clean(vol->logfile_ino, rp)) { |
| static const char *es1a = "Failed to load $LogFile"; |
| static const char *es1b = "$LogFile is not clean"; |
| static const char *es2 = ". Mount in Windows."; |
| const char *es1; |
| |
| es1 = !vol->logfile_ino ? es1a : es1b; |
| /* If a read-write mount, convert it to a read-only mount. */ |
| if (!(sb->s_flags & MS_RDONLY)) { |
| if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | |
| ON_ERRORS_CONTINUE))) { |
| ntfs_error(sb, "%s and neither on_errors=" |
| "continue nor on_errors=" |
| "remount-ro was specified%s", |
| es1, es2); |
| if (vol->logfile_ino) { |
| BUG_ON(!rp); |
| ntfs_free(rp); |
| } |
| goto iput_logfile_err_out; |
| } |
| sb->s_flags |= MS_RDONLY; |
| ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); |
| } else |
| ntfs_warning(sb, "%s. Will not be able to remount " |
| "read-write%s", es1, es2); |
| /* This will prevent a read-write remount. */ |
| NVolSetErrors(vol); |
| } |
| ntfs_free(rp); |
| #endif /* NTFS_RW */ |
| /* Get the root directory inode so we can do path lookups. */ |
| vol->root_ino = ntfs_iget(sb, FILE_root); |
| if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) { |
| if (!IS_ERR(vol->root_ino)) |
| iput(vol->root_ino); |
| ntfs_error(sb, "Failed to load root directory."); |
| goto iput_logfile_err_out; |
| } |
| #ifdef NTFS_RW |
| /* |
| * Check if Windows is suspended to disk on the target volume. If it |
| * is hibernated, we must not write *anything* to the disk so set |
| * NVolErrors() without setting the dirty volume flag and mount |
| * read-only. This will prevent read-write remounting and it will also |
| * prevent all writes. |
| */ |
| err = check_windows_hibernation_status(vol); |
| if (unlikely(err)) { |
| static const char *es1a = "Failed to determine if Windows is " |
| "hibernated"; |
| static const char *es1b = "Windows is hibernated"; |
| static const char *es2 = ". Run chkdsk."; |
| const char *es1; |
| |
| es1 = err < 0 ? es1a : es1b; |
| /* If a read-write mount, convert it to a read-only mount. */ |
| if (!(sb->s_flags & MS_RDONLY)) { |
| if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | |
| ON_ERRORS_CONTINUE))) { |
| ntfs_error(sb, "%s and neither on_errors=" |
| "continue nor on_errors=" |
| "remount-ro was specified%s", |
| es1, es2); |
| goto iput_root_err_out; |
| } |
| sb->s_flags |= MS_RDONLY; |
| ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); |
| } else |
| ntfs_warning(sb, "%s. Will not be able to remount " |
| "read-write%s", es1, es2); |
| /* This will prevent a read-write remount. */ |
| NVolSetErrors(vol); |
| } |
| /* If (still) a read-write mount, mark the volume dirty. */ |
| if (!(sb->s_flags & MS_RDONLY) && |
| ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) { |
| static const char *es1 = "Failed to set dirty bit in volume " |
| "information flags"; |
| static const char *es2 = ". Run chkdsk."; |
| |
| /* Convert to a read-only mount. */ |
| if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | |
| ON_ERRORS_CONTINUE))) { |
| ntfs_error(sb, "%s and neither on_errors=continue nor " |
| "on_errors=remount-ro was specified%s", |
| es1, es2); |
| goto iput_root_err_out; |
| } |
| ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); |
| sb->s_flags |= MS_RDONLY; |
| /* |
| * Do not set NVolErrors() because ntfs_remount() might manage |
| * to set the dirty flag in which case all would be well. |
| */ |
| } |
| #if 0 |
| // TODO: Enable this code once we start modifying anything that is |
| // different between NTFS 1.2 and 3.x... |
| /* |
| * If (still) a read-write mount, set the NT4 compatibility flag on |
| * newer NTFS version volumes. |
| */ |
| if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) && |
| ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) { |
| static const char *es1 = "Failed to set NT4 compatibility flag"; |
| static const char *es2 = ". Run chkdsk."; |
| |
| /* Convert to a read-only mount. */ |
| if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | |
| ON_ERRORS_CONTINUE))) { |
| ntfs_error(sb, "%s and neither on_errors=continue nor " |
| "on_errors=remount-ro was specified%s", |
| es1, es2); |
| goto iput_root_err_out; |
| } |
| ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); |
| sb->s_flags |= MS_RDONLY; |
| NVolSetErrors(vol); |
| } |
| #endif |
| /* If (still) a read-write mount, empty the logfile. */ |
| if (!(sb->s_flags & MS_RDONLY) && |
| !ntfs_empty_logfile(vol->logfile_ino)) { |
| static const char *es1 = "Failed to empty $LogFile"; |
| static const char *es2 = ". Mount in Windows."; |
| |
| /* Convert to a read-only mount. */ |
| if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | |
| ON_ERRORS_CONTINUE))) { |
| ntfs_error(sb, "%s and neither on_errors=continue nor " |
| "on_errors=remount-ro was specified%s", |
| es1, es2); |
| goto iput_root_err_out; |
| } |
| ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); |
| sb->s_flags |= MS_RDONLY; |
| NVolSetErrors(vol); |
| } |
| #endif /* NTFS_RW */ |
| /* If on NTFS versions before 3.0, we are done. */ |
| if (unlikely(vol->major_ver < 3)) |
| return true; |
| /* NTFS 3.0+ specific initialization. */ |
| /* Get the security descriptors inode. */ |
| vol->secure_ino = ntfs_iget(sb, FILE_Secure); |
