| /* |
| * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1 |
| * |
| * Copyright (C) 2003-2007 Micronas |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * version 2 only, as published by the Free Software Foundation. |
| * |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * To obtain the license, point your browser to |
| * http://www.gnu.org/copyleft/gpl.html |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/firmware.h> |
| #include <linux/i2c.h> |
| #include <asm/div64.h> |
| |
| #include "dvb_frontend.h" |
| #include "drxd.h" |
| #include "drxd_firm.h" |
| |
| #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw" |
| #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw" |
| |
| #define CHUNK_SIZE 48 |
| |
| #define DRX_I2C_RMW 0x10 |
| #define DRX_I2C_BROADCAST 0x20 |
| #define DRX_I2C_CLEARCRC 0x80 |
| #define DRX_I2C_SINGLE_MASTER 0xC0 |
| #define DRX_I2C_MODEFLAGS 0xC0 |
| #define DRX_I2C_FLAGS 0xF0 |
| |
| #define DEFAULT_LOCK_TIMEOUT 1100 |
| |
| #define DRX_CHANNEL_AUTO 0 |
| #define DRX_CHANNEL_HIGH 1 |
| #define DRX_CHANNEL_LOW 2 |
| |
| #define DRX_LOCK_MPEG 1 |
| #define DRX_LOCK_FEC 2 |
| #define DRX_LOCK_DEMOD 4 |
| |
| /****************************************************************************/ |
| |
| enum CSCDState { |
| CSCD_INIT = 0, |
| CSCD_SET, |
| CSCD_SAVED |
| }; |
| |
| enum CDrxdState { |
| DRXD_UNINITIALIZED = 0, |
| DRXD_STOPPED, |
| DRXD_STARTED |
| }; |
| |
| enum AGC_CTRL_MODE { |
| AGC_CTRL_AUTO = 0, |
| AGC_CTRL_USER, |
| AGC_CTRL_OFF |
| }; |
| |
| enum OperationMode { |
| OM_Default, |
| OM_DVBT_Diversity_Front, |
| OM_DVBT_Diversity_End |
| }; |
| |
| struct SCfgAgc { |
| enum AGC_CTRL_MODE ctrlMode; |
| u16 outputLevel; /* range [0, ... , 1023], 1/n of fullscale range */ |
| u16 settleLevel; /* range [0, ... , 1023], 1/n of fullscale range */ |
| u16 minOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */ |
| u16 maxOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */ |
| u16 speed; /* range [0, ... , 1023], 1/n of fullscale range */ |
| |
| u16 R1; |
| u16 R2; |
| u16 R3; |
| }; |
| |
| struct SNoiseCal { |
| int cpOpt; |
| short cpNexpOfs; |
| short tdCal2k; |
| short tdCal8k; |
| }; |
| |
| enum app_env { |
| APPENV_STATIC = 0, |
| APPENV_PORTABLE = 1, |
| APPENV_MOBILE = 2 |
| }; |
| |
| enum EIFFilter { |
| IFFILTER_SAW = 0, |
| IFFILTER_DISCRETE = 1 |
| }; |
| |
| struct drxd_state { |
| struct dvb_frontend frontend; |
| struct dvb_frontend_ops ops; |
| struct dtv_frontend_properties props; |
| |
| const struct firmware *fw; |
| struct device *dev; |
| |
| struct i2c_adapter *i2c; |
| void *priv; |
| struct drxd_config config; |
| |
| int i2c_access; |
| int init_done; |
| struct mutex mutex; |
| |
| u8 chip_adr; |
| u16 hi_cfg_timing_div; |
| u16 hi_cfg_bridge_delay; |
| u16 hi_cfg_wakeup_key; |
| u16 hi_cfg_ctrl; |
| |
| u16 intermediate_freq; |
| u16 osc_clock_freq; |
| |
| enum CSCDState cscd_state; |
| enum CDrxdState drxd_state; |
| |
| u16 sys_clock_freq; |
| s16 osc_clock_deviation; |
| u16 expected_sys_clock_freq; |
| |
| u16 insert_rs_byte; |
| u16 enable_parallel; |
| |
| int operation_mode; |
| |
| struct SCfgAgc if_agc_cfg; |
| struct SCfgAgc rf_agc_cfg; |
| |
| struct SNoiseCal noise_cal; |
| |
| u32 fe_fs_add_incr; |
| u32 org_fe_fs_add_incr; |
| u16 current_fe_if_incr; |
| |
| u16 m_FeAgRegAgPwd; |
| u16 m_FeAgRegAgAgcSio; |
| |
| u16 m_EcOcRegOcModeLop; |
| u16 m_EcOcRegSncSncLvl; |
| u8 *m_InitAtomicRead; |
| u8 *m_HiI2cPatch; |
| |
| u8 *m_ResetCEFR; |
| u8 *m_InitFE_1; |
| u8 *m_InitFE_2; |
| u8 *m_InitCP; |
| u8 *m_InitCE; |
| u8 *m_InitEQ; |
| u8 *m_InitSC; |
| u8 *m_InitEC; |
| u8 *m_ResetECRAM; |
| u8 *m_InitDiversityFront; |
| u8 *m_InitDiversityEnd; |
| u8 *m_DisableDiversity; |
| u8 *m_StartDiversityFront; |
| u8 *m_StartDiversityEnd; |
| |
| u8 *m_DiversityDelay8MHZ; |
| u8 *m_DiversityDelay6MHZ; |
| |
| u8 *microcode; |
| u32 microcode_length; |
| |
| int type_A; |
| int PGA; |
| int diversity; |
| int tuner_mirrors; |
| |
| enum app_env app_env_default; |
| enum app_env app_env_diversity; |
| |
| }; |
| |
| /****************************************************************************/ |
| /* I2C **********************************************************************/ |
| /****************************************************************************/ |
| |
| static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len) |
| { |
| struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len }; |
| |
| if (i2c_transfer(adap, &msg, 1) != 1) |
| return -1; |
| return 0; |
| } |
| |
| static int i2c_read(struct i2c_adapter *adap, |
| u8 adr, u8 *msg, int len, u8 *answ, int alen) |
| { |
| struct i2c_msg msgs[2] = { |
| { |
| .addr = adr, .flags = 0, |
| .buf = msg, .len = len |
| }, { |
| .addr = adr, .flags = I2C_M_RD, |
| .buf = answ, .len = alen |
| } |
| }; |
| if (i2c_transfer(adap, msgs, 2) != 2) |
| return -1; |
| return 0; |
| } |
| |
| static inline u32 MulDiv32(u32 a, u32 b, u32 c) |
| { |
| u64 tmp64; |
| |
| tmp64 = (u64)a * (u64)b; |
| do_div(tmp64, c); |
| |
| return (u32) tmp64; |
| } |
| |
| static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags) |
| { |
| u8 adr = state->config.demod_address; |
| u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff, |
| flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff |
| }; |
| u8 mm2[2]; |
| if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0) |
| return -1; |
| if (data) |
| *data = mm2[0] | (mm2[1] << 8); |
| return mm2[0] | (mm2[1] << 8); |
| } |
| |
| static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags) |
| { |
| u8 adr = state->config.demod_address; |
| u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff, |
| flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff |
| }; |
| u8 mm2[4]; |
| |
| if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0) |
| return -1; |
| if (data) |
| *data = |
| mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24); |
| return 0; |
| } |
| |
| static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags) |
| { |
| u8 adr = state->config.demod_address; |
| u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff, |
| flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff, |
| data & 0xff, (data >> 8) & 0xff |
| }; |
| |
| if (i2c_write(state->i2c, adr, mm, 6) < 0) |
| return -1; |
| return 0; |
| } |
| |
| static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags) |
| { |
| u8 adr = state->config.demod_address; |
| u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff, |
| flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff, |
| data & 0xff, (data >> 8) & 0xff, |
| (data >> 16) & 0xff, (data >> 24) & 0xff |
| }; |
| |
| if (i2c_write(state->i2c, adr, mm, 8) < 0) |
| return -1; |
| return 0; |
| } |
| |
| static int write_chunk(struct drxd_state *state, |
| u32 reg, u8 *data, u32 len, u8 flags) |
| { |
| u8 adr = state->config.demod_address; |
| u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff, |
| flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff |
| }; |
| int i; |
| |
| for (i = 0; i < len; i++) |
| mm[4 + i] = data[i]; |
| if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) { |
| printk(KERN_ERR "error in write_chunk\n"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int WriteBlock(struct drxd_state *state, |
| u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags) |
| { |
| while (BlockSize > 0) { |
| u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize; |
| |
| if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0) |
| return -1; |
| pBlock += Chunk; |
| Address += (Chunk >> 1); |
| BlockSize -= Chunk; |
| } |
| return 0; |
| } |
| |
| static int WriteTable(struct drxd_state *state, u8 * pTable) |
| { |
| int status = 0; |
| |
| if (pTable == NULL) |
| return 0; |
| |
| while (!status) { |
| u16 Length; |
| u32 Address = pTable[0] | (pTable[1] << 8) | |
| (pTable[2] << 16) | (pTable[3] << 24); |
| |
| if (Address == 0xFFFFFFFF) |
| break; |
| pTable += sizeof(u32); |
| |
| Length = pTable[0] | (pTable[1] << 8); |
| pTable += sizeof(u16); |
| if (!Length) |
| break; |
| status = WriteBlock(state, Address, Length * 2, pTable, 0); |
| pTable += (Length * 2); |
| } |
| return status; |
| } |
| |
| /****************************************************************************/ |
| /****************************************************************************/ |
| /****************************************************************************/ |
| |
| static int ResetCEFR(struct drxd_state *state) |
| { |
| return WriteTable(state, state->m_ResetCEFR); |
| } |
| |
| static int InitCP(struct drxd_state *state) |
| { |
| return WriteTable(state, state->m_InitCP); |
| } |
| |
| static int InitCE(struct drxd_state *state) |
| { |
| int status; |
| enum app_env AppEnv = state->app_env_default; |
| |
| do { |
| status = WriteTable(state, state->m_InitCE); |
| if (status < 0) |
| break; |
| |
| if (state->operation_mode == OM_DVBT_Diversity_Front || |
| state->operation_mode == OM_DVBT_Diversity_End) { |
| AppEnv = state->app_env_diversity; |
| } |
| if (AppEnv == APPENV_STATIC) { |
| status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0); |
| if (status < 0) |
| break; |
| } else if (AppEnv == APPENV_PORTABLE) { |
| status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0); |
| if (status < 0) |
| break; |
| } else if (AppEnv == APPENV_MOBILE && state->type_A) { |
| status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0); |
| if (status < 0) |
| break; |
| } else if (AppEnv == APPENV_MOBILE && !state->type_A) { |
| status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0); |
