| /* |
| * Parisc performance counters |
| * Copyright (C) 2001 Randolph Chung <tausq@debian.org> |
| * |
| * This code is derived, with permission, from HP/UX sources. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| /* |
| * Edited comment from original sources: |
| * |
| * This driver programs the PCX-U/PCX-W performance counters |
| * on the PA-RISC 2.0 chips. The driver keeps all images now |
| * internally to the kernel to hopefully eliminate the possiblity |
| * of a bad image halting the CPU. Also, there are different |
| * images for the PCX-W and later chips vs the PCX-U chips. |
| * |
| * Only 1 process is allowed to access the driver at any time, |
| * so the only protection that is needed is at open and close. |
| * A variable "perf_enabled" is used to hold the state of the |
| * driver. The spinlock "perf_lock" is used to protect the |
| * modification of the state during open/close operations so |
| * multiple processes don't get into the driver simultaneously. |
| * |
| * This driver accesses the processor directly vs going through |
| * the PDC INTRIGUE calls. This is done to eliminate bugs introduced |
| * in various PDC revisions. The code is much more maintainable |
| * and reliable this way vs having to debug on every version of PDC |
| * on every box. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/proc_fs.h> |
| #include <linux/miscdevice.h> |
| #include <linux/spinlock.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/perf.h> |
| #include <asm/parisc-device.h> |
| #include <asm/processor.h> |
| #include <asm/runway.h> |
| #include <asm/io.h> /* for __raw_read() */ |
| |
| #include "perf_images.h" |
| |
| #define MAX_RDR_WORDS 24 |
| #define PERF_VERSION 2 /* derived from hpux's PI v2 interface */ |
| |
| /* definition of RDR regs */ |
| struct rdr_tbl_ent { |
| uint16_t width; |
| uint8_t num_words; |
| uint8_t write_control; |
| }; |
| |
| static int perf_processor_interface __read_mostly = UNKNOWN_INTF; |
| static int perf_enabled __read_mostly = 0; |
| static spinlock_t perf_lock; |
| struct parisc_device *cpu_device __read_mostly = NULL; |
| |
| /* RDRs to write for PCX-W */ |
| static int perf_rdrs_W[] = |
| { 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 }; |
| |
| /* RDRs to write for PCX-U */ |
| static int perf_rdrs_U[] = |
| { 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 }; |
| |
| /* RDR register descriptions for PCX-W */ |
| static struct rdr_tbl_ent perf_rdr_tbl_W[] = { |
| { 19, 1, 8 }, /* RDR 0 */ |
| { 16, 1, 16 }, /* RDR 1 */ |
| { 72, 2, 0 }, /* RDR 2 */ |
| { 81, 2, 0 }, /* RDR 3 */ |
| { 328, 6, 0 }, /* RDR 4 */ |
| { 160, 3, 0 }, /* RDR 5 */ |
| { 336, 6, 0 }, /* RDR 6 */ |
| { 164, 3, 0 }, /* RDR 7 */ |
| { 0, 0, 0 }, /* RDR 8 */ |
| { 35, 1, 0 }, /* RDR 9 */ |
| { 6, 1, 0 }, /* RDR 10 */ |
| { 18, 1, 0 }, /* RDR 11 */ |
| { 13, 1, 0 }, /* RDR 12 */ |
| { 8, 1, 0 }, /* RDR 13 */ |
| { 8, 1, 0 }, /* RDR 14 */ |
| { 8, 1, 0 }, /* RDR 15 */ |
| { 1530, 24, 0 }, /* RDR 16 */ |
| { 16, 1, 0 }, /* RDR 17 */ |
| { 4, 1, 0 }, /* RDR 18 */ |
| { 0, 0, 0 }, /* RDR 19 */ |
| { 152, 3, 24 }, /* RDR 20 */ |
| { 152, 3, 24 }, /* RDR 21 */ |
| { 233, 4, 48 }, /* RDR 22 */ |
| { 233, 4, 48 }, /* RDR 23 */ |
| { 71, 2, 0 }, /* RDR 24 */ |
| { 71, 2, 0 }, /* RDR 25 */ |
| { 11, 1, 0 }, /* RDR 26 */ |
| { 18, 1, 0 }, /* RDR 27 */ |
| { 128, 2, 0 }, /* RDR 28 */ |
| { 0, 0, 0 }, /* RDR 29 */ |