| if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) { |
| if (!IS_ERR(vol->secure_ino)) |
| iput(vol->secure_ino); |
| ntfs_error(sb, "Failed to load $Secure."); |
| goto iput_root_err_out; |
| } |
| // TODO: Initialize security. |
| /* Get the extended system files' directory inode. */ |
| vol->extend_ino = ntfs_iget(sb, FILE_Extend); |
| if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) { |
| if (!IS_ERR(vol->extend_ino)) |
| iput(vol->extend_ino); |
| ntfs_error(sb, "Failed to load $Extend."); |
| goto iput_sec_err_out; |
| } |
| #ifdef NTFS_RW |
| /* Find the quota file, load it if present, and set it up. */ |
| if (!load_and_init_quota(vol)) { |
| static const char *es1 = "Failed to load $Quota"; |
| static const char *es2 = ". Run chkdsk."; |
| |
| /* If a read-write mount, convert it to a read-only mount. */ |
| if (!(sb->s_flags & MS_RDONLY)) { |
| if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | |
| ON_ERRORS_CONTINUE))) { |
| ntfs_error(sb, "%s and neither on_errors=" |
| "continue nor on_errors=" |
| "remount-ro was specified%s", |
| es1, es2); |
| goto iput_quota_err_out; |
| } |
| sb->s_flags |= MS_RDONLY; |
| ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); |
| } else |
| ntfs_warning(sb, "%s. Will not be able to remount " |
| "read-write%s", es1, es2); |
| /* This will prevent a read-write remount. */ |
| NVolSetErrors(vol); |
| } |
| /* If (still) a read-write mount, mark the quotas out of date. */ |
| if (!(sb->s_flags & MS_RDONLY) && |
| !ntfs_mark_quotas_out_of_date(vol)) { |
| static const char *es1 = "Failed to mark quotas out of date"; |
| static const char *es2 = ". Run chkdsk."; |
| |
| /* Convert to a read-only mount. */ |
| if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | |
| ON_ERRORS_CONTINUE))) { |
| ntfs_error(sb, "%s and neither on_errors=continue nor " |
| "on_errors=remount-ro was specified%s", |
| es1, es2); |
| goto iput_quota_err_out; |
| } |
| ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); |
| sb->s_flags |= MS_RDONLY; |
| NVolSetErrors(vol); |
| } |
| /* |
| * Find the transaction log file ($UsnJrnl), load it if present, check |
| * it, and set it up. |
| */ |
| if (!load_and_init_usnjrnl(vol)) { |
| static const char *es1 = "Failed to load $UsnJrnl"; |
| static const char *es2 = ". Run chkdsk."; |
| |
| /* If a read-write mount, convert it to a read-only mount. */ |
| if (!(sb->s_flags & MS_RDONLY)) { |
| if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | |
| ON_ERRORS_CONTINUE))) { |
| ntfs_error(sb, "%s and neither on_errors=" |
| "continue nor on_errors=" |
| "remount-ro was specified%s", |
| es1, es2); |
| goto iput_usnjrnl_err_out; |
| } |
| sb->s_flags |= MS_RDONLY; |
| ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); |
| } else |
| ntfs_warning(sb, "%s. Will not be able to remount " |
| "read-write%s", es1, es2); |
| /* This will prevent a read-write remount. */ |
| NVolSetErrors(vol); |
| } |
| /* If (still) a read-write mount, stamp the transaction log. */ |
| if (!(sb->s_flags & MS_RDONLY) && !ntfs_stamp_usnjrnl(vol)) { |
| static const char *es1 = "Failed to stamp transaction log " |
| "($UsnJrnl)"; |
| static const char *es2 = ". Run chkdsk."; |
| |
| /* Convert to a read-only mount. */ |
| if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO | |
| ON_ERRORS_CONTINUE))) { |
| ntfs_error(sb, "%s and neither on_errors=continue nor " |
| "on_errors=remount-ro was specified%s", |
| es1, es2); |
| goto iput_usnjrnl_err_out; |
| } |
| ntfs_error(sb, "%s. Mounting read-only%s", es1, es2); |
| sb->s_flags |= MS_RDONLY; |
| NVolSetErrors(vol); |
| } |
| #endif /* NTFS_RW */ |
| return true; |
| #ifdef NTFS_RW |
| iput_usnjrnl_err_out: |
| if (vol->usnjrnl_j_ino) |
| iput(vol->usnjrnl_j_ino); |
| if (vol->usnjrnl_max_ino) |
| iput(vol->usnjrnl_max_ino); |
| if (vol->usnjrnl_ino) |
| iput(vol->usnjrnl_ino); |
| iput_quota_err_out: |
| if (vol->quota_q_ino) |
| iput(vol->quota_q_ino); |
| if (vol->quota_ino) |
| iput(vol->quota_ino); |
| iput(vol->extend_ino); |
| #endif /* NTFS_RW */ |
| iput_sec_err_out: |
| iput(vol->secure_ino); |
| iput_root_err_out: |
| iput(vol->root_ino); |
| iput_logfile_err_out: |
| #ifdef NTFS_RW |
| if (vol->logfile_ino) |
| iput(vol->logfile_ino); |
| iput_vol_err_out: |
| #endif /* NTFS_RW */ |
| iput(vol->vol_ino); |
| iput_lcnbmp_err_out: |
| iput(vol->lcnbmp_ino); |
| iput_attrdef_err_out: |
| vol->attrdef_size = 0; |
| if (vol->attrdef) { |
| ntfs_free(vol->attrdef); |
| vol->attrdef = NULL; |
| } |
| #ifdef NTFS_RW |
| iput_upcase_err_out: |
| #endif /* NTFS_RW */ |
| vol->upcase_len = 0; |
| mutex_lock(&ntfs_lock); |
| if (vol->upcase == default_upcase) { |
| ntfs_nr_upcase_users--; |
| vol->upcase = NULL; |
| } |
| mutex_unlock(&ntfs_lock); |
| if (vol->upcase) { |
| ntfs_free(vol->upcase); |
| vol->upcase = NULL; |
| } |
| iput_mftbmp_err_out: |
| iput(vol->mftbmp_ino); |
| iput_mirr_err_out: |
| #ifdef NTFS_RW |
| if (vol->mftmirr_ino) |
| iput(vol->mftmirr_ino); |
| #endif /* NTFS_RW */ |
| return false; |
| } |
| |
| /** |
| * ntfs_put_super - called by the vfs to unmount a volume |
| * @sb: vfs superblock of volume to unmount |
| * |
| * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when |
| * the volume is being unmounted (umount system call has been invoked) and it |