| if (status < 0) |
| break; |
| } |
| |
| /* start ce */ |
| status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0); |
| if (status < 0) |
| break; |
| } while (0); |
| return status; |
| } |
| |
| static int StopOC(struct drxd_state *state) |
| { |
| int status = 0; |
| u16 ocSyncLvl = 0; |
| u16 ocModeLop = state->m_EcOcRegOcModeLop; |
| u16 dtoIncLop = 0; |
| u16 dtoIncHip = 0; |
| |
| do { |
| /* Store output configuration */ |
| status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0); |
| if (status < 0) |
| break; |
| /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */ |
| state->m_EcOcRegSncSncLvl = ocSyncLvl; |
| /* m_EcOcRegOcModeLop = ocModeLop; */ |
| |
| /* Flush FIFO (byte-boundary) at fixed rate */ |
| status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0); |
| if (status < 0) |
| break; |
| status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0); |
| if (status < 0) |
| break; |
| ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M); |
| ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC; |
| status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0); |
| if (status < 0) |
| break; |
| |
| msleep(1); |
| /* Output pins to '0' */ |
| status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0); |
| if (status < 0) |
| break; |
| |
| /* Force the OC out of sync */ |
| ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M); |
| status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0); |
| if (status < 0) |
| break; |
| ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M); |
| ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE; |
| ocModeLop |= 0x2; /* Magically-out-of-sync */ |
| status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0); |
| if (status < 0) |
| break; |
| } while (0); |
| |
| return status; |
| } |
| |
| static int StartOC(struct drxd_state *state) |
| { |
| int status = 0; |
| |
| do { |
| /* Stop OC */ |
| status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0); |
| if (status < 0) |
| break; |
| |
| /* Restore output configuration */ |
| status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0); |
| if (status < 0) |
| break; |
| |
| /* Output pins active again */ |
| status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0); |
| if (status < 0) |
| break; |
| |
| /* Start OC */ |
| status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0); |
| if (status < 0) |
| break; |
| } while (0); |
| return status; |
| } |
| |
| static int InitEQ(struct drxd_state *state) |
| { |
| return WriteTable(state, state->m_InitEQ); |
| } |
| |
| static int InitEC(struct drxd_state *state) |
| { |
| return WriteTable(state, state->m_InitEC); |
| } |
| |
| static int InitSC(struct drxd_state *state) |
| { |
| return WriteTable(state, state->m_InitSC); |
| } |
| |
| static int InitAtomicRead(struct drxd_state *state) |
| { |
| return WriteTable(state, state->m_InitAtomicRead); |
| } |
| |
| static int CorrectSysClockDeviation(struct drxd_state *state); |
| |
| static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus) |
| { |
| u16 ScRaRamLock = 0; |
| const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M | |
| SC_RA_RAM_LOCK_FEC__M | |
| SC_RA_RAM_LOCK_DEMOD__M); |
| const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M | |
| SC_RA_RAM_LOCK_DEMOD__M); |
| const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M; |
| |
| int status; |
| |
| *pLockStatus = 0; |
| |
| status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000); |
| if (status < 0) { |
| printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status); |
| return status; |
| } |
| |
| if (state->drxd_state != DRXD_STARTED) |
| return 0; |
| |
| if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) { |
| *pLockStatus |= DRX_LOCK_MPEG; |
| CorrectSysClockDeviation(state); |
| } |
| |
| if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask) |
| *pLockStatus |= DRX_LOCK_FEC; |
| |
| if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask) |
| *pLockStatus |= DRX_LOCK_DEMOD; |
| return 0; |
| } |
| |
| /****************************************************************************/ |
| |
| static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg) |
| { |
| int status; |
| |
| if (cfg->outputLevel > DRXD_FE_CTRL_MAX) |
| return -1; |
| |
| if (cfg->ctrlMode == AGC_CTRL_USER) { |
| do { |
| u16 FeAgRegPm1AgcWri; |
| u16 FeAgRegAgModeLop; |
| |
| status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0); |
| if (status < 0) |
| break; |
| FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M); |
| FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC; |
| status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0); |
| if (status < 0) |
| break; |
| |
| FeAgRegPm1AgcWri = (u16) (cfg->outputLevel & |
| FE_AG_REG_PM1_AGC_WRI__M); |
| status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0); |
| if (status < 0) |
| break; |
| } while (0); |
| } else if (cfg->ctrlMode == AGC_CTRL_AUTO) { |
| if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) || |
| ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) || |
| ((cfg->speed) > DRXD_FE_CTRL_MAX) || |
| ((cfg->settleLevel) > DRXD_FE_CTRL_MAX) |
| ) |
| return -1; |
| do { |
| u16 FeAgRegAgModeLop; |
| u16 FeAgRegEgcSetLvl; |
| u16 slope, offset; |
| |
| /* == Mode == */ |
| |
| status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0); |
| if (status < 0) |
| break; |
| FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M); |
| FeAgRegAgModeLop |= |
| FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC; |
| status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0); |
| if (status < 0) |
| break; |
| |
| /* == Settle level == */ |
| |
| FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) & |
| FE_AG_REG_EGC_SET_LVL__M); |
| status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0); |
| if (status < 0) |
| break; |
| |
| /* == Min/Max == */ |
| |
| slope = (u16) ((cfg->maxOutputLevel - |
| cfg->minOutputLevel) / 2); |
| offset = (u16) ((cfg->maxOutputLevel + |
| cfg->minOutputLevel) / 2 - 511); |
| |
| status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0); |
| if (status < 0) |
| break; |
| |
| /* == Speed == */ |
| { |
| const u16 maxRur = 8; |
| const u16 slowIncrDecLUT[] = { 3, 4, 4, 5, 6 }; |
| const u16 fastIncrDecLUT[] = { 14, 15, 15, 16, |
| 17, 18, 18, 19, |
| 20, 21, 22, 23, |
| 24, 26, 27, 28, |
| 29, 31 |
| }; |
| |
| u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) / |
| (maxRur + 1); |
| u16 fineSpeed = (u16) (cfg->speed - |
| ((cfg->speed / |
| fineSteps) * |
| fineSteps)); |
| u16 invRurCount = (u16) (cfg->speed / |
| fineSteps); |
| u16 rurCount; |
| if (invRurCount > maxRur) { |
| rurCount = 0; |
| fineSpeed += fineSteps; |
| } else { |
| rurCount = maxRur - invRurCount; |
| } |
| |
| /* |
| fastInc = default * |
| (2^(fineSpeed/fineSteps)) |
| => range[default...2*default> |
| slowInc = default * |
| (2^(fineSpeed/fineSteps)) |
| */ |
| { |
| u16 fastIncrDec = |
| fastIncrDecLUT[fineSpeed / |
| ((fineSteps / |
| (14 + 1)) + 1)]; |
| u16 slowIncrDec = |
| slowIncrDecLUT[fineSpeed / |
| (fineSteps / |
| (3 + 1))]; |
| |
| status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0); |
| if (status < 0) |
| break; |
| } |
| } |
| } while (0); |
| |
| } else { |
| /* No OFF mode for IF control */ |
| return -1; |
| } |
| return status; |
| } |
| |
| static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg) |
| { |
| int status = 0; |
| |
| if (cfg->outputLevel > DRXD_FE_CTRL_MAX) |
| return -1; |
| |
| if (cfg->ctrlMode == AGC_CTRL_USER) { |
| do { |
| u16 AgModeLop = 0; |
| u16 level = (cfg->outputLevel); |
| |
| if (level == DRXD_FE_CTRL_MAX) |
| level++; |
| |
| status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000); |
| if (status < 0) |
| break; |
| |
| /*==== Mode ====*/ |
| |
| /* Powerdown PD2, WRI source */ |
| state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M); |
| state->m_FeAgRegAgPwd |= |
| FE_AG_REG_AG_PWD_PWD_PD2_DISABLE; |
| status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000); |
| if (status < 0) |
| break; |
| |
| status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); |
| if (status < 0) |
| break; |
| AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M | |
| FE_AG_REG_AG_MODE_LOP_MODE_E__M)); |
| AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC | |
| FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC); |
| status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); |
| if (status < 0) |
| break; |
| |
| /* enable AGC2 pin */ |
| { |
| u16 FeAgRegAgAgcSio = 0; |
| status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000); |
| if (status < 0) |
| break; |
| FeAgRegAgAgcSio &= |
| ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M); |
| FeAgRegAgAgcSio |= |
| FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT; |
| status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000); |
| if (status < 0) |
| break; |
| } |
| |
| } while (0); |
| } else if (cfg->ctrlMode == AGC_CTRL_AUTO) { |
| u16 AgModeLop = 0; |
| |
| do { |
| u16 level; |
| /* Automatic control */ |
| /* Powerup PD2, AGC2 as output, TGC source */ |
| (state->m_FeAgRegAgPwd) &= |
| ~(FE_AG_REG_AG_PWD_PWD_PD2__M); |
| (state->m_FeAgRegAgPwd) |= |
| FE_AG_REG_AG_PWD_PWD_PD2_DISABLE; |
| status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000); |
| if (status < 0) |
| break; |
| |
| status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); |
| if (status < 0) |
| break; |
| AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M | |
| FE_AG_REG_AG_MODE_LOP_MODE_E__M)); |
| AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC | |
| FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC); |
| status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); |
| if (status < 0) |
| break; |
| /* Settle level */ |
| level = (((cfg->settleLevel) >> 4) & |
| FE_AG_REG_TGC_SET_LVL__M); |
| status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000); |
| if (status < 0) |
| break; |
| |
| /* Min/max: don't care */ |
| |
| /* Speed: TODO */ |
| |
| /* enable AGC2 pin */ |
| { |
| u16 FeAgRegAgAgcSio = 0; |
| status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000); |
| if (status < 0) |
| break; |
| FeAgRegAgAgcSio &= |
| ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M); |
| FeAgRegAgAgcSio |= |
| FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT; |
| status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000); |
| if (status < 0) |
| break; |
| } |
| |
| } while (0); |
| } else { |
| u16 AgModeLop = 0; |
| |
| do { |
| /* No RF AGC control */ |
| /* Powerdown PD2, AGC2 as output, WRI source */ |
| (state->m_FeAgRegAgPwd) &= |
| ~(FE_AG_REG_AG_PWD_PWD_PD2__M); |
| (state->m_FeAgRegAgPwd) |= |
| FE_AG_REG_AG_PWD_PWD_PD2_ENABLE; |
| status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000); |
| if (status < 0) |
| break; |
| |
| status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); |
| if (status < 0) |
| break; |
| AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M | |
| FE_AG_REG_AG_MODE_LOP_MODE_E__M)); |
| AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC | |
| FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC); |
| status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); |
| if (status < 0) |
| break; |
| |
| /* set FeAgRegAgAgcSio AGC2 (RF) as input */ |
| { |
| u16 FeAgRegAgAgcSio = 0; |
| status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000); |
| if (status < 0) |
| break; |
| FeAgRegAgAgcSio &= |
| ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M); |
| FeAgRegAgAgcSio |= |
| FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT; |
| status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000); |
| if (status < 0) |
| break; |
| } |
| } while (0); |
| } |
| return status; |
| } |
| |
| static int ReadIFAgc(struct drxd_state *state, u32 * pValue) |
| { |
| int status = 0; |
| |
| *pValue = 0; |
| if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) { |
| u16 Value; |
| status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0); |
| Value &= FE_AG_REG_GC1_AGC_DAT__M; |
| if (status >= 0) { |
| /* 3.3V |
| | |
| R1 |
| | |
| Vin - R3 - * -- Vout |
| | |
| R2 |
| | |
| GND |
| */ |
| u32 R1 = state->if_agc_cfg.R1; |
| u32 R2 = state->if_agc_cfg.R2; |
| u32 R3 = state->if_agc_cfg.R3; |
| |
| u32 Vmax, Rpar, Vmin, Vout; |
| |
| if (R2 == 0 && (R1 == 0 || R3 == 0)) |
| return 0; |
| |
| Vmax = (3300 * R2) / (R1 + R2); |
| Rpar = (R2 * R3) / (R3 + R2); |
| Vmin = (3300 * Rpar) / (R1 + Rpar); |
| Vout = Vmin + ((Vmax - Vmin) * Value) / 1024; |
| |
| *pValue = Vout; |
| } |
| } |
| return status; |
| } |
| |
| static int load_firmware(struct drxd_state *state, const char *fw_name) |
| { |
| const struct firmware *fw; |
| |
| if (request_firmware(&fw, fw_name, state->dev) < 0) { |
| printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name); |
| return -EIO; |
| } |
| |
| state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL); |
| if (state->microcode == NULL) { |
| release_firmware(fw); |
| printk(KERN_ERR "drxd: firmware load failure: no memory\n"); |
| return -ENOMEM; |
| } |
| |
| state->microcode_length = fw->size; |
| release_firmware(fw); |
| return 0; |
| } |
| |
| static int DownloadMicrocode(struct drxd_state *state, |
| const u8 *pMCImage, u32 Length) |
| { |
| u8 *pSrc; |
| u32 Address; |
| u16 nBlocks; |
| u16 BlockSize; |
| u32 offset = 0; |
| int i, status = 0; |
| |
| pSrc = (u8 *) pMCImage; |
| /* We're not using Flags */ |
| /* Flags = (pSrc[0] << 8) | pSrc[1]; */ |
| pSrc += sizeof(u16); |
| offset += sizeof(u16); |
| nBlocks = (pSrc[0] << 8) | pSrc[1]; |
| pSrc += sizeof(u16); |
| offset += sizeof(u16); |
| |
| for (i = 0; i < nBlocks; i++) { |
| Address = (pSrc[0] << 24) | (pSrc[1] << 16) | |
| (pSrc[2] << 8) | pSrc[3]; |
| pSrc += sizeof(u32); |
| offset += sizeof(u32); |
| |
| BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16); |
| pSrc += sizeof(u16); |
| offset += sizeof(u16); |
| |
| /* We're not using Flags */ |
| /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */ |
| pSrc += sizeof(u16); |
| offset += sizeof(u16); |
| |
| /* We're not using BlockCRC */ |
| /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */ |
| pSrc += sizeof(u16); |
| offset += sizeof(u16); |
| |
| status = WriteBlock(state, Address, BlockSize, |
| pSrc, DRX_I2C_CLEARCRC); |
| if (status < 0) |
| break; |
| pSrc += BlockSize; |
| offset += BlockSize; |
| } |
| |
| return status; |
| } |
| |
| static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult) |
| { |
| u32 nrRetries = 0; |
| u16 waitCmd; |
| int status; |
| |
| status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0); |
| if (status < 0) |
| return status; |
| |
| do { |
| nrRetries += 1; |
| if (nrRetries > DRXD_MAX_RETRIES) { |
| status = -1; |
| break; |
| } |
| status = Read16(state, HI_RA_RAM_SRV_CMD__A, &waitCmd, 0); |
| } while (waitCmd != 0); |
| |
| if (status >= 0) |
| status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0); |
| return status; |
| } |
| |
| static int HI_CfgCommand(struct drxd_state *state) |
| { |
| int status = 0; |
| |
| mutex_lock(&state->mutex); |
| Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0); |
| Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0); |
| Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0); |
| Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0); |
| Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0); |
| |
| Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0); |
| |
| if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) == |
| HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) |
| status = Write16(state, HI_RA_RAM_SRV_CMD__A, |
| HI_RA_RAM_SRV_CMD_CONFIG, 0); |
| else |
| status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL); |
| mutex_unlock(&state->mutex); |
| return status; |
| } |
| |
| static int InitHI(struct drxd_state *state) |
| { |
| state->hi_cfg_wakeup_key = (state->chip_adr); |
| /* port/bridge/power down ctrl */ |
| state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON; |
| return HI_CfgCommand(state); |
| } |
| |
| static int HI_ResetCommand(struct drxd_state *state) |
| { |
| int status; |
| |
| mutex_lock(&state->mutex); |
| status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A, |
| HI_RA_RAM_SRV_RST_KEY_ACT, 0); |
| if (status == 0) |
| status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL); |
| mutex_unlock(&state->mutex); |
| msleep(1); |
| return status; |
| } |
| |
| static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge) |
| { |
| state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M); |
| if (bEnableBridge) |
| state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON; |
| else |
| state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF; |
| |
| return HI_CfgCommand(state); |
| } |
| |
| #define HI_TR_WRITE 0x9 |
| #define HI_TR_READ 0xA |
| #define HI_TR_READ_WRITE 0xB |
| #define HI_TR_BROADCAST 0x4 |
| |
| #if 0 |
| static int AtomicReadBlock(struct drxd_state *state, |
| u32 Addr, u16 DataSize, u8 *pData, u8 Flags) |
| { |
| int status; |
| int i = 0; |
| |
| /* Parameter check */ |
| if ((!pData) || ((DataSize & 1) != 0)) |
| return -1; |
| |
| mutex_lock(&state->mutex); |
| |
| do { |
| /* Instruct HI to read n bytes */ |
| /* TODO use proper names forthese egisters */ |
| status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0); |
| if (status < 0) |
| break; |
| status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0); |
| if (status < 0) |
| break; |
| status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0); |
| if (status < 0) |
| break; |
| status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0); |
| if (status < 0) |
| break; |
| status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0); |
| if (status < 0) |
| break; |
| |
| status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0); |
| if (status < 0) |
| break; |
| |
| } while (0); |
| |
| if (status >= 0) { |
| for (i = 0; i < (DataSize / 2); i += 1) { |
| u16 word; |
| |
| status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i), |
| &word, 0); |
| if (status < 0) |
| break; |
| pData[2 * i] = (u8) (word & 0xFF); |
| pData[(2 * i) + 1] = (u8) (word >> 8); |
| } |
| } |
| mutex_unlock(&state->mutex); |
| return status; |
| } |
| |
| static int AtomicReadReg32(struct drxd_state *state, |
| u32 Addr, u32 *pData, u8 Flags) |
| { |
| u8 buf[sizeof(u32)]; |
| int status; |
| |
| if (!pData) |
| return -1; |
| status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags); |
| *pData = (((u32) buf[0]) << 0) + |
| (((u32) buf[1]) << 8) + |
| (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24); |
| return status; |
| } |
| #endif |
| |
| static int StopAllProcessors(struct drxd_state *state) |
| { |
| return Write16(state, HI_COMM_EXEC__A, |
| SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST); |
| } |
| |
| static int EnableAndResetMB(struct drxd_state *state) |
| { |
| if (state->type_A) { |
| /* disable? monitor bus observe @ EC_OC */ |
| Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000); |
| } |
| |
| /* do inverse broadcast, followed by explicit write to HI */ |
| Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST); |
