| #ifndef __ASM_AVR32_IO_H |
| #define __ASM_AVR32_IO_H |
| |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| |
| #include <asm/addrspace.h> |
| #include <asm/byteorder.h> |
| |
| #include <asm/arch/io.h> |
| |
| /* virt_to_phys will only work when address is in P1 or P2 */ |
| static __inline__ unsigned long virt_to_phys(volatile void *address) |
| { |
| return PHYSADDR(address); |
| } |
| |
| static __inline__ void * phys_to_virt(unsigned long address) |
| { |
| return (void *)P1SEGADDR(address); |
| } |
| |
| #define cached_to_phys(addr) ((unsigned long)PHYSADDR(addr)) |
| #define uncached_to_phys(addr) ((unsigned long)PHYSADDR(addr)) |
| #define phys_to_cached(addr) ((void *)P1SEGADDR(addr)) |
| #define phys_to_uncached(addr) ((void *)P2SEGADDR(addr)) |
| |
| /* |
| * Generic IO read/write. These perform native-endian accesses. Note |
| * that some architectures will want to re-define __raw_{read,write}w. |
| */ |
| extern void __raw_writesb(void __iomem *addr, const void *data, int bytelen); |
| extern void __raw_writesw(void __iomem *addr, const void *data, int wordlen); |
| extern void __raw_writesl(void __iomem *addr, const void *data, int longlen); |
| |
| extern void __raw_readsb(const void __iomem *addr, void *data, int bytelen); |
| extern void __raw_readsw(const void __iomem *addr, void *data, int wordlen); |
| extern void __raw_readsl(const void __iomem *addr, void *data, int longlen); |
| |
| static inline void __raw_writeb(u8 v, volatile void __iomem *addr) |
| { |
| *(volatile u8 __force *)addr = v; |
| } |
| static inline void __raw_writew(u16 v, volatile void __iomem *addr) |
| { |
| *(volatile u16 __force *)addr = v; |
| } |
| static inline void __raw_writel(u32 v, volatile void __iomem *addr) |
| { |
| *(volatile u32 __force *)addr = v; |
| } |
| |
| static inline u8 __raw_readb(const volatile void __iomem *addr) |
| { |
| return *(const volatile u8 __force *)addr; |
| } |
| static inline u16 __raw_readw(const volatile void __iomem *addr) |
| { |
| return *(const volatile u16 __force *)addr; |
| } |
| static inline u32 __raw_readl(const volatile void __iomem *addr) |
| { |
| return *(const volatile u32 __force *)addr; |
| } |
| |
| /* Convert I/O port address to virtual address */ |
| #ifndef __io |
| # define __io(p) ((void *)phys_to_uncached(p)) |
| #endif |
| |
| /* |
| * Not really sure about the best way to slow down I/O on |
| * AVR32. Defining it as a no-op until we have an actual test case. |
| */ |
| #define SLOW_DOWN_IO do { } while (0) |
| |
| #define __BUILD_MEMORY_SINGLE(pfx, bwl, type) \ |
| static inline void \ |
| pfx##write##bwl(type val, volatile void __iomem *addr) \ |
| { \ |
| volatile type *__addr; \ |
| type __val; \ |
| \ |
| __addr = (void *)__swizzle_addr_##bwl((unsigned long)(addr)); \ |
| __val = pfx##ioswab##bwl(__addr, val); \ |
| \ |
| BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ |
| \ |
| *__addr = __val; \ |
| } \ |
| \ |
| static inline type pfx##read##bwl(const volatile void __iomem *addr) \ |
| { \ |
| volatile type *__addr; \ |
| type __val; \ |
| \ |
| __addr = (void *)__swizzle_addr_##bwl((unsigned long)(addr)); \ |
| \ |
| BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ |
| \ |
| __val = *__addr; \ |
| return pfx##ioswab##bwl(__addr, __val); \ |
| } |
| |
| #define __BUILD_IOPORT_SINGLE(pfx, bwl, type, p, slow) \ |
| static inline void pfx##out##bwl##p(type val, unsigned long port) \ |
| { \ |
| volatile type *__addr; \ |
| type __val; \ |
| \ |
| __addr = __io(__swizzle_addr_##bwl(port)); \ |
| __val = pfx##ioswab##bwl(__addr, val); \ |
| \ |
| BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ |
| \ |
| *__addr = __val; \ |
| slow; \ |
| } \ |
| \ |
| static inline type pfx##in##bwl##p(unsigned long port) \ |
| { \ |
| volatile type *__addr; \ |
| type __val; \ |
| \ |
| __addr = __io(__swizzle_addr_##bwl(port)); \ |
| \ |
| BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ |
| \ |
| __val = *__addr; \ |
| slow; \ |
| \ |
| return pfx##ioswab##bwl(__addr, __val); \ |
| } |
| |
| #define __BUILD_MEMORY_PFX(bus, bwl, type) \ |
| __BUILD_MEMORY_SINGLE(bus, bwl, type) |
| |
| #define BUILDIO_MEM(bwl, type) \ |
| __BUILD_MEMORY_PFX(, bwl, type) \ |
| __BUILD_MEMORY_PFX(__mem_, bwl, type) |
| |
| #define __BUILD_IOPORT_PFX(bus, bwl, type) \ |
| __BUILD_IOPORT_SINGLE(bus, bwl, type, ,) \ |
| __BUILD_IOPORT_SINGLE(bus, bwl, type, _p, SLOW_DOWN_IO) |
| |
| #define BUILDIO_IOPORT(bwl, type) \ |
| __BUILD_IOPORT_PFX(, bwl, type) \ |
| __BUILD_IOPORT_PFX(__mem_, bwl, type) |
| |
| BUILDIO_MEM(b, u8) |
| BUILDIO_MEM(w, u16) |
| BUILDIO_MEM(l, u32) |
| |
| BUILDIO_IOPORT(b, u8) |
| BUILDIO_IOPORT(w, u16) |
| BUILDIO_IOPORT(l, u32) |
| |
| #define readb_relaxed readb |
| #define readw_relaxed readw |
| #define readl_relaxed readl |
| |
| #define __BUILD_MEMORY_STRING(bwl, type) \ |
| static inline void writes##bwl(volatile void __iomem *addr, \ |
| const void *data, unsigned int count) \ |
| { \ |
| const type *__data = data; \ |
| \ |
| while (count--) \ |
| __mem_write##bwl(*__data++, addr); \ |
| } \ |
| \ |
| static inline void reads##bwl(const volatile void __iomem *addr, \ |
| void *data, unsigned int count) \ |
| { \ |
| type *__data = data; \ |
| \ |
| while (count--) \ |
| *__data++ = __mem_read##bwl(addr); \ |
| } |
| |
| #define __BUILD_IOPORT_STRING(bwl, type) \ |
| static inline void outs##bwl(unsigned long port, const void *data, \ |
| unsigned int count) \ |
| { \ |
| const type *__data = data; \ |
| \ |
| while (count--) \ |
| __mem_out##bwl(*__data++, port); \ |
| } \ |
| \ |
| static inline void ins##bwl(unsigned long port, void *data, \ |
| unsigned int count) \ |
| { \ |
| type *__data = data; \ |
| \ |
| while (count--) \ |
| *__data++ = __mem_in##bwl(port); \ |
| } |
| |
| #define BUILDSTRING(bwl, type) \ |
| __BUILD_MEMORY_STRING(bwl, type) \ |
| __BUILD_IOPORT_STRING(bwl, type) |
| |
| BUILDSTRING(b, u8) |
| BUILDSTRING(w, u16) |
| BUILDSTRING(l, u32) |
| |
| /* |
| * io{read,write}{8,16,32} macros in both le (for PCI style consumers) and native be |
| */ |
| #ifndef ioread8 |
| |
| #define ioread8(p) ((unsigned int)readb(p)) |
| |
| #define ioread16(p) ((unsigned int)readw(p)) |
| #define ioread16be(p) ((unsigned int)__raw_readw(p)) |
| |
| #define ioread32(p) ((unsigned int)readl(p)) |