| * releases all inodes and memory belonging to the NTFS specific part of the |
| * super block. |
| */ |
| static void ntfs_put_super(struct super_block *sb) |
| { |
| ntfs_volume *vol = NTFS_SB(sb); |
| |
| ntfs_debug("Entering."); |
| |
| #ifdef NTFS_RW |
| /* |
| * Commit all inodes while they are still open in case some of them |
| * cause others to be dirtied. |
| */ |
| ntfs_commit_inode(vol->vol_ino); |
| |
| /* NTFS 3.0+ specific. */ |
| if (vol->major_ver >= 3) { |
| if (vol->usnjrnl_j_ino) |
| ntfs_commit_inode(vol->usnjrnl_j_ino); |
| if (vol->usnjrnl_max_ino) |
| ntfs_commit_inode(vol->usnjrnl_max_ino); |
| if (vol->usnjrnl_ino) |
| ntfs_commit_inode(vol->usnjrnl_ino); |
| if (vol->quota_q_ino) |
| ntfs_commit_inode(vol->quota_q_ino); |
| if (vol->quota_ino) |
| ntfs_commit_inode(vol->quota_ino); |
| if (vol->extend_ino) |
| ntfs_commit_inode(vol->extend_ino); |
| if (vol->secure_ino) |
| ntfs_commit_inode(vol->secure_ino); |
| } |
| |
| ntfs_commit_inode(vol->root_ino); |
| |
| down_write(&vol->lcnbmp_lock); |
| ntfs_commit_inode(vol->lcnbmp_ino); |
| up_write(&vol->lcnbmp_lock); |
| |
| down_write(&vol->mftbmp_lock); |
| ntfs_commit_inode(vol->mftbmp_ino); |
| up_write(&vol->mftbmp_lock); |
| |
| if (vol->logfile_ino) |
| ntfs_commit_inode(vol->logfile_ino); |
| |
| if (vol->mftmirr_ino) |
| ntfs_commit_inode(vol->mftmirr_ino); |
| ntfs_commit_inode(vol->mft_ino); |
| |
| /* |
| * If a read-write mount and no volume errors have occurred, mark the |
| * volume clean. Also, re-commit all affected inodes. |
| */ |
| if (!(sb->s_flags & MS_RDONLY)) { |
| if (!NVolErrors(vol)) { |
| if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY)) |
| ntfs_warning(sb, "Failed to clear dirty bit " |
| "in volume information " |
| "flags. Run chkdsk."); |
| ntfs_commit_inode(vol->vol_ino); |
| ntfs_commit_inode(vol->root_ino); |
| if (vol->mftmirr_ino) |
| ntfs_commit_inode(vol->mftmirr_ino); |
| ntfs_commit_inode(vol->mft_ino); |
| } else { |
| ntfs_warning(sb, "Volume has errors. Leaving volume " |
| "marked dirty. Run chkdsk."); |
| } |
| } |
| #endif /* NTFS_RW */ |
| |
| iput(vol->vol_ino); |
| vol->vol_ino = NULL; |
| |
| /* NTFS 3.0+ specific clean up. */ |
| if (vol->major_ver >= 3) { |
| #ifdef NTFS_RW |
| if (vol->usnjrnl_j_ino) { |
| iput(vol->usnjrnl_j_ino); |
| vol->usnjrnl_j_ino = NULL; |
| } |
| if (vol->usnjrnl_max_ino) { |
| iput(vol->usnjrnl_max_ino); |
| vol->usnjrnl_max_ino = NULL; |
| } |
| if (vol->usnjrnl_ino) { |
| iput(vol->usnjrnl_ino); |
| vol->usnjrnl_ino = NULL; |
| } |
| if (vol->quota_q_ino) { |
| iput(vol->quota_q_ino); |
| vol->quota_q_ino = NULL; |
| } |
| if (vol->quota_ino) { |
| iput(vol->quota_ino); |
| vol->quota_ino = NULL; |
| } |
| #endif /* NTFS_RW */ |
| if (vol->extend_ino) { |
| iput(vol->extend_ino); |
| vol->extend_ino = NULL; |
| } |
| if (vol->secure_ino) { |
| iput(vol->secure_ino); |
| vol->secure_ino = NULL; |
| } |
| } |
| |
| iput(vol->root_ino); |
| vol->root_ino = NULL; |
| |
| down_write(&vol->lcnbmp_lock); |
| iput(vol->lcnbmp_ino); |
| vol->lcnbmp_ino = NULL; |
| up_write(&vol->lcnbmp_lock); |
| |
| down_write(&vol->mftbmp_lock); |
| iput(vol->mftbmp_ino); |
| vol->mftbmp_ino = NULL; |
| up_write(&vol->mftbmp_lock); |
| |
| #ifdef NTFS_RW |
| if (vol->logfile_ino) { |
| iput(vol->logfile_ino); |
| vol->logfile_ino = NULL; |
| } |
| if (vol->mftmirr_ino) { |
| /* Re-commit the mft mirror and mft just in case. */ |
| ntfs_commit_inode(vol->mftmirr_ino); |
| ntfs_commit_inode(vol->mft_ino); |
| iput(vol->mftmirr_ino); |
| vol->mftmirr_ino = NULL; |
| } |
| /* |
| * We should have no dirty inodes left, due to |
| * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as |
| * the underlying mft records are written out and cleaned. |
| */ |
| ntfs_commit_inode(vol->mft_ino); |
| write_inode_now(vol->mft_ino, 1); |
| #endif /* NTFS_RW */ |
| |
| iput(vol->mft_ino); |
| vol->mft_ino = NULL; |
| |
| /* Throw away the table of attribute definitions. */ |
| vol->attrdef_size = 0; |
| if (vol->attrdef) { |
| ntfs_free(vol->attrdef); |
| vol->attrdef = NULL; |
| } |
| vol->upcase_len = 0; |
| /* |
| * Destroy the global default upcase table if necessary. Also decrease |
| * the number of upcase users if we are a user. |
| */ |
| mutex_lock(&ntfs_lock); |
| if (vol->upcase == default_upcase) { |
| ntfs_nr_upcase_users--; |
| vol->upcase = NULL; |
| } |
| if (!ntfs_nr_upcase_users && default_upcase) { |
| ntfs_free(default_upcase); |
| default_upcase = NULL; |
| } |
| if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users) |
| free_compression_buffers(); |
| mutex_unlock(&ntfs_lock); |
| if (vol->upcase) { |
| ntfs_free(vol->upcase); |
| vol->upcase = NULL; |
| } |
| |
| unload_nls(vol->nls_map); |
| |
| sb->s_fs_info = NULL; |
| kfree(vol); |
| } |
| |
| /** |
| * get_nr_free_clusters - return the number of free clusters on a volume |
| * @vol: ntfs volume for which to obtain free cluster count |
| * |
| * Calculate the number of free clusters on the mounted NTFS volume @vol. We |
| * actually calculate the number of clusters in use instead because this |
| * allows us to not care about partial pages as these will be just zero filled |
| * and hence not be counted as allocated clusters. |
| * |
| * The only particularity is that clusters beyond the end of the logical ntfs |