| Write16(state, HI_COMM_MB__A, 0x0000, 0x0000); |
| return 0; |
| } |
| |
| static int InitCC(struct drxd_state *state) |
| { |
| if (state->osc_clock_freq == 0 || |
| state->osc_clock_freq > 20000 || |
| (state->osc_clock_freq % 4000) != 0) { |
| printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq); |
| return -1; |
| } |
| |
| Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0); |
| Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL | |
| CC_REG_PLL_MODE_PUMP_CUR_12, 0); |
| Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0); |
| Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0); |
| Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0); |
| |
| return 0; |
| } |
| |
| static int ResetECOD(struct drxd_state *state) |
| { |
| int status = 0; |
| |
| if (state->type_A) |
| status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0); |
| else |
| status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0); |
| |
| if (!(status < 0)) |
| status = WriteTable(state, state->m_ResetECRAM); |
| if (!(status < 0)) |
| status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0); |
| return status; |
| } |
| |
| /* Configure PGA switch */ |
| |
| static int SetCfgPga(struct drxd_state *state, int pgaSwitch) |
| { |
| int status; |
| u16 AgModeLop = 0; |
| u16 AgModeHip = 0; |
| do { |
| if (pgaSwitch) { |
| /* PGA on */ |
| /* fine gain */ |
| status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); |
| if (status < 0) |
| break; |
| AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M)); |
| AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC; |
| status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); |
| if (status < 0) |
| break; |
| |
| /* coarse gain */ |
| status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000); |
| if (status < 0) |
| break; |
| AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M)); |
| AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC; |
| status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000); |
| if (status < 0) |
| break; |
| |
| /* enable fine and coarse gain, enable AAF, |
| no ext resistor */ |
| status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000); |
| if (status < 0) |
| break; |
| } else { |
| /* PGA off, bypass */ |
| |
| /* fine gain */ |
| status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); |
| if (status < 0) |
| break; |
| AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M)); |
| AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC; |
| status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); |
| if (status < 0) |
| break; |
| |
| /* coarse gain */ |
| status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000); |
| if (status < 0) |
| break; |
| AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M)); |
| AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC; |
| status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000); |
| if (status < 0) |
| break; |
| |
| /* disable fine and coarse gain, enable AAF, |
| no ext resistor */ |
| status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000); |
| if (status < 0) |
| break; |
| } |
| } while (0); |
| return status; |
| } |
| |
| static int InitFE(struct drxd_state *state) |
| { |
| int status; |
| |
| do { |
| status = WriteTable(state, state->m_InitFE_1); |
| if (status < 0) |
| break; |
| |
| if (state->type_A) { |
| status = Write16(state, FE_AG_REG_AG_PGA_MODE__A, |
| FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, |
| 0); |
| } else { |
| if (state->PGA) |
| status = SetCfgPga(state, 0); |
| else |
| status = |
| Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, |
| B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, |
| 0); |
| } |
| |
| if (status < 0) |
| break; |
| status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000); |
| if (status < 0) |
| break; |
| |
| status = WriteTable(state, state->m_InitFE_2); |
| if (status < 0) |
| break; |
| |
| } while (0); |
| |
| return status; |
| } |
| |
| static int InitFT(struct drxd_state *state) |
| { |
| /* |
| norm OFFSET, MB says =2 voor 8K en =3 voor 2K waarschijnlijk |
| SC stuff |
| */ |
| return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000); |
| } |
| |
| static int SC_WaitForReady(struct drxd_state *state) |
| { |
| u16 curCmd; |
| int i; |
| |
| for (i = 0; i < DRXD_MAX_RETRIES; i += 1) { |
| int status = Read16(state, SC_RA_RAM_CMD__A, &curCmd, 0); |
| if (status == 0 || curCmd == 0) |
| return status; |
| } |
| return -1; |
| } |
| |
| static int SC_SendCommand(struct drxd_state *state, u16 cmd) |
| { |
| int status = 0; |
| u16 errCode; |
| |
| Write16(state, SC_RA_RAM_CMD__A, cmd, 0); |
| SC_WaitForReady(state); |
| |
| Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0); |
| |
| if (errCode == 0xFFFF) { |
| printk(KERN_ERR "Command Error\n"); |
| status = -1; |
| } |
| |
| return status; |
| } |
| |
| static int SC_ProcStartCommand(struct drxd_state *state, |
| u16 subCmd, u16 param0, u16 param1) |
| { |
| int status = 0; |
| u16 scExec; |
| |
| mutex_lock(&state->mutex); |
| do { |
| Read16(state, SC_COMM_EXEC__A, &scExec, 0); |
| if (scExec != 1) { |
| status = -1; |
| break; |
| } |
| SC_WaitForReady(state); |
| Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0); |
| Write16(state, SC_RA_RAM_PARAM1__A, param1, 0); |
| Write16(state, SC_RA_RAM_PARAM0__A, param0, 0); |
| |
| SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START); |
| } while (0); |
| mutex_unlock(&state->mutex); |
| return status; |
| } |
| |
| static int SC_SetPrefParamCommand(struct drxd_state *state, |
| u16 subCmd, u16 param0, u16 param1) |
| { |
| int status; |
| |
| mutex_lock(&state->mutex); |
| do { |
| status = SC_WaitForReady(state); |
| if (status < 0) |
| break; |
| status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0); |
| if (status < 0) |
| break; |
| |
| status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM); |
| if (status < 0) |
| break; |
| } while (0); |
| mutex_unlock(&state->mutex); |
| return status; |
| } |
| |
| #if 0 |
| static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result) |
| { |
| int status = 0; |
| |
| mutex_lock(&state->mutex); |
| do { |
| status = SC_WaitForReady(state); |
| if (status < 0) |
| break; |
| status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM); |
| if (status < 0) |
| break; |
| status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0); |
| if (status < 0) |
| break; |
| } while (0); |
| mutex_unlock(&state->mutex); |
| return status; |
| } |
| #endif |
| |
| static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput) |
| { |
| int status; |
| |
| do { |
| u16 EcOcRegIprInvMpg = 0; |
| u16 EcOcRegOcModeLop = 0; |
| u16 EcOcRegOcModeHip = 0; |
| u16 EcOcRegOcMpgSio = 0; |
| |
| /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */ |
| |
| if (state->operation_mode == OM_DVBT_Diversity_Front) { |
| if (bEnableOutput) { |
| EcOcRegOcModeHip |= |
| B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR; |
| } else |
| EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M; |
| EcOcRegOcModeLop |= |
| EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE; |
| } else { |
| EcOcRegOcModeLop = state->m_EcOcRegOcModeLop; |
| |
| if (bEnableOutput) |
| EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M)); |
| else |
| EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M; |
| |
| /* Don't Insert RS Byte */ |
| if (state->insert_rs_byte) { |
| EcOcRegOcModeLop &= |
| (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M)); |
| EcOcRegOcModeHip &= |
| (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M); |
| EcOcRegOcModeHip |= |
| EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE; |
| } else { |
| EcOcRegOcModeLop |= |
| EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE; |
| EcOcRegOcModeHip &= |
| (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M); |
| EcOcRegOcModeHip |= |
| EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE; |
| } |
| |
| /* Mode = Parallel */ |
| if (state->enable_parallel) |
| EcOcRegOcModeLop &= |
| (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M)); |
| else |
| EcOcRegOcModeLop |= |
| EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL; |
| } |
| /* Invert Data */ |
| /* EcOcRegIprInvMpg |= 0x00FF; */ |
| EcOcRegIprInvMpg &= (~(0x00FF)); |
| |
| /* Invert Error ( we don't use the pin ) */ |
| /* EcOcRegIprInvMpg |= 0x0100; */ |
| EcOcRegIprInvMpg &= (~(0x0100)); |
| |
| /* Invert Start ( we don't use the pin ) */ |
| /* EcOcRegIprInvMpg |= 0x0200; */ |
| EcOcRegIprInvMpg &= (~(0x0200)); |
| |
| /* Invert Valid ( we don't use the pin ) */ |
| /* EcOcRegIprInvMpg |= 0x0400; */ |
| EcOcRegIprInvMpg &= (~(0x0400)); |
| |
| /* Invert Clock */ |
| /* EcOcRegIprInvMpg |= 0x0800; */ |
| EcOcRegIprInvMpg &= (~(0x0800)); |
| |
| /* EcOcRegOcModeLop =0x05; */ |
| status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0); |
| if (status < 0) |
| break; |
| } while (0); |
| return status; |
| } |
| |
| static int SetDeviceTypeId(struct drxd_state *state) |
| { |
| int status = 0; |
| u16 deviceId = 0; |
| |
| do { |
| status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0); |
| if (status < 0) |
| break; |
| /* TODO: why twice? */ |
| status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0); |
| if (status < 0) |
| break; |
| printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId); |
| |
| state->type_A = 0; |
| state->PGA = 0; |
| state->diversity = 0; |
| if (deviceId == 0) { /* on A2 only 3975 available */ |
| state->type_A = 1; |
| printk(KERN_INFO "DRX3975D-A2\n"); |
| } else { |
| deviceId >>= 12; |
| printk(KERN_INFO "DRX397%dD-B1\n", deviceId); |