| { 16, 1, 0 }, /* RDR 30 */ |
| { 16, 1, 0 }, /* RDR 31 */ |
| }; |
| |
| /* RDR register descriptions for PCX-U */ |
| static struct rdr_tbl_ent perf_rdr_tbl_U[] = { |
| { 19, 1, 8 }, /* RDR 0 */ |
| { 32, 1, 16 }, /* RDR 1 */ |
| { 20, 1, 0 }, /* RDR 2 */ |
| { 0, 0, 0 }, /* RDR 3 */ |
| { 344, 6, 0 }, /* RDR 4 */ |
| { 176, 3, 0 }, /* RDR 5 */ |
| { 336, 6, 0 }, /* RDR 6 */ |
| { 0, 0, 0 }, /* RDR 7 */ |
| { 0, 0, 0 }, /* RDR 8 */ |
| { 0, 0, 0 }, /* RDR 9 */ |
| { 28, 1, 0 }, /* RDR 10 */ |
| { 33, 1, 0 }, /* RDR 11 */ |
| { 0, 0, 0 }, /* RDR 12 */ |
| { 230, 4, 0 }, /* RDR 13 */ |
| { 32, 1, 0 }, /* RDR 14 */ |
| { 128, 2, 0 }, /* RDR 15 */ |
| { 1494, 24, 0 }, /* RDR 16 */ |
| { 18, 1, 0 }, /* RDR 17 */ |
| { 4, 1, 0 }, /* RDR 18 */ |
| { 0, 0, 0 }, /* RDR 19 */ |
| { 158, 3, 24 }, /* RDR 20 */ |
| { 158, 3, 24 }, /* RDR 21 */ |
| { 194, 4, 48 }, /* RDR 22 */ |
| { 194, 4, 48 }, /* RDR 23 */ |
| { 71, 2, 0 }, /* RDR 24 */ |
| { 71, 2, 0 }, /* RDR 25 */ |
| { 28, 1, 0 }, /* RDR 26 */ |
| { 33, 1, 0 }, /* RDR 27 */ |
| { 88, 2, 0 }, /* RDR 28 */ |
| { 32, 1, 0 }, /* RDR 29 */ |
| { 24, 1, 0 }, /* RDR 30 */ |
| { 16, 1, 0 }, /* RDR 31 */ |
| }; |
| |
| /* |
| * A non-zero write_control in the above tables is a byte offset into |
| * this array. |
| */ |
| static uint64_t perf_bitmasks[] = { |
| 0x0000000000000000ul, /* first dbl word must be zero */ |
| 0xfdffe00000000000ul, /* RDR0 bitmask */ |
| 0x003f000000000000ul, /* RDR1 bitmask */ |
| 0x00fffffffffffffful, /* RDR20-RDR21 bitmask (152 bits) */ |
| 0xfffffffffffffffful, |
| 0xfffffffc00000000ul, |
| 0xfffffffffffffffful, /* RDR22-RDR23 bitmask (233 bits) */ |
| 0xfffffffffffffffful, |
| 0xfffffffffffffffcul, |
| 0xff00000000000000ul |
| }; |
| |
| /* |
| * Write control bitmasks for Pa-8700 processor given |
| * somethings have changed slightly. |
| */ |
| static uint64_t perf_bitmasks_piranha[] = { |
| 0x0000000000000000ul, /* first dbl word must be zero */ |
| 0xfdffe00000000000ul, /* RDR0 bitmask */ |
| 0x003f000000000000ul, /* RDR1 bitmask */ |
| 0x00fffffffffffffful, /* RDR20-RDR21 bitmask (158 bits) */ |
| 0xfffffffffffffffful, |
| 0xfffffffc00000000ul, |
| 0xfffffffffffffffful, /* RDR22-RDR23 bitmask (210 bits) */ |
| 0xfffffffffffffffful, |
| 0xfffffffffffffffful, |
| 0xfffc000000000000ul |
| }; |
| |
| static uint64_t *bitmask_array; /* array of bitmasks to use */ |
| |
| /****************************************************************************** |
| * Function Prototypes |
| *****************************************************************************/ |
| static int perf_config(uint32_t *image_ptr); |
| static int perf_release(struct inode *inode, struct file *file); |
| static int perf_open(struct inode *inode, struct file *file); |
| static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos); |
| static ssize_t perf_write(struct file *file, const char __user *buf, size_t count, |
| loff_t *ppos); |
| static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg); |
| static void perf_start_counters(void); |
| static int perf_stop_counters(uint32_t *raddr); |
| static struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num); |
| static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer); |
| static int perf_rdr_clear(uint32_t rdr_num); |
| static int perf_write_image(uint64_t *memaddr); |
| static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer); |
| |