| * volume will be marked as allocated to prevent errors which means we have to |
| * discount those at the end. This is important as the cluster bitmap always |
| * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside |
| * the logical volume and marked in use when they are not as they do not exist. |
| * |
| * If any pages cannot be read we assume all clusters in the erroring pages are |
| * in use. This means we return an underestimate on errors which is better than |
| * an overestimate. |
| */ |
| static s64 get_nr_free_clusters(ntfs_volume *vol) |
| { |
| s64 nr_free = vol->nr_clusters; |
| struct address_space *mapping = vol->lcnbmp_ino->i_mapping; |
| struct page *page; |
| pgoff_t index, max_index; |
| |
| ntfs_debug("Entering."); |
| /* Serialize accesses to the cluster bitmap. */ |
| down_read(&vol->lcnbmp_lock); |
| /* |
| * Convert the number of bits into bytes rounded up, then convert into |
| * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one |
| * full and one partial page max_index = 2. |
| */ |
| max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_CACHE_SIZE - 1) >> |
| PAGE_CACHE_SHIFT; |
| /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */ |
| ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.", |
| max_index, PAGE_CACHE_SIZE / 4); |
| for (index = 0; index < max_index; index++) { |
| unsigned long *kaddr; |
| |
| /* |
| * Read the page from page cache, getting it from backing store |
| * if necessary, and increment the use count. |
| */ |
| page = read_mapping_page(mapping, index, NULL); |
| /* Ignore pages which errored synchronously. */ |
| if (IS_ERR(page)) { |
| ntfs_debug("read_mapping_page() error. Skipping " |
| "page (index 0x%lx).", index); |
| nr_free -= PAGE_CACHE_SIZE * 8; |
| continue; |
| } |
| kaddr = kmap_atomic(page); |
| /* |
| * Subtract the number of set bits. If this |
| * is the last page and it is partial we don't really care as |
| * it just means we do a little extra work but it won't affect |
| * the result as all out of range bytes are set to zero by |
| * ntfs_readpage(). |
| */ |
| nr_free -= bitmap_weight(kaddr, |
| PAGE_CACHE_SIZE * BITS_PER_BYTE); |
| kunmap_atomic(kaddr); |
| page_cache_release(page); |
| } |
| ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1); |
| /* |
| * Fixup for eventual bits outside logical ntfs volume (see function |
| * description above). |
| */ |
| if (vol->nr_clusters & 63) |
| nr_free += 64 - (vol->nr_clusters & 63); |
| up_read(&vol->lcnbmp_lock); |
| /* If errors occurred we may well have gone below zero, fix this. */ |
| if (nr_free < 0) |
| nr_free = 0; |
| ntfs_debug("Exiting."); |
| return nr_free; |
| } |
| |
| /** |
| * __get_nr_free_mft_records - return the number of free inodes on a volume |
| * @vol: ntfs volume for which to obtain free inode count |
| * @nr_free: number of mft records in filesystem |
| * @max_index: maximum number of pages containing set bits |
| * |
| * Calculate the number of free mft records (inodes) on the mounted NTFS |
| * volume @vol. We actually calculate the number of mft records in use instead |
| * because this allows us to not care about partial pages as these will be just |
| * zero filled and hence not be counted as allocated mft record. |
| * |
| * If any pages cannot be read we assume all mft records in the erroring pages |
| * are in use. This means we return an underestimate on errors which is better |
| * than an overestimate. |
| * |
| * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing. |
| */ |
| static unsigned long __get_nr_free_mft_records(ntfs_volume *vol, |
| s64 nr_free, const pgoff_t max_index) |
| { |
| struct address_space *mapping = vol->mftbmp_ino->i_mapping; |
| struct page *page; |
| pgoff_t index; |
| |
| ntfs_debug("Entering."); |
| /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */ |
| ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = " |
| "0x%lx.", max_index, PAGE_CACHE_SIZE / 4); |
| for (index = 0; index < max_index; index++) { |
| unsigned long *kaddr; |
| |
| /* |
| * Read the page from page cache, getting it from backing store |
| * if necessary, and increment the use count. |
| */ |
| page = read_mapping_page(mapping, index, NULL); |
| /* Ignore pages which errored synchronously. */ |
| if (IS_ERR(page)) { |
| ntfs_debug("read_mapping_page() error. Skipping " |
| "page (index 0x%lx).", index); |
| nr_free -= PAGE_CACHE_SIZE * 8; |
| continue; |
| } |
| kaddr = kmap_atomic(page); |
| /* |
| * Subtract the number of set bits. If this |
| * is the last page and it is partial we don't really care as |
| * it just means we do a little extra work but it won't affect |
| * the result as all out of range bytes are set to zero by |
| * ntfs_readpage(). |
| */ |
| nr_free -= bitmap_weight(kaddr, |
| PAGE_CACHE_SIZE * BITS_PER_BYTE); |
| kunmap_atomic(kaddr); |
| page_cache_release(page); |
| } |
| ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.", |
| index - 1); |
| /* If errors occurred we may well have gone below zero, fix this. */ |
| if (nr_free < 0) |
| nr_free = 0; |
| ntfs_debug("Exiting."); |
| return nr_free; |
| } |
| |
| /** |
| * ntfs_statfs - return information about mounted NTFS volume |
| * @dentry: dentry from mounted volume |