| switch (deviceId) { |
| case 4: |
| state->diversity = 1; |
| /* fall through */ |
| case 3: |
| case 7: |
| state->PGA = 1; |
| break; |
| case 6: |
| state->diversity = 1; |
| /* fall through */ |
| case 5: |
| case 8: |
| break; |
| default: |
| status = -1; |
| break; |
| } |
| } |
| } while (0); |
| |
| if (status < 0) |
| return status; |
| |
| /* Init Table selection */ |
| state->m_InitAtomicRead = DRXD_InitAtomicRead; |
| state->m_InitSC = DRXD_InitSC; |
| state->m_ResetECRAM = DRXD_ResetECRAM; |
| if (state->type_A) { |
| state->m_ResetCEFR = DRXD_ResetCEFR; |
| state->m_InitFE_1 = DRXD_InitFEA2_1; |
| state->m_InitFE_2 = DRXD_InitFEA2_2; |
| state->m_InitCP = DRXD_InitCPA2; |
| state->m_InitCE = DRXD_InitCEA2; |
| state->m_InitEQ = DRXD_InitEQA2; |
| state->m_InitEC = DRXD_InitECA2; |
| if (load_firmware(state, DRX_FW_FILENAME_A2)) |
| return -EIO; |
| } else { |
| state->m_ResetCEFR = NULL; |
| state->m_InitFE_1 = DRXD_InitFEB1_1; |
| state->m_InitFE_2 = DRXD_InitFEB1_2; |
| state->m_InitCP = DRXD_InitCPB1; |
| state->m_InitCE = DRXD_InitCEB1; |
| state->m_InitEQ = DRXD_InitEQB1; |
| state->m_InitEC = DRXD_InitECB1; |
| if (load_firmware(state, DRX_FW_FILENAME_B1)) |
| return -EIO; |
| } |
| if (state->diversity) { |
| state->m_InitDiversityFront = DRXD_InitDiversityFront; |
| state->m_InitDiversityEnd = DRXD_InitDiversityEnd; |
| state->m_DisableDiversity = DRXD_DisableDiversity; |
| state->m_StartDiversityFront = DRXD_StartDiversityFront; |
| state->m_StartDiversityEnd = DRXD_StartDiversityEnd; |
| state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ; |
| state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ; |
| } else { |
| state->m_InitDiversityFront = NULL; |
| state->m_InitDiversityEnd = NULL; |
| state->m_DisableDiversity = NULL; |
| state->m_StartDiversityFront = NULL; |
| state->m_StartDiversityEnd = NULL; |
| state->m_DiversityDelay8MHZ = NULL; |
| state->m_DiversityDelay6MHZ = NULL; |
| } |
| |
| return status; |
| } |
| |
| static int CorrectSysClockDeviation(struct drxd_state *state) |
| { |
| int status; |
| s32 incr = 0; |
| s32 nomincr = 0; |
| u32 bandwidth = 0; |
| u32 sysClockInHz = 0; |
| u32 sysClockFreq = 0; /* in kHz */ |
| s16 oscClockDeviation; |
| s16 Diff; |
| |
| do { |
| /* Retrieve bandwidth and incr, sanity check */ |
| |
| /* These accesses should be AtomicReadReg32, but that |
| causes trouble (at least for diversity */ |
| status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0); |
| if (status < 0) |
| break; |
| status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0); |
| if (status < 0) |
| break; |
| |
| if (state->type_A) { |
| if ((nomincr - incr < -500) || (nomincr - incr > 500)) |
| break; |
| } else { |
| if ((nomincr - incr < -2000) || (nomincr - incr > 2000)) |
| break; |
| } |
| |
| switch (state->props.bandwidth_hz) { |
| case 8000000: |
| bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ; |
| break; |
| case 7000000: |
| bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ; |
| break; |
| case 6000000: |
| bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ; |
| break; |
| default: |
| return -1; |
| break; |
| } |
| |
| /* Compute new sysclock value |
| sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */ |
| incr += (1 << 23); |
| sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21); |
| sysClockFreq = (u32) (sysClockInHz / 1000); |
| /* rounding */ |
| if ((sysClockInHz % 1000) > 500) |
| sysClockFreq++; |
| |
| /* Compute clock deviation in ppm */ |
| oscClockDeviation = (u16) ((((s32) (sysClockFreq) - |
| (s32) |
| (state->expected_sys_clock_freq)) * |
| 1000000L) / |
| (s32) |
| (state->expected_sys_clock_freq)); |
| |
| Diff = oscClockDeviation - state->osc_clock_deviation; |
| /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */ |
| if (Diff >= -200 && Diff <= 200) { |
| state->sys_clock_freq = (u16) sysClockFreq; |
| if (oscClockDeviation != state->osc_clock_deviation) { |
| if (state->config.osc_deviation) { |
| state->config.osc_deviation(state->priv, |
| oscClockDeviation, |
| 1); |
| state->osc_clock_deviation = |
| oscClockDeviation; |
| } |
| } |
| /* switch OFF SRMM scan in SC */ |
| status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0); |
| if (status < 0) |
| break; |
| /* overrule FE_IF internal value for |
| proper re-locking */ |
| status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0); |
| if (status < 0) |
| break; |
| state->cscd_state = CSCD_SAVED; |
| } |
| } while (0); |
| |
| return status; |
| } |
| |
| static int DRX_Stop(struct drxd_state *state) |
| { |
| int status; |
| |
| if (state->drxd_state != DRXD_STARTED) |
| return 0; |
| |
| do { |
| if (state->cscd_state != CSCD_SAVED) { |
| u32 lock; |
| status = DRX_GetLockStatus(state, &lock); |
| if (status < 0) |
| break; |
| } |
| |
| status = StopOC(state); |
| if (status < 0) |
| break; |
| |
| state->drxd_state = DRXD_STOPPED; |
| |
| status = ConfigureMPEGOutput(state, 0); |
| if (status < 0) |
| break; |
| |
| if (state->type_A) { |
| /* Stop relevant processors off the device */ |
| status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000); |
| if (status < 0) |
| break; |
| |
| status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); |
| if (status < 0) |
| break; |
| } else { |
| /* Stop all processors except HI & CC & FE */ |
| status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0); |
| if (status < 0) |
| break; |
| } |
| |
| } while (0); |
| return status; |
| } |
| |
| #if 0 /* Currently unused */ |
| static int SetOperationMode(struct drxd_state *state, int oMode) |
| { |
| int status; |
| |
| do { |
| if (state->drxd_state != DRXD_STOPPED) { |
| status = -1; |
| break; |
| } |
| |
| if (oMode == state->operation_mode) { |
| status = 0; |
| break; |
| } |
| |
| if (oMode != OM_Default && !state->diversity) { |
| status = -1; |
| break; |
| } |
| |
| switch (oMode) { |
| case OM_DVBT_Diversity_Front: |
| status = WriteTable(state, state->m_InitDiversityFront); |
| break; |
| case OM_DVBT_Diversity_End: |
| status = WriteTable(state, state->m_InitDiversityEnd); |
| break; |
| case OM_Default: |
| /* We need to check how to |
| get DRXD out of diversity */ |
| default: |
| status = WriteTable(state, state->m_DisableDiversity); |
| break; |
| } |
| } while (0); |
| |
| if (!status) |
| state->operation_mode = oMode; |
| return status; |
| } |
| #endif |
| |
| static int StartDiversity(struct drxd_state *state) |
| { |
| int status = 0; |
| u16 rcControl; |
| |
| do { |
| if (state->operation_mode == OM_DVBT_Diversity_Front) { |
| status = WriteTable(state, state->m_StartDiversityFront); |
| if (status < 0) |
| break; |
| } else if (state->operation_mode == OM_DVBT_Diversity_End) { |
| status = WriteTable(state, state->m_StartDiversityEnd); |
| if (status < 0) |
| break; |
| if (state->props.bandwidth_hz == 8000000) { |
| status = WriteTable(state, state->m_DiversityDelay8MHZ); |
| if (status < 0) |
| break; |
| } else { |
| status = WriteTable(state, state->m_DiversityDelay6MHZ); |
| if (status < 0) |
| break; |
| } |
| |
| status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0); |
| if (status < 0) |
| break; |
| rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M); |
| rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON | |
| /* combining enabled */ |
| B_EQ_REG_RC_SEL_CAR_MEAS_A_CC | |
| B_EQ_REG_RC_SEL_CAR_PASS_A_CC | |
| B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC; |
| status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0); |
| if (status < 0) |
| break; |
| } |
| } while (0); |
| return status; |
| } |
| |
| static int SetFrequencyShift(struct drxd_state *state, |
| u32 offsetFreq, int channelMirrored) |
| { |
| int negativeShift = (state->tuner_mirrors == channelMirrored); |
| |
| /* Handle all mirroring |
| * |
| * Note: ADC mirroring (aliasing) is implictly handled by limiting |
| * feFsRegAddInc to 28 bits below |
| * (if the result before masking is more than 28 bits, this means |
| * that the ADC is mirroring. |
| * The masking is in fact the aliasing of the ADC) |
| * |
| */ |
| |
| /* Compute register value, unsigned computation */ |
| state->fe_fs_add_incr = MulDiv32(state->intermediate_freq + |
| offsetFreq, |
| 1 << 28, state->sys_clock_freq); |
| /* Remove integer part */ |
| state->fe_fs_add_incr &= 0x0FFFFFFFL; |
| if (negativeShift) |
| state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr); |
| |
| /* Save the frequency shift without tunerOffset compensation |
| for CtrlGetChannel. */ |
| state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq, |
| 1 << 28, state->sys_clock_freq); |
| /* Remove integer part */ |
| state->org_fe_fs_add_incr &= 0x0FFFFFFFL; |
| if (negativeShift) |
| state->org_fe_fs_add_incr = ((1L << 28) - |
| state->org_fe_fs_add_incr); |
| |
| return Write32(state, FE_FS_REG_ADD_INC_LOP__A, |
| state->fe_fs_add_incr, 0); |
| } |
| |
| static int SetCfgNoiseCalibration(struct drxd_state *state, |
| struct SNoiseCal *noiseCal) |
| { |
| u16 beOptEna; |
| int status = 0; |
| |
| do { |
| status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0); |
| if (status < 0) |
| break; |
| if (noiseCal->cpOpt) { |
| beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT); |
| } else { |
| beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT); |
| status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0); |
| if (status < 0) |
| break; |
| } |
| status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0); |
| if (status < 0) |
| break; |
| |
| if (!state->type_A) { |
| status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0); |
| if (status < 0) |