| /* External Assembly Routines */ |
| extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num, uint16_t width); |
| extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num, uint16_t width); |
| extern void perf_rdr_shift_out_W (uint32_t rdr_num, uint64_t buffer); |
| extern void perf_rdr_shift_out_U (uint32_t rdr_num, uint64_t buffer); |
| extern void perf_intrigue_enable_perf_counters (void); |
| extern void perf_intrigue_disable_perf_counters (void); |
| |
| /****************************************************************************** |
| * Function Definitions |
| *****************************************************************************/ |
| |
| |
| /* |
| * configure: |
| * |
| * Configure the cpu with a given data image. First turn off the counters, |
| * then download the image, then turn the counters back on. |
| */ |
| static int perf_config(uint32_t *image_ptr) |
| { |
| long error; |
| uint32_t raddr[4]; |
| |
| /* Stop the counters*/ |
| error = perf_stop_counters(raddr); |
| if (error != 0) { |
| printk("perf_config: perf_stop_counters = %ld\n", error); |
| return -EINVAL; |
| } |
| |
| printk("Preparing to write image\n"); |
| /* Write the image to the chip */ |
| error = perf_write_image((uint64_t *)image_ptr); |
| if (error != 0) { |
| printk("perf_config: DOWNLOAD = %ld\n", error); |
| return -EINVAL; |
| } |
| |
| printk("Preparing to start counters\n"); |
| |
| /* Start the counters */ |
| perf_start_counters(); |
| |
| return sizeof(uint32_t); |
| } |
| |
| /* |
| * Open the device and initialize all of its memory. The device is only |
| * opened once, but can be "queried" by multiple processes that know its |
| * file descriptor. |
| */ |
| static int perf_open(struct inode *inode, struct file *file) |
| { |
| spin_lock(&perf_lock); |
| if (perf_enabled) { |
| spin_unlock(&perf_lock); |
| return -EBUSY; |
| } |
| perf_enabled = 1; |
| spin_unlock(&perf_lock); |
| |
| return 0; |
| } |
| |
| /* |
| * Close the device. |
| */ |
| static int perf_release(struct inode *inode, struct file *file) |
| { |
| spin_lock(&perf_lock); |
| perf_enabled = 0; |
| spin_unlock(&perf_lock); |
| |
| return 0; |
| } |
| |
| /* |
| * Read does nothing for this driver |
| */ |
| static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos) |
| { |
| return 0; |
| } |
| |
| /* |
| * write: |
| * |
| * This routine downloads the image to the chip. It must be |
| * called on the processor that the download should happen |
| * on. |
| */ |
| static ssize_t perf_write(struct file *file, const char __user *buf, size_t count, |
| loff_t *ppos) |
| { |
| int err; |
| size_t image_size; |
| uint32_t image_type; |
| uint32_t interface_type; |
| uint32_t test; |
| |
| if (perf_processor_interface == ONYX_INTF) |
| image_size = PCXU_IMAGE_SIZE; |
| else if (perf_processor_interface == CUDA_INTF) |
| image_size = PCXW_IMAGE_SIZE; |
| else |
| return -EFAULT; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| |
| if (count != sizeof(uint32_t)) |
| return -EIO; |
| |
| if ((err = copy_from_user(&image_type, buf, sizeof(uint32_t))) != 0) |
| return err; |
| |
| /* Get the interface type and test type */ |
| interface_type = (image_type >> 16) & 0xffff; |
| test = (image_type & 0xffff); |
| |
| /* Make sure everything makes sense */ |
| |
| /* First check the machine type is correct for |
| the requested image */ |
| if (((perf_processor_interface == CUDA_INTF) && |