| * @sfs: statfs structure in which to return the information |
| * |
| * Return information about the mounted NTFS volume @dentry in the statfs structure |
| * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is |
| * called). We interpret the values to be correct of the moment in time at |
| * which we are called. Most values are variable otherwise and this isn't just |
| * the free values but the totals as well. For example we can increase the |
| * total number of file nodes if we run out and we can keep doing this until |
| * there is no more space on the volume left at all. |
| * |
| * Called from vfs_statfs which is used to handle the statfs, fstatfs, and |
| * ustat system calls. |
| * |
| * Return 0 on success or -errno on error. |
| */ |
| static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs) |
| { |
| struct super_block *sb = dentry->d_sb; |
| s64 size; |
| ntfs_volume *vol = NTFS_SB(sb); |
| ntfs_inode *mft_ni = NTFS_I(vol->mft_ino); |
| pgoff_t max_index; |
| unsigned long flags; |
| |
| ntfs_debug("Entering."); |
| /* Type of filesystem. */ |
| sfs->f_type = NTFS_SB_MAGIC; |
| /* Optimal transfer block size. */ |
| sfs->f_bsize = PAGE_CACHE_SIZE; |
| /* |
| * Total data blocks in filesystem in units of f_bsize and since |
| * inodes are also stored in data blocs ($MFT is a file) this is just |
| * the total clusters. |
| */ |
| sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >> |
| PAGE_CACHE_SHIFT; |
| /* Free data blocks in filesystem in units of f_bsize. */ |
| size = get_nr_free_clusters(vol) << vol->cluster_size_bits >> |
| PAGE_CACHE_SHIFT; |
| if (size < 0LL) |
| size = 0LL; |
| /* Free blocks avail to non-superuser, same as above on NTFS. */ |
| sfs->f_bavail = sfs->f_bfree = size; |
| /* Serialize accesses to the inode bitmap. */ |
| down_read(&vol->mftbmp_lock); |
| read_lock_irqsave(&mft_ni->size_lock, flags); |
| size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits; |
| /* |
| * Convert the maximum number of set bits into bytes rounded up, then |
| * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we |
| * have one full and one partial page max_index = 2. |
| */ |
| max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits) |
| + 7) >> 3) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
| read_unlock_irqrestore(&mft_ni->size_lock, flags); |
| /* Number of inodes in filesystem (at this point in time). */ |
| sfs->f_files = size; |
| /* Free inodes in fs (based on current total count). */ |
| sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index); |
| up_read(&vol->mftbmp_lock); |
| /* |
| * File system id. This is extremely *nix flavour dependent and even |
| * within Linux itself all fs do their own thing. I interpret this to |
| * mean a unique id associated with the mounted fs and not the id |
| * associated with the filesystem driver, the latter is already given |
| * by the filesystem type in sfs->f_type. Thus we use the 64-bit |
| * volume serial number splitting it into two 32-bit parts. We enter |
| * the least significant 32-bits in f_fsid[0] and the most significant |
| * 32-bits in f_fsid[1]. |
| */ |
| sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff; |
| sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff; |
| /* Maximum length of filenames. */ |
| sfs->f_namelen = NTFS_MAX_NAME_LEN; |
| return 0; |
| } |
| |
| #ifdef NTFS_RW |
| static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc) |
| { |
| return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL); |
| } |
| #endif |
| |
| /** |
| * The complete super operations. |
| */ |
| static const struct super_operations ntfs_sops = { |
| .alloc_inode = ntfs_alloc_big_inode, /* VFS: Allocate new inode. */ |
| .destroy_inode = ntfs_destroy_big_inode, /* VFS: Deallocate inode. */ |
| #ifdef NTFS_RW |
| .write_inode = ntfs_write_inode, /* VFS: Write dirty inode to |
| disk. */ |
| #endif /* NTFS_RW */ |
| .put_super = ntfs_put_super, /* Syscall: umount. */ |
| .statfs = ntfs_statfs, /* Syscall: statfs */ |
| .remount_fs = ntfs_remount, /* Syscall: mount -o remount. */ |
| .evict_inode = ntfs_evict_big_inode, /* VFS: Called when an inode is |
| removed from memory. */ |
| .show_options = ntfs_show_options, /* Show mount options in |
| proc. */ |
| }; |
| |
| /** |
| * ntfs_fill_super - mount an ntfs filesystem |
| * @sb: super block of ntfs filesystem to mount |
| * @opt: string containing the mount options |
| * @silent: silence error output |
| * |
| * ntfs_fill_super() is called by the VFS to mount the device described by @sb |
| * with the mount otions in @data with the NTFS filesystem. |
| * |
| * If @silent is true, remain silent even if errors are detected. This is used |
| * during bootup, when the kernel tries to mount the root filesystem with all |
| * registered filesystems one after the other until one succeeds. This implies |
| * that all filesystems except the correct one will quite correctly and |
| * expectedly return an error, but nobody wants to see error messages when in |
| * fact this is what is supposed to happen. |
| * |
| * NOTE: @sb->s_flags contains the mount options flags. |
| */ |
| static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent) |
| { |
| ntfs_volume *vol; |
| struct buffer_head *bh; |
| struct inode *tmp_ino; |