| break; |
| } |
| } while (0); |
| |
| return status; |
| } |
| |
| static int DRX_Start(struct drxd_state *state, s32 off) |
| { |
| struct dtv_frontend_properties *p = &state->props; |
| int status; |
| |
| u16 transmissionParams = 0; |
| u16 operationMode = 0; |
| u16 qpskTdTpsPwr = 0; |
| u16 qam16TdTpsPwr = 0; |
| u16 qam64TdTpsPwr = 0; |
| u32 feIfIncr = 0; |
| u32 bandwidth = 0; |
| int mirrorFreqSpect; |
| |
| u16 qpskSnCeGain = 0; |
| u16 qam16SnCeGain = 0; |
| u16 qam64SnCeGain = 0; |
| u16 qpskIsGainMan = 0; |
| u16 qam16IsGainMan = 0; |
| u16 qam64IsGainMan = 0; |
| u16 qpskIsGainExp = 0; |
| u16 qam16IsGainExp = 0; |
| u16 qam64IsGainExp = 0; |
| u16 bandwidthParam = 0; |
| |
| if (off < 0) |
| off = (off - 500) / 1000; |
| else |
| off = (off + 500) / 1000; |
| |
| do { |
| if (state->drxd_state != DRXD_STOPPED) |
| return -1; |
| status = ResetECOD(state); |
| if (status < 0) |
| break; |
| if (state->type_A) { |
| status = InitSC(state); |
| if (status < 0) |
| break; |
| } else { |
| status = InitFT(state); |
| if (status < 0) |
| break; |
| status = InitCP(state); |
| if (status < 0) |
| break; |
| status = InitCE(state); |
| if (status < 0) |
| break; |
| status = InitEQ(state); |
| if (status < 0) |
| break; |
| status = InitSC(state); |
| if (status < 0) |
| break; |
| } |
| |
| /* Restore current IF & RF AGC settings */ |
| |
| status = SetCfgIfAgc(state, &state->if_agc_cfg); |
| if (status < 0) |
| break; |
| status = SetCfgRfAgc(state, &state->rf_agc_cfg); |
| if (status < 0) |
| break; |
| |
| mirrorFreqSpect = (state->props.inversion == INVERSION_ON); |
| |
| switch (p->transmission_mode) { |
| default: /* Not set, detect it automatically */ |
| operationMode |= SC_RA_RAM_OP_AUTO_MODE__M; |
| /* try first guess DRX_FFTMODE_8K */ |
| /* fall through */ |
| case TRANSMISSION_MODE_8K: |
| transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K; |
| if (state->type_A) { |
| status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000); |
| if (status < 0) |
| break; |
| qpskSnCeGain = 99; |
| qam16SnCeGain = 83; |
| qam64SnCeGain = 67; |
| } |
| break; |
| case TRANSMISSION_MODE_2K: |
| transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K; |
| if (state->type_A) { |
| status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000); |
| if (status < 0) |
| break; |
| qpskSnCeGain = 97; |
| qam16SnCeGain = 71; |
| qam64SnCeGain = 65; |
| } |
| break; |
| } |
| |
| switch (p->guard_interval) { |
| case GUARD_INTERVAL_1_4: |
| transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4; |
| break; |
| case GUARD_INTERVAL_1_8: |
| transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8; |
| break; |
| case GUARD_INTERVAL_1_16: |
| transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16; |
| break; |
| case GUARD_INTERVAL_1_32: |
| transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32; |
| break; |
| default: /* Not set, detect it automatically */ |
| operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M; |
| /* try first guess 1/4 */ |
| transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4; |
| break; |
| } |
| |
| switch (p->hierarchy) { |
| case HIERARCHY_1: |
| transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1; |
| if (state->type_A) { |
| status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000); |
| if (status < 0) |
| break; |
| |
| qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN; |
| qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1; |
| qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1; |
| |
| qpskIsGainMan = |
| SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE; |
| qam16IsGainMan = |
| SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE; |
| qam64IsGainMan = |
| SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE; |
| |
| qpskIsGainExp = |
| SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE; |
| qam16IsGainExp = |
| SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE; |
| qam64IsGainExp = |
| SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE; |
| } |
| break; |
| |
| case HIERARCHY_2: |
| transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2; |
| if (state->type_A) { |
| status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000); |
| if (status < 0) |
| break; |
| |
| qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN; |
| qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2; |
| qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2; |
| |
| qpskIsGainMan = |
| SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE; |
| qam16IsGainMan = |
| SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE; |
| qam64IsGainMan = |
| SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE; |
| |
| qpskIsGainExp = |
| SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE; |
| qam16IsGainExp = |
| SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE; |
| qam64IsGainExp = |
| SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE; |
| } |
| break; |
| case HIERARCHY_4: |
| transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4; |
| if (state->type_A) { |
| status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000); |
| if (status < 0) |
| break; |
| |
| qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN; |
| qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4; |
| qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4; |
| |
| qpskIsGainMan = |
| SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE; |
| qam16IsGainMan = |
| SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE; |
| qam64IsGainMan = |
| SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE; |
| |
| qpskIsGainExp = |
| SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE; |
| qam16IsGainExp = |
| SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE; |
| qam64IsGainExp = |
| SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE; |
| } |
| break; |
| case HIERARCHY_AUTO: |
| default: |
| /* Not set, detect it automatically, start with none */ |
| operationMode |= SC_RA_RAM_OP_AUTO_HIER__M; |
| transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO; |
| if (state->type_A) { |
| status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000); |
| if (status < 0) |
| break; |
| |
| qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK; |
| qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN; |
| qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN; |
| |
| qpskIsGainMan = |
| SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE; |
| qam16IsGainMan = |
| SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE; |
| qam64IsGainMan = |
| SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE; |
| |
| qpskIsGainExp = |
| SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE; |
| qam16IsGainExp = |
| SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE; |
| qam64IsGainExp = |
| SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE; |
| } |
| break; |
| } |
| status = status; |
| if (status < 0) |
| break; |
| |
| switch (p->modulation) { |
| default: |
| operationMode |= SC_RA_RAM_OP_AUTO_CONST__M; |
| /* try first guess DRX_CONSTELLATION_QAM64 */ |
| /* fall through */ |
| case QAM_64: |
| transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64; |
| if (state->type_A) { |
| status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000); |
| if (status < 0) |
| break; |
| |
| status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000); |
| if (status < 0) |
| break; |
| } |
| break; |
| case QPSK: |
| transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK; |
| if (state->type_A) { |
| status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000); |
| if (status < 0) |
| break; |
| |
| status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000); |
| if (status < 0) |
| break; |
| } |
| break; |
| |
| case QAM_16: |
| transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16; |
| if (state->type_A) { |
| status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000); |
| if (status < 0) |
| break; |
| |
| status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000); |
| if (status < 0) |
| break; |
| } |
| break; |
| |
| } |
| status = status; |
| if (status < 0) |
| break; |
| |
| switch (DRX_CHANNEL_HIGH) { |
| default: |
| case DRX_CHANNEL_AUTO: |
| case DRX_CHANNEL_LOW: |
| transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO; |
| status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000); |
| if (status < 0) |
| break; |
| break; |
| case DRX_CHANNEL_HIGH: |
| transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI; |
| status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000); |
| if (status < 0) |
| break; |
| break; |
| |
| } |
| |
| switch (p->code_rate_HP) { |
| case FEC_1_2: |
| transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2; |
| if (state->type_A) { |
| status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000); |
| if (status < 0) |
| break; |
| } |
| break; |
| default: |
| operationMode |= SC_RA_RAM_OP_AUTO_RATE__M; |
| /* fall through */ |
| case FEC_2_3: |
| transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3; |
| if (state->type_A) { |
| status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000); |
| if (status < 0) |
| break; |
| } |
| break; |
| case FEC_3_4: |
| transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4; |
| if (state->type_A) { |
| status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000); |
| if (status < 0) |
| break; |
| } |
| break; |
| case FEC_5_6: |
| transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6; |
| if (state->type_A) { |
| status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000); |