| #define ioread32be(p) ((unsigned int)__raw_readl(p)) |
| |
| #define iowrite8(v,p) writeb(v, p) |
| |
| #define iowrite16(v,p) writew(v, p) |
| #define iowrite16be(v,p) __raw_writew(v, p) |
| |
| #define iowrite32(v,p) writel(v, p) |
| #define iowrite32be(v,p) __raw_writel(v, p) |
| |
| #define ioread8_rep(p,d,c) readsb(p,d,c) |
| #define ioread16_rep(p,d,c) readsw(p,d,c) |
| #define ioread32_rep(p,d,c) readsl(p,d,c) |
| |
| #define iowrite8_rep(p,s,c) writesb(p,s,c) |
| #define iowrite16_rep(p,s,c) writesw(p,s,c) |
| #define iowrite32_rep(p,s,c) writesl(p,s,c) |
| |
| #endif |
| |
| static inline void memcpy_fromio(void * to, const volatile void __iomem *from, |
| unsigned long count) |
| { |
| char *p = to; |
| volatile const char __iomem *addr = from; |
| |
| while (count--) |
| *p++ = readb(addr++); |
| } |
| |
| static inline void memcpy_toio(volatile void __iomem *to, const void * from, |
| unsigned long count) |
| { |
| const char *p = from; |
| volatile char __iomem *addr = to; |
| |
| while (count--) |
| writeb(*p++, addr++); |
| } |
| |
| static inline void memset_io(volatile void __iomem *addr, unsigned char val, |
| unsigned long count) |
| { |
| volatile char __iomem *p = addr; |
| |
| while (count--) |
| writeb(val, p++); |
| } |
| |
| #define IO_SPACE_LIMIT 0xffffffff |
| |
| extern void __iomem *__ioremap(unsigned long offset, size_t size, |
| unsigned long flags); |
| extern void __iounmap(void __iomem *addr); |
| |
| /* |
| * ioremap - map bus memory into CPU space |
| * @offset bus address of the memory |
| * @size size of the resource to map |
| * |
| * ioremap performs a platform specific sequence of operations to make |
| * bus memory CPU accessible via the readb/.../writel functions and |
| * the other mmio helpers. The returned address is not guaranteed to |
| * be usable directly as a virtual address. |
| */ |
| #define ioremap(offset, size) \ |
| __ioremap((offset), (size), 0) |
| |
| #define ioremap_nocache(offset, size) \ |
| __ioremap((offset), (size), 0) |
| |
| #define iounmap(addr) \ |
| __iounmap(addr) |
| |
| #define cached(addr) P1SEGADDR(addr) |
| #define uncached(addr) P2SEGADDR(addr) |
| |
| #define virt_to_bus virt_to_phys |
| #define bus_to_virt phys_to_virt |
| #define page_to_bus page_to_phys |
| #define bus_to_page phys_to_page |
| |
| /* |
| * Create a virtual mapping cookie for an IO port range. There exists |
| * no such thing as port-based I/O on AVR32, so a regular ioremap() |
| * should do what we need. |
| */ |
| #define ioport_map(port, nr) ioremap(port, nr) |
| #define ioport_unmap(port) iounmap(port) |
| |
| #define dma_cache_wback_inv(_start, _size) \ |
| flush_dcache_region(_start, _size) |
| #define dma_cache_inv(_start, _size) \ |
| invalidate_dcache_region(_start, _size) |
| #define dma_cache_wback(_start, _size) \ |
| clean_dcache_region(_start, _size) |
| |
| /* |
| * Convert a physical pointer to a virtual kernel pointer for /dev/mem |
| * access |
| */ |
| #define xlate_dev_mem_ptr(p) __va(p) |
| |
| /* |
| * Convert a virtual cached pointer to an uncached pointer |
| */ |
| #define xlate_dev_kmem_ptr(p) p |
| |
| #endif /* __ASM_AVR32_IO_H */ |