| int blocksize, result; |
| |
| /* |
| * We do a pretty difficult piece of bootstrap by reading the |
| * MFT (and other metadata) from disk into memory. We'll only |
| * release this metadata during umount, so the locking patterns |
| * observed during bootstrap do not count. So turn off the |
| * observation of locking patterns (strictly for this context |
| * only) while mounting NTFS. [The validator is still active |
| * otherwise, even for this context: it will for example record |
| * lock class registrations.] |
| */ |
| lockdep_off(); |
| ntfs_debug("Entering."); |
| #ifndef NTFS_RW |
| sb->s_flags |= MS_RDONLY; |
| #endif /* ! NTFS_RW */ |
| /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */ |
| sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS); |
| vol = NTFS_SB(sb); |
| if (!vol) { |
| if (!silent) |
| ntfs_error(sb, "Allocation of NTFS volume structure " |
| "failed. Aborting mount..."); |
| lockdep_on(); |
| return -ENOMEM; |
| } |
| /* Initialize ntfs_volume structure. */ |
| *vol = (ntfs_volume) { |
| .sb = sb, |
| /* |
| * Default is group and other don't have any access to files or |
| * directories while owner has full access. Further, files by |
| * default are not executable but directories are of course |
| * browseable. |
| */ |
| .fmask = 0177, |
| .dmask = 0077, |
| }; |
| init_rwsem(&vol->mftbmp_lock); |
| init_rwsem(&vol->lcnbmp_lock); |
| |
| /* By default, enable sparse support. */ |
| NVolSetSparseEnabled(vol); |
| |
| /* Important to get the mount options dealt with now. */ |
| if (!parse_options(vol, (char*)opt)) |
| goto err_out_now; |
| |
| /* We support sector sizes up to the PAGE_CACHE_SIZE. */ |
| if (bdev_logical_block_size(sb->s_bdev) > PAGE_CACHE_SIZE) { |
| if (!silent) |
| ntfs_error(sb, "Device has unsupported sector size " |
| "(%i). The maximum supported sector " |
| "size on this architecture is %lu " |
| "bytes.", |
| bdev_logical_block_size(sb->s_bdev), |
| PAGE_CACHE_SIZE); |
| goto err_out_now; |
| } |
| /* |
| * Setup the device access block size to NTFS_BLOCK_SIZE or the hard |
| * sector size, whichever is bigger. |
| */ |
| blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE); |
| if (blocksize < NTFS_BLOCK_SIZE) { |
| if (!silent) |
| ntfs_error(sb, "Unable to set device block size."); |
| goto err_out_now; |
| } |
| BUG_ON(blocksize != sb->s_blocksize); |
| ntfs_debug("Set device block size to %i bytes (block size bits %i).", |
| blocksize, sb->s_blocksize_bits); |
| /* Determine the size of the device in units of block_size bytes. */ |
| if (!i_size_read(sb->s_bdev->bd_inode)) { |
| if (!silent) |
| ntfs_error(sb, "Unable to determine device size."); |
| goto err_out_now; |
| } |
| vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >> |
| sb->s_blocksize_bits; |
| /* Read the boot sector and return unlocked buffer head to it. */ |
| if (!(bh = read_ntfs_boot_sector(sb, silent))) { |
| if (!silent) |
| ntfs_error(sb, "Not an NTFS volume."); |
| goto err_out_now; |
| } |
| /* |
| * Extract the data from the boot sector and setup the ntfs volume |
| * using it. |
| */ |
| result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data); |
| brelse(bh); |
| if (!result) { |
| if (!silent) |
| ntfs_error(sb, "Unsupported NTFS filesystem."); |
| goto err_out_now; |
| } |
| /* |
| * If the boot sector indicates a sector size bigger than the current |
| * device block size, switch the device block size to the sector size. |
| * TODO: It may be possible to support this case even when the set |
| * below fails, we would just be breaking up the i/o for each sector |
| * into multiple blocks for i/o purposes but otherwise it should just |
| * work. However it is safer to leave disabled until someone hits this |
| * error message and then we can get them to try it without the setting |
| * so we know for sure that it works. |
| */ |
| if (vol->sector_size > blocksize) { |
| blocksize = sb_set_blocksize(sb, vol->sector_size); |
| if (blocksize != vol->sector_size) { |
| if (!silent) |
| ntfs_error(sb, "Unable to set device block " |
| "size to sector size (%i).", |
| vol->sector_size); |
| goto err_out_now; |
| } |
| BUG_ON(blocksize != sb->s_blocksize); |
| vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >> |
| sb->s_blocksize_bits; |
| ntfs_debug("Changed device block size to %i bytes (block size " |
| "bits %i) to match volume sector size.", |
| blocksize, sb->s_blocksize_bits); |
| } |
| /* Initialize the cluster and mft allocators. */ |
| ntfs_setup_allocators(vol); |
| /* Setup remaining fields in the super block. */ |
| sb->s_magic = NTFS_SB_MAGIC; |
| /* |
| * Ntfs allows 63 bits for the file size, i.e. correct would be: |
| * sb->s_maxbytes = ~0ULL >> 1; |
| * But the kernel uses a long as the page cache page index which on |
| * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel |
| * defined to the maximum the page cache page index can cope with |
| * without overflowing the index or to 2^63 - 1, whichever is smaller. |
| */ |
| sb->s_maxbytes = MAX_LFS_FILESIZE; |
| /* Ntfs measures time in 100ns intervals. */ |
| sb->s_time_gran = 100; |
| /* |
| * Now load the metadata required for the page cache and our address |
| * space operations to function. We do this by setting up a specialised |
| * read_inode method and then just calling the normal iget() to obtain |
| * the inode for $MFT which is sufficient to allow our normal inode |
| * operations and associated address space operations to function. |
| */ |
| sb->s_op = &ntfs_sops; |
| tmp_ino = new_inode(sb); |
| if (!tmp_ino) { |
| if (!silent) |
| ntfs_error(sb, "Failed to load essential metadata."); |
| goto err_out_now; |
| } |
| tmp_ino->i_ino = FILE_MFT; |
| insert_inode_hash(tmp_ino); |
| if (ntfs_read_inode_mount(tmp_ino) < 0) { |
| if (!silent) |
| ntfs_error(sb, "Failed to load essential metadata."); |
| goto iput_tmp_ino_err_out_now; |
| } |
| mutex_lock(&ntfs_lock); |
| /* |
| * The current mount is a compression user if the cluster size is |
| * less than or equal 4kiB. |
| */ |
| if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) { |
| result = allocate_compression_buffers(); |
| if (result) { |
| ntfs_error(NULL, "Failed to allocate buffers " |
| "for compression engine."); |
| ntfs_nr_compression_users--; |
| mutex_unlock(&ntfs_lock); |
| goto iput_tmp_ino_err_out_now; |
| } |
| } |
| /* |
| * Generate the global default upcase table if necessary. Also |
| * temporarily increment the number of upcase users to avoid race |
| * conditions with concurrent (u)mounts. |
| */ |
| if (!default_upcase) |
| default_upcase = generate_default_upcase(); |
| ntfs_nr_upcase_users++; |
| mutex_unlock(&ntfs_lock); |
| /* |
| * From now on, ignore @silent parameter. If we fail below this line, |
| * it will be due to a corrupt fs or a system error, so we report it. |
| */ |
| /* |
| * Open the system files with normal access functions and complete |
| * setting up the ntfs super block. |
| */ |
| if (!load_system_files(vol)) { |
| ntfs_error(sb, "Failed to load system files."); |
| goto unl_upcase_iput_tmp_ino_err_out_now; |
| } |
| |
| /* We grab a reference, simulating an ntfs_iget(). */ |
| ihold(vol->root_ino); |
| if ((sb->s_root = d_make_root(vol->root_ino))) { |
| ntfs_debug("Exiting, status successful."); |
| /* Release the default upcase if it has no users. */ |
| mutex_lock(&ntfs_lock); |
| if (!--ntfs_nr_upcase_users && default_upcase) { |
| ntfs_free(default_upcase); |
| default_upcase = NULL; |
| } |
| mutex_unlock(&ntfs_lock); |
| sb->s_export_op = &ntfs_export_ops; |
| lockdep_on(); |
| return 0; |
| } |
| ntfs_error(sb, "Failed to allocate root directory."); |
| /* Clean up after the successful load_system_files() call from above. */ |
| // TODO: Use ntfs_put_super() instead of repeating all this code... |
| // FIXME: Should mark the volume clean as the error is most likely |
| // -ENOMEM. |
| iput(vol->vol_ino); |
| vol->vol_ino = NULL; |
| /* NTFS 3.0+ specific clean up. */ |
| if (vol->major_ver >= 3) { |
| #ifdef NTFS_RW |
| if (vol->usnjrnl_j_ino) { |
| iput(vol->usnjrnl_j_ino); |
| vol->usnjrnl_j_ino = NULL; |
| } |
| if (vol->usnjrnl_max_ino) { |
| iput(vol->usnjrnl_max_ino); |
| vol->usnjrnl_max_ino = NULL; |
| } |
| if (vol->usnjrnl_ino) { |
| iput(vol->usnjrnl_ino); |
| vol->usnjrnl_ino = NULL; |
| } |
| if (vol->quota_q_ino) { |
| iput(vol->quota_q_ino); |
| vol->quota_q_ino = NULL; |
| } |
| if (vol->quota_ino) { |
| iput(vol->quota_ino); |
| vol->quota_ino = NULL; |
| } |
| #endif /* NTFS_RW */ |
| if (vol->extend_ino) { |
| iput(vol->extend_ino); |
| vol->extend_ino = NULL; |
| } |
| if (vol->secure_ino) { |
| iput(vol->secure_ino); |
| vol->secure_ino = NULL; |
| } |
| } |
| iput(vol->root_ino); |
| vol->root_ino = NULL; |
| iput(vol->lcnbmp_ino); |
| vol->lcnbmp_ino = NULL; |
| iput(vol->mftbmp_ino); |
| vol->mftbmp_ino = NULL; |
| #ifdef NTFS_RW |
| if (vol->logfile_ino) { |
| iput(vol->logfile_ino); |
| vol->logfile_ino = NULL; |
| } |
| if (vol->mftmirr_ino) { |
| iput(vol->mftmirr_ino); |
| vol->mftmirr_ino = NULL; |
| } |
| #endif /* NTFS_RW */ |
| /* Throw away the table of attribute definitions. */ |
| vol->attrdef_size = 0; |
| if (vol->attrdef) { |
| ntfs_free(vol->attrdef); |
| vol->attrdef = NULL; |
| } |
| vol->upcase_len = 0; |
| mutex_lock(&ntfs_lock); |
| if (vol->upcase == default_upcase) { |
| ntfs_nr_upcase_users--; |
| vol->upcase = NULL; |
| } |
| mutex_unlock(&ntfs_lock); |
| if (vol->upcase) { |
| ntfs_free(vol->upcase); |
| vol->upcase = NULL; |
| } |
| if (vol->nls_map) { |
| unload_nls(vol->nls_map); |
| vol->nls_map = NULL; |
| } |
| /* Error exit code path. */ |
| unl_upcase_iput_tmp_ino_err_out_now: |
| /* |
| * Decrease the number of upcase users and destroy the global default |
| * upcase table if necessary. |
| */ |
| mutex_lock(&ntfs_lock); |
| if (!--ntfs_nr_upcase_users && default_upcase) { |
| ntfs_free(default_upcase); |
| default_upcase = NULL; |
| } |
| if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users) |
| free_compression_buffers(); |
| mutex_unlock(&ntfs_lock); |
| iput_tmp_ino_err_out_now: |
| iput(tmp_ino); |
| if (vol->mft_ino && vol->mft_ino != tmp_ino) |
| iput(vol->mft_ino); |
| vol->mft_ino = NULL; |
| /* Errors at this stage are irrelevant. */ |
| err_out_now: |
| sb->s_fs_info = NULL; |
| kfree(vol); |
| ntfs_debug("Failed, returning -EINVAL."); |
| lockdep_on(); |
| return -EINVAL; |
| } |
| |
| /* |
| * This is a slab cache to optimize allocations and deallocations of Unicode |
| * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN |
| * (255) Unicode characters + a terminating NULL Unicode character. |
| */ |
| struct kmem_cache *ntfs_name_cache; |
| |
| /* Slab caches for efficient allocation/deallocation of inodes. */ |
| struct kmem_cache *ntfs_inode_cache; |
| struct kmem_cache *ntfs_big_inode_cache; |
| |
| /* Init once constructor for the inode slab cache. */ |
| static void ntfs_big_inode_init_once(void *foo) |
| { |
| ntfs_inode *ni = (ntfs_inode *)foo; |
| |
| inode_init_once(VFS_I(ni)); |
| } |
| |
| /* |
| * Slab caches to optimize allocations and deallocations of attribute search |
| * contexts and index contexts, respectively. |
| */ |
| struct kmem_cache *ntfs_attr_ctx_cache; |
| struct kmem_cache *ntfs_index_ctx_cache; |
| |
| /* Driver wide mutex. */ |
| DEFINE_MUTEX(ntfs_lock); |
| |
| static struct dentry *ntfs_mount(struct file_system_type *fs_type, |
| int flags, const char *dev_name, void *data) |
| { |
| return mount_bdev(fs_type, flags, dev_name, data, ntfs_fill_super); |
| } |
| |
| static struct file_system_type ntfs_fs_type = { |
| .owner = THIS_MODULE, |
| .name = "ntfs", |
| .mount = ntfs_mount, |
| .kill_sb = kill_block_super, |
| .fs_flags = FS_REQUIRES_DEV, |
| }; |
| MODULE_ALIAS_FS("ntfs"); |
| |
| /* Stable names for the slab caches. */ |
| static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache"; |
| static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache"; |
| static const char ntfs_name_cache_name[] = "ntfs_name_cache"; |
| static const char ntfs_inode_cache_name[] = "ntfs_inode_cache"; |
| static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache"; |
| |
| static int __init init_ntfs_fs(void) |
| { |
| int err = 0; |
| |
| /* This may be ugly but it results in pretty output so who cares. (-8 */ |
| pr_info("driver " NTFS_VERSION " [Flags: R/" |
| #ifdef NTFS_RW |
| "W" |
| #else |
| "O" |
| #endif |
| #ifdef DEBUG |
| " DEBUG" |
| #endif |
| #ifdef MODULE |
| " MODULE" |
| #endif |
| "].\n"); |
| |
| ntfs_debug("Debug messages are enabled."); |
| |
| ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name, |
| sizeof(ntfs_index_context), 0 /* offset */, |
| SLAB_HWCACHE_ALIGN, NULL /* ctor */); |
| if (!ntfs_index_ctx_cache) { |
| pr_crit("Failed to create %s!\n", ntfs_index_ctx_cache_name); |
| goto ictx_err_out; |
| } |
| ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name, |
| sizeof(ntfs_attr_search_ctx), 0 /* offset */, |
| SLAB_HWCACHE_ALIGN, NULL /* ctor */); |
| if (!ntfs_attr_ctx_cache) { |
| pr_crit("NTFS: Failed to create %s!\n", |
| ntfs_attr_ctx_cache_name); |
| goto actx_err_out; |
| } |
| |
| ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name, |
| (NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0, |
| SLAB_HWCACHE_ALIGN, NULL); |
| if (!ntfs_name_cache) { |
| pr_crit("Failed to create %s!\n", ntfs_name_cache_name); |
| goto name_err_out; |
| } |
| |
| ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name, |
| sizeof(ntfs_inode), 0, |
| SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); |
| if (!ntfs_inode_cache) { |
| pr_crit("Failed to create %s!\n", ntfs_inode_cache_name); |
| goto inode_err_out; |
| } |
| |
| ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name, |
| sizeof(big_ntfs_inode), 0, |
| SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, |
| ntfs_big_inode_init_once); |
| if (!ntfs_big_inode_cache) { |
| pr_crit("Failed to create %s!\n", ntfs_big_inode_cache_name); |
| goto big_inode_err_out; |
| } |
| |
| /* Register the ntfs sysctls. */ |
| err = ntfs_sysctl(1); |
| if (err) { |
| pr_crit("Failed to register NTFS sysctls!\n"); |
| goto sysctl_err_out; |
| } |
| |
| err = register_filesystem(&ntfs_fs_type); |
| if (!err) { |
| ntfs_debug("NTFS driver registered successfully."); |
| return 0; /* Success! */ |
| } |
| pr_crit("Failed to register NTFS filesystem driver!\n"); |
| |
| /* Unregister the ntfs sysctls. */ |
| ntfs_sysctl(0); |
| sysctl_err_out: |
| kmem_cache_destroy(ntfs_big_inode_cache); |
| big_inode_err_out: |
| kmem_cache_destroy(ntfs_inode_cache); |
| inode_err_out: |
| kmem_cache_destroy(ntfs_name_cache); |
| name_err_out: |
| kmem_cache_destroy(ntfs_attr_ctx_cache); |
| actx_err_out: |
| kmem_cache_destroy(ntfs_index_ctx_cache); |
| ictx_err_out: |
| if (!err) { |
| pr_crit("Aborting NTFS filesystem driver registration...\n"); |
| err = -ENOMEM; |
| } |
| return err; |
| } |
| |
| static void __exit exit_ntfs_fs(void) |
| { |
| ntfs_debug("Unregistering NTFS driver."); |
| |
| unregister_filesystem(&ntfs_fs_type); |
| |
| /* |
| * Make sure all delayed rcu free inodes are flushed before we |
| * destroy cache. |
| */ |
| rcu_barrier(); |
| kmem_cache_destroy(ntfs_big_inode_cache); |
| kmem_cache_destroy(ntfs_inode_cache); |
| kmem_cache_destroy(ntfs_name_cache); |
| kmem_cache_destroy(ntfs_attr_ctx_cache); |
| kmem_cache_destroy(ntfs_index_ctx_cache); |
| /* Unregister the ntfs sysctls. */ |
| ntfs_sysctl(0); |
| } |
| |
| MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>"); |
| MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc."); |
| MODULE_VERSION(NTFS_VERSION); |
| MODULE_LICENSE("GPL"); |
| #ifdef DEBUG |
| module_param(debug_msgs, bint, 0); |
| MODULE_PARM_DESC(debug_msgs, "Enable debug messages."); |
| #endif |
| |
| module_init(init_ntfs_fs) |
| module_exit(exit_ntfs_fs) |