| if (status < 0) |
| break; |
| } |
| break; |
| case FEC_7_8: |
| transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8; |
| if (state->type_A) { |
| status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000); |
| if (status < 0) |
| break; |
| } |
| break; |
| } |
| status = status; |
| if (status < 0) |
| break; |
| |
| /* First determine real bandwidth (Hz) */ |
| /* Also set delay for impulse noise cruncher (only A2) */ |
| /* Also set parameters for EC_OC fix, note |
| EC_OC_REG_TMD_HIL_MAR is changed |
| by SC for fix for some 8K,1/8 guard but is restored by |
| InitEC and ResetEC |
| functions */ |
| switch (p->bandwidth_hz) { |
| case 0: |
| p->bandwidth_hz = 8000000; |
| /* fall through */ |
| case 8000000: |
| /* (64/7)*(8/8)*1000000 */ |
| bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ; |
| |
| bandwidthParam = 0; |
| status = Write16(state, |
| FE_AG_REG_IND_DEL__A, 50, 0x0000); |
| break; |
| case 7000000: |
| /* (64/7)*(7/8)*1000000 */ |
| bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ; |
| bandwidthParam = 0x4807; /*binary:0100 1000 0000 0111 */ |
| status = Write16(state, |
| FE_AG_REG_IND_DEL__A, 59, 0x0000); |
| break; |
| case 6000000: |
| /* (64/7)*(6/8)*1000000 */ |
| bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ; |
| bandwidthParam = 0x0F07; /*binary: 0000 1111 0000 0111 */ |
| status = Write16(state, |
| FE_AG_REG_IND_DEL__A, 71, 0x0000); |
| break; |
| default: |
| status = -EINVAL; |
| } |
| if (status < 0) |
| break; |
| |
| status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000); |
| if (status < 0) |
| break; |
| |
| { |
| u16 sc_config; |
| status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0); |
| if (status < 0) |
| break; |
| |
| /* enable SLAVE mode in 2k 1/32 to |
| prevent timing change glitches */ |
| if ((p->transmission_mode == TRANSMISSION_MODE_2K) && |
| (p->guard_interval == GUARD_INTERVAL_1_32)) { |
| /* enable slave */ |
| sc_config |= SC_RA_RAM_CONFIG_SLAVE__M; |
| } else { |
| /* disable slave */ |
| sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M; |
| } |
| status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0); |
| if (status < 0) |
| break; |
| } |
| |
| status = SetCfgNoiseCalibration(state, &state->noise_cal); |
| if (status < 0) |
| break; |
| |
| if (state->cscd_state == CSCD_INIT) { |
| /* switch on SRMM scan in SC */ |
| status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000); |
| if (status < 0) |
| break; |
| /* CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/ |
| state->cscd_state = CSCD_SET; |
| } |
| |
| /* Now compute FE_IF_REG_INCR */ |
| /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) => |
| ((SysFreq / BandWidth) * (2^21) ) - (2^23) */ |
| feIfIncr = MulDiv32(state->sys_clock_freq * 1000, |
| (1ULL << 21), bandwidth) - (1 << 23); |
| status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000); |
| if (status < 0) |
| break; |
| /* Bandwidth setting done */ |
| |
| /* Mirror & frequency offset */ |
| SetFrequencyShift(state, off, mirrorFreqSpect); |
| |
| /* Start SC, write channel settings to SC */ |
| |
| /* Enable SC after setting all other parameters */ |
| status = Write16(state, SC_COMM_STATE__A, 0, 0x0000); |
| if (status < 0) |
| break; |
| status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000); |
| if (status < 0) |
| break; |
| |
| /* Write SC parameter registers, operation mode */ |
| #if 1 |
| operationMode = (SC_RA_RAM_OP_AUTO_MODE__M | |
| SC_RA_RAM_OP_AUTO_GUARD__M | |
| SC_RA_RAM_OP_AUTO_CONST__M | |
| SC_RA_RAM_OP_AUTO_HIER__M | |
| SC_RA_RAM_OP_AUTO_RATE__M); |
| #endif |
| status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode); |
| if (status < 0) |
| break; |
| |
| /* Start correct processes to get in lock */ |
| status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN); |
| if (status < 0) |
| break; |
| |
| status = StartOC(state); |
| if (status < 0) |
| break; |
| |
| if (state->operation_mode != OM_Default) { |
| status = StartDiversity(state); |
| if (status < 0) |
| break; |
| } |
| |
| state->drxd_state = DRXD_STARTED; |
| } while (0); |
| |
| return status; |
| } |
| |
| static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency) |
| { |
| u32 ulRfAgcOutputLevel = 0xffffffff; |
| u32 ulRfAgcSettleLevel = 528; /* Optimum value for MT2060 */ |
| u32 ulRfAgcMinLevel = 0; /* Currently unused */ |
| u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */ |
| u32 ulRfAgcSpeed = 0; /* Currently unused */ |
| u32 ulRfAgcMode = 0; /*2; Off */ |
| u32 ulRfAgcR1 = 820; |
| u32 ulRfAgcR2 = 2200; |
| u32 ulRfAgcR3 = 150; |
| u32 ulIfAgcMode = 0; /* Auto */ |
| u32 ulIfAgcOutputLevel = 0xffffffff; |
| u32 ulIfAgcSettleLevel = 0xffffffff; |
| u32 ulIfAgcMinLevel = 0xffffffff; |
| u32 ulIfAgcMaxLevel = 0xffffffff; |
| u32 ulIfAgcSpeed = 0xffffffff; |
| u32 ulIfAgcR1 = 820; |
| u32 ulIfAgcR2 = 2200; |
| u32 ulIfAgcR3 = 150; |
| u32 ulClock = state->config.clock; |
| u32 ulSerialMode = 0; |
| u32 ulEcOcRegOcModeLop = 4; /* Dynamic DTO source */ |
| u32 ulHiI2cDelay = HI_I2C_DELAY; |
| u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY; |
| u32 ulHiI2cPatch = 0; |
| u32 ulEnvironment = APPENV_PORTABLE; |
| u32 ulEnvironmentDiversity = APPENV_MOBILE; |
| u32 ulIFFilter = IFFILTER_SAW; |
| |
| state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO; |
| state->if_agc_cfg.outputLevel = 0; |
| state->if_agc_cfg.settleLevel = 140; |
| state->if_agc_cfg.minOutputLevel = 0; |
| state->if_agc_cfg.maxOutputLevel = 1023; |
| state->if_agc_cfg.speed = 904; |
| |
| if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) { |
| state->if_agc_cfg.ctrlMode = AGC_CTRL_USER; |
| state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel); |
| } |
| |
| if (ulIfAgcMode == 0 && |
| ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX && |
| ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX && |
| ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX && |
| ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) { |
| state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO; |
| state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel); |
| state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel); |
| state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel); |
| state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed); |
| } |
| |
| state->if_agc_cfg.R1 = (u16) (ulIfAgcR1); |
| state->if_agc_cfg.R2 = (u16) (ulIfAgcR2); |
| state->if_agc_cfg.R3 = (u16) (ulIfAgcR3); |
| |
| state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1); |
| state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2); |
| state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3); |
| |
| state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO; |
| /* rest of the RFAgcCfg structure currently unused */ |
| if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) { |
| state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER; |
| state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel); |
| } |
| |
| if (ulRfAgcMode == 0 && |
| ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX && |
| ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX && |
| ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX && |
| ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) { |
| state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO; |
| state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel); |
| state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel); |
| state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel); |
| state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed); |
| } |
| |
| if (ulRfAgcMode == 2) |
| state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF; |
| |
| if (ulEnvironment <= 2) |
| state->app_env_default = (enum app_env) |
| (ulEnvironment); |
| if (ulEnvironmentDiversity <= 2) |
| state->app_env_diversity = (enum app_env) |
| (ulEnvironmentDiversity); |
| |
| if (ulIFFilter == IFFILTER_DISCRETE) { |
| /* discrete filter */ |
| state->noise_cal.cpOpt = 0; |
| state->noise_cal.cpNexpOfs = 40; |
| state->noise_cal.tdCal2k = -40; |
| state->noise_cal.tdCal8k = -24; |
| } else { |
| /* SAW filter */ |
| state->noise_cal.cpOpt = 1; |
| state->noise_cal.cpNexpOfs = 0; |
| state->noise_cal.tdCal2k = -21; |
| state->noise_cal.tdCal8k = -24; |
| } |
| state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop); |
| |
| state->chip_adr = (state->config.demod_address << 1) | 1; |
| switch (ulHiI2cPatch) { |
| case 1: |
| state->m_HiI2cPatch = DRXD_HiI2cPatch_1; |
| break; |
| case 3: |
| state->m_HiI2cPatch = DRXD_HiI2cPatch_3; |
| break; |
| default: |
| state->m_HiI2cPatch = NULL; |
| } |
| |
| /* modify tuner and clock attributes */ |
| state->intermediate_freq = (u16) (IntermediateFrequency / 1000); |
| /* expected system clock frequency in kHz */ |
| state->expected_sys_clock_freq = 48000; |
| /* real system clock frequency in kHz */ |
| state->sys_clock_freq = 48000; |
| state->osc_clock_freq = (u16) ulClock; |
| state->osc_clock_deviation = 0; |
| state->cscd_state = CSCD_INIT; |
| state->drxd_state = DRXD_UNINITIALIZED; |
| |
| state->PGA = 0; |
| state->type_A = 0; |
| state->tuner_mirrors = 0; |
| |
| /* modify MPEG output attributes */ |
| state->insert_rs_byte = state->config.insert_rs_byte; |
| state->enable_parallel = (ulSerialMode != 1); |
| |
| /* Timing div, 250ns/Psys */ |
| /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */ |
| |
| state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) * |
| ulHiI2cDelay) / 1000; |
| /* Bridge delay, uses oscilator clock */ |
| /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */ |
| state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) * |
| ulHiI2cBridgeDelay) / 1000; |
| |
| state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER; |
| /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */ |
| state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO; |
| return 0; |
| } |
| |
| static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size) |
| { |
| int status = 0; |
| u32 driverVersion; |
| |
| if (state->init_done) |
| return 0; |
| |
| CDRXD(state, state->config.IF ? state->config.IF : 36000000); |
| |
| do { |
| state->operation_mode = OM_Default; |
| |
| status = SetDeviceTypeId(state); |
| if (status < 0) |
| break; |
| |
| /* Apply I2c address patch to B1 */ |
| if (!state->type_A && state->m_HiI2cPatch != NULL) { |
| status = WriteTable(state, state->m_HiI2cPatch); |
| if (status < 0) |
| break; |
| } |
| |
| if (state->type_A) { |
| /* HI firmware patch for UIO readout, |
| avoid clearing of result register */ |
| status = Write16(state, 0x43012D, 0x047f, 0); |
| if (status < 0) |
| break; |
| } |
| |
| status = HI_ResetCommand(state); |
| if (status < 0) |
| break; |
| |
| status = StopAllProcessors(state); |
| if (status < 0) |
| break; |
| status = InitCC(state); |
| if (status < 0) |
| break; |
| |
| state->osc_clock_deviation = 0; |
| |
| if (state->config.osc_deviation) |
| state->osc_clock_deviation = |
| state->config.osc_deviation(state->priv, 0, 0); |
| { |
| /* Handle clock deviation */ |
| s32 devB; |
| s32 devA = (s32) (state->osc_clock_deviation) * |
| (s32) (state->expected_sys_clock_freq); |
| /* deviation in kHz */ |
| s32 deviation = (devA / (1000000L)); |
| /* rounding, signed */ |
| if (devA > 0) |
| devB = (2); |
| else |
| devB = (-2); |
| if ((devB * (devA % 1000000L) > 1000000L)) { |
| /* add +1 or -1 */ |
| deviation += (devB / 2); |
| } |
| |
| state->sys_clock_freq = |
| (u16) ((state->expected_sys_clock_freq) + |
| deviation); |
| } |
| status = InitHI(state); |
| if (status < 0) |
| break; |
| status = InitAtomicRead(state); |
| if (status < 0) |
| break; |
| |
| status = EnableAndResetMB(state); |
| if (status < 0) |
| break; |
| if (state->type_A) { |
| status = ResetCEFR(state); |
| if (status < 0) |
| break; |
| } |
| if (fw) { |
| status = DownloadMicrocode(state, fw, fw_size); |
| if (status < 0) |
| break; |
| } else { |
| status = DownloadMicrocode(state, state->microcode, state->microcode_length); |
| if (status < 0) |
| break; |
| } |
| |
| if (state->PGA) { |
| state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; |
| SetCfgPga(state, 0); /* PGA = 0 dB */ |
| } else { |
| state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER; |
| } |
| |
| state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO; |
| |
| status = InitFE(state); |
| if (status < 0) |
| break; |
| status = InitFT(state); |
| if (status < 0) |
| break; |
| status = InitCP(state); |
| if (status < 0) |
| break; |
| status = InitCE(state); |
| if (status < 0) |
| break; |
| status = InitEQ(state); |
| if (status < 0) |
| break; |
| status = InitEC(state); |
| if (status < 0) |
| break; |
| status = InitSC(state); |
| if (status < 0) |
| break; |
| |
| status = SetCfgIfAgc(state, &state->if_agc_cfg); |
| if (status < 0) |
| break; |
| status = SetCfgRfAgc(state, &state->rf_agc_cfg); |
| if (status < 0) |
| break; |
| |
| state->cscd_state = CSCD_INIT; |
| status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); |
| if (status < 0) |
| break; |
| status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); |
| if (status < 0) |
| break; |
| |
| driverVersion = (((VERSION_MAJOR / 10) << 4) + |
| (VERSION_MAJOR % 10)) << 24; |
| driverVersion += (((VERSION_MINOR / 10) << 4) + |
| (VERSION_MINOR % 10)) << 16; |
| driverVersion += ((VERSION_PATCH / 1000) << 12) + |
| ((VERSION_PATCH / 100) << 8) + |
| ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10); |
| |
| status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0); |
| if (status < 0) |
| break; |
| |
| status = StopOC(state); |
| if (status < 0) |
| break; |
| |
| state->drxd_state = DRXD_STOPPED; |
| state->init_done = 1; |
| status = 0; |
| } while (0); |
| return status; |
| } |
| |
| static int DRXD_status(struct drxd_state *state, u32 *pLockStatus) |
| { |
| DRX_GetLockStatus(state, pLockStatus); |
| |
| /*if (*pLockStatus&DRX_LOCK_MPEG) */ |
| if (*pLockStatus & DRX_LOCK_FEC) { |
| ConfigureMPEGOutput(state, 1); |
| /* Get status again, in case we have MPEG lock now */ |
| /*DRX_GetLockStatus(state, pLockStatus); */ |
| } |
| |
| return 0; |
| } |
| |
| /****************************************************************************/ |
| /****************************************************************************/ |
| /****************************************************************************/ |
| |
| static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength) |
| { |
| struct drxd_state *state = fe->demodulator_priv; |
| u32 value; |
| int res; |
| |
| res = ReadIFAgc(state, &value); |
| if (res < 0) |
| *strength = 0; |
| else |
| *strength = 0xffff - (value << 4); |
| return 0; |
| } |
| |
| static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status) |
| { |
| struct drxd_state *state = fe->demodulator_priv; |
| u32 lock; |
| |
| DRXD_status(state, &lock); |
| *status = 0; |
| /* No MPEG lock in V255 firmware, bug ? */ |
| #if 1 |
| if (lock & DRX_LOCK_MPEG) |
| *status |= FE_HAS_LOCK; |
| #else |
| if (lock & DRX_LOCK_FEC) |
| *status |= FE_HAS_LOCK; |
| #endif |
| if (lock & DRX_LOCK_FEC) |
| *status |= FE_HAS_VITERBI | FE_HAS_SYNC; |
| if (lock & DRX_LOCK_DEMOD) |
| *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL; |
| |
| return 0; |
| } |
| |
| static int drxd_init(struct dvb_frontend *fe) |
| { |
| struct drxd_state *state = fe->demodulator_priv; |
| |
| return DRXD_init(state, NULL, 0); |
| } |
| |
| static int drxd_config_i2c(struct dvb_frontend *fe, int onoff) |
| { |
| struct drxd_state *state = fe->demodulator_priv; |
| |
| if (state->config.disable_i2c_gate_ctrl == 1) |
| return 0; |
| |
| return DRX_ConfigureI2CBridge(state, onoff); |
| } |
| |
| static int drxd_get_tune_settings(struct dvb_frontend *fe, |
| struct dvb_frontend_tune_settings *sets) |
| { |
| sets->min_delay_ms = 10000; |
| sets->max_drift = 0; |
| sets->step_size = 0; |
| return 0; |
| } |
| |
| static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber) |
| { |
| *ber = 0; |
| return 0; |
| } |
| |
| static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr) |
| { |
| *snr = 0; |
| return 0; |
| } |
| |
| static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks) |
| { |
| *ucblocks = 0; |
| return 0; |
| } |
| |
| static int drxd_sleep(struct dvb_frontend *fe) |
| { |
| struct drxd_state *state = fe->demodulator_priv; |
| |
| ConfigureMPEGOutput(state, 0); |
| return 0; |
| } |
| |
| static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) |
| { |
| return drxd_config_i2c(fe, enable); |
| } |
| |
| static int drxd_set_frontend(struct dvb_frontend *fe) |
| { |
| struct dtv_frontend_properties *p = &fe->dtv_property_cache; |
| struct drxd_state *state = fe->demodulator_priv; |
| s32 off = 0; |
| |
| state->props = *p; |
| DRX_Stop(state); |
| |
| if (fe->ops.tuner_ops.set_params) { |
| fe->ops.tuner_ops.set_params(fe); |
| if (fe->ops.i2c_gate_ctrl) |
| fe->ops.i2c_gate_ctrl(fe, 0); |
| } |
| |
| msleep(200); |
| |
| return DRX_Start(state, off); |
| } |
| |
| static void drxd_release(struct dvb_frontend *fe) |
| { |
| struct drxd_state *state = fe->demodulator_priv; |
| |
| kfree(state); |
| } |
| |
| static const struct dvb_frontend_ops drxd_ops = { |
| .delsys = { SYS_DVBT}, |
| .info = { |
| .name = "Micronas DRXD DVB-T", |
| .frequency_min = 47125000, |
| .frequency_max = 855250000, |
| .frequency_stepsize = 166667, |
| .frequency_tolerance = 0, |
| .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | |
| FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | |
| FE_CAN_FEC_AUTO | |
| FE_CAN_QAM_16 | FE_CAN_QAM_64 | |
| FE_CAN_QAM_AUTO | |
| FE_CAN_TRANSMISSION_MODE_AUTO | |
| FE_CAN_GUARD_INTERVAL_AUTO | |
| FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS}, |
| |
| .release = drxd_release, |
| .init = drxd_init, |
| .sleep = drxd_sleep, |
| .i2c_gate_ctrl = drxd_i2c_gate_ctrl, |
| |
| .set_frontend = drxd_set_frontend, |
| .get_tune_settings = drxd_get_tune_settings, |
| |
| .read_status = drxd_read_status, |
| .read_ber = drxd_read_ber, |
| .read_signal_strength = drxd_read_signal_strength, |
| .read_snr = drxd_read_snr, |
| .read_ucblocks = drxd_read_ucblocks, |
| }; |
| |
| struct dvb_frontend *drxd_attach(const struct drxd_config *config, |
| void *priv, struct i2c_adapter *i2c, |
| struct device *dev) |
| { |
| struct drxd_state *state = NULL; |
| |
| state = kzalloc(sizeof(*state), GFP_KERNEL); |
| if (!state) |
| return NULL; |
| |
| state->ops = drxd_ops; |
| state->dev = dev; |
| state->config = *config; |
| state->i2c = i2c; |
| state->priv = priv; |
| |
| mutex_init(&state->mutex); |
| |
| if (Read16(state, 0, NULL, 0) < 0) |
| goto error; |
| |
| state->frontend.ops = drxd_ops; |
| state->frontend.demodulator_priv = state; |
| ConfigureMPEGOutput(state, 0); |
| /* add few initialization to allow gate control */ |
| CDRXD(state, state->config.IF ? state->config.IF : 36000000); |
| InitHI(state); |
| |
| return &state->frontend; |
| |
| error: |
| printk(KERN_ERR "drxd: not found\n"); |
| kfree(state); |
| return NULL; |
| } |
| EXPORT_SYMBOL(drxd_attach); |
| |
| MODULE_DESCRIPTION("DRXD driver"); |
| MODULE_AUTHOR("Micronas"); |
| MODULE_LICENSE("GPL"); |