| /* |
| * Implement the default iomap interfaces |
| * |
| * (C) Copyright 2004 Linus Torvalds |
| * (C) Copyright 2006 Ralf Baechle <ralf@linux-mips.org> |
| * (C) Copyright 2007 MIPS Technologies, Inc. |
| * written by Ralf Baechle <ralf@linux-mips.org> |
| */ |
| #include <linux/pci.h> |
| #include <linux/module.h> |
| #include <asm/io.h> |
| |
| /* |
| * Read/write from/to an (offsettable) iomem cookie. It might be a PIO |
| * access or a MMIO access, these functions don't care. The info is |
| * encoded in the hardware mapping set up by the mapping functions |
| * (or the cookie itself, depending on implementation and hw). |
| * |
| * The generic routines don't assume any hardware mappings, and just |
| * encode the PIO/MMIO as part of the cookie. They coldly assume that |
| * the MMIO IO mappings are not in the low address range. |
| * |
| * Architectures for which this is not true can't use this generic |
| * implementation and should do their own copy. |
| */ |
| |
| #define PIO_MASK 0x0ffffUL |
| |
| unsigned int ioread8(void __iomem *addr) |
| { |
| return readb(addr); |
| } |
| |
| EXPORT_SYMBOL(ioread8); |
| |
| unsigned int ioread16(void __iomem *addr) |
| { |
| return readw(addr); |
| } |
| |
| EXPORT_SYMBOL(ioread16); |
| |
| unsigned int ioread16be(void __iomem *addr) |
| { |
| return be16_to_cpu(__raw_readw(addr)); |
| } |
| |
| EXPORT_SYMBOL(ioread16be); |
| |
| unsigned int ioread32(void __iomem *addr) |
| { |
| return readl(addr); |
| } |
| |
| EXPORT_SYMBOL(ioread32); |
| |
| unsigned int ioread32be(void __iomem *addr) |
| { |
| return be32_to_cpu(__raw_readl(addr)); |
| } |
| |
| EXPORT_SYMBOL(ioread32be); |
| |
| void iowrite8(u8 val, void __iomem *addr) |
| { |
| writeb(val, addr); |
| } |
| |
| EXPORT_SYMBOL(iowrite8); |
| |
| void iowrite16(u16 val, void __iomem *addr) |
| { |
| writew(val, addr); |
| } |
| |
| EXPORT_SYMBOL(iowrite16); |
| |
| void iowrite16be(u16 val, void __iomem *addr) |
| { |
| __raw_writew(cpu_to_be16(val), addr); |
| } |
| |
| EXPORT_SYMBOL(iowrite16be); |
| |
| void iowrite32(u32 val, void __iomem *addr) |
| { |
| writel(val, addr); |
| } |
| |
| EXPORT_SYMBOL(iowrite32); |
| |
| void iowrite32be(u32 val, void __iomem *addr) |
| { |
| __raw_writel(cpu_to_be32(val), addr); |
| } |
| |
| EXPORT_SYMBOL(iowrite32be); |
| |
| /* |
| * These are the "repeat MMIO read/write" functions. |
| * Note the "__raw" accesses, since we don't want to |
| * convert to CPU byte order. We write in "IO byte |
| * order" (we also don't have IO barriers). |
| */ |
| static inline void mmio_insb(void __iomem *addr, u8 *dst, int count) |
| { |
| while (--count >= 0) { |
| u8 data = __raw_readb(addr); |
| *dst = data; |
| dst++; |
| } |
| } |
| |
| static inline void mmio_insw(void __iomem *addr, u16 *dst, int count) |
| { |
| while (--count >= 0) { |
| u16 data = __raw_readw(addr); |
| *dst = data; |
| dst++; |
| } |
| } |
| |
| static inline void mmio_insl(void __iomem *addr, u32 *dst, int count) |
| { |
| while (--count >= 0) { |
| u32 data = __raw_readl(addr); |
| *dst = data; |
| dst++; |
| } |
| } |
| |
| static inline void mmio_outsb(void __iomem *addr, const u8 *src, int count) |
| { |
| while (--count >= 0) { |
| __raw_writeb(*src, addr); |
| src++; |
| } |
| } |
| |
| static inline void mmio_outsw(void __iomem *addr, const u16 *src, int count) |
| { |
| while (--count >= 0) { |
| __raw_writew(*src, addr); |
| src++; |
| } |
| } |
| |
| static inline void mmio_outsl(void __iomem *addr, const u32 *src, int count) |
| { |
| while (--count >= 0) { |
| __raw_writel(*src, addr); |
| src++; |
| } |
| } |
| |
| void ioread8_rep(void __iomem *addr, void *dst, unsigned long count) |
| { |
| mmio_insb(addr, dst, count); |
| } |
| |
| EXPORT_SYMBOL(ioread8_rep); |
| |
| void ioread16_rep(void __iomem *addr, void *dst, unsigned long count) |
| { |
| mmio_insw(addr, dst, count); |
| } |
| |
| EXPORT_SYMBOL(ioread16_rep); |
| |
| void ioread32_rep(void __iomem *addr, void *dst, unsigned long count) |
| { |
| mmio_insl(addr, dst, count); |
| } |
| |
| EXPORT_SYMBOL(ioread32_rep); |
| |
| void iowrite8_rep(void __iomem *addr, const void *src, unsigned long count) |
| { |
| mmio_outsb(addr, src, count); |
| } |
| |
| EXPORT_SYMBOL(iowrite8_rep); |
| |
| void iowrite16_rep(void __iomem *addr, const void *src, unsigned long count) |
| { |
| mmio_outsw(addr, src, count); |
| } |
| |
| EXPORT_SYMBOL(iowrite16_rep); |
| |
| void iowrite32_rep(void __iomem *addr, const void *src, unsigned long count) |
| { |
| mmio_outsl(addr, src, count); |
| } |
| |
| EXPORT_SYMBOL(iowrite32_rep); |
| |
| /* |
| * Create a virtual mapping cookie for an IO port range |
| * |
| * This uses the same mapping are as the in/out family which has to be setup |
| * by the platform initialization code. |
| * |
| * Just to make matters somewhat more interesting on MIPS systems with |
| * multiple host bridge each will have it's own ioport address space. |
| */ |
| static void __iomem *ioport_map_legacy(unsigned long port, unsigned int nr) |
| { |
| return (void __iomem *) (mips_io_port_base + port); |
| } |
| |
| void __iomem *ioport_map(unsigned long port, unsigned int nr) |
| { |
| if (port > PIO_MASK) |
| return NULL; |
| |
| return ioport_map_legacy(port, nr); |
| } |
| |
| EXPORT_SYMBOL(ioport_map); |
| |
| void ioport_unmap(void __iomem *addr) |
| { |
| /* Nothing to do */ |
| } |
| |
| EXPORT_SYMBOL(ioport_unmap); |