| (interface_type != CUDA_INTF)) || |
| ((perf_processor_interface == ONYX_INTF) && |
| (interface_type != ONYX_INTF))) |
| return -EINVAL; |
| |
| /* Next check to make sure the requested image |
| is valid */ |
| if (((interface_type == CUDA_INTF) && |
| (test >= MAX_CUDA_IMAGES)) || |
| ((interface_type == ONYX_INTF) && |
| (test >= MAX_ONYX_IMAGES))) |
| return -EINVAL; |
| |
| /* Copy the image into the processor */ |
| if (interface_type == CUDA_INTF) |
| return perf_config(cuda_images[test]); |
| else |
| return perf_config(onyx_images[test]); |
| |
| return count; |
| } |
| |
| /* |
| * Patch the images that need to know the IVA addresses. |
| */ |
| static void perf_patch_images(void) |
| { |
| #if 0 /* FIXME!! */ |
| /* |
| * NOTE: this routine is VERY specific to the current TLB image. |
| * If the image is changed, this routine might also need to be changed. |
| */ |
| extern void $i_itlb_miss_2_0(); |
| extern void $i_dtlb_miss_2_0(); |
| extern void PA2_0_iva(); |
| |
| /* |
| * We can only use the lower 32-bits, the upper 32-bits should be 0 |
| * anyway given this is in the kernel |
| */ |
| uint32_t itlb_addr = (uint32_t)&($i_itlb_miss_2_0); |
| uint32_t dtlb_addr = (uint32_t)&($i_dtlb_miss_2_0); |
| uint32_t IVAaddress = (uint32_t)&PA2_0_iva; |
| |
| if (perf_processor_interface == ONYX_INTF) { |
| /* clear last 2 bytes */ |
| onyx_images[TLBMISS][15] &= 0xffffff00; |
| /* set 2 bytes */ |
| onyx_images[TLBMISS][15] |= (0x000000ff&((dtlb_addr) >> 24)); |
| onyx_images[TLBMISS][16] = (dtlb_addr << 8)&0xffffff00; |
| onyx_images[TLBMISS][17] = itlb_addr; |
| |
| /* clear last 2 bytes */ |
| onyx_images[TLBHANDMISS][15] &= 0xffffff00; |
| /* set 2 bytes */ |
| onyx_images[TLBHANDMISS][15] |= (0x000000ff&((dtlb_addr) >> 24)); |
| onyx_images[TLBHANDMISS][16] = (dtlb_addr << 8)&0xffffff00; |
| onyx_images[TLBHANDMISS][17] = itlb_addr; |
| |
| /* clear last 2 bytes */ |
| onyx_images[BIG_CPI][15] &= 0xffffff00; |
| /* set 2 bytes */ |
| onyx_images[BIG_CPI][15] |= (0x000000ff&((dtlb_addr) >> 24)); |
| onyx_images[BIG_CPI][16] = (dtlb_addr << 8)&0xffffff00; |
| onyx_images[BIG_CPI][17] = itlb_addr; |
| |
| onyx_images[PANIC][15] &= 0xffffff00; /* clear last 2 bytes */ |
| onyx_images[PANIC][15] |= (0x000000ff&((IVAaddress) >> 24)); /* set 2 bytes */ |
| onyx_images[PANIC][16] = (IVAaddress << 8)&0xffffff00; |
| |
| |
| } else if (perf_processor_interface == CUDA_INTF) { |
| /* Cuda interface */ |
| cuda_images[TLBMISS][16] = |
| (cuda_images[TLBMISS][16]&0xffff0000) | |
| ((dtlb_addr >> 8)&0x0000ffff); |
| cuda_images[TLBMISS][17] = |
| ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff); |
| cuda_images[TLBMISS][18] = (itlb_addr << 16)&0xffff0000; |
| |
| cuda_images[TLBHANDMISS][16] = |
| (cuda_images[TLBHANDMISS][16]&0xffff0000) | |
| ((dtlb_addr >> 8)&0x0000ffff); |
| cuda_images[TLBHANDMISS][17] = |
| ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff); |
| cuda_images[TLBHANDMISS][18] = (itlb_addr << 16)&0xffff0000; |
| |
| cuda_images[BIG_CPI][16] = |
| (cuda_images[BIG_CPI][16]&0xffff0000) | |
| ((dtlb_addr >> 8)&0x0000ffff); |
| cuda_images[BIG_CPI][17] = |
| ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff); |
| cuda_images[BIG_CPI][18] = (itlb_addr << 16)&0xffff0000; |
| } else { |
| /* Unknown type */ |
| } |
| #endif |
| } |
| |
| |
| /* |
| * ioctl routine |
| * All routines effect the processor that they are executed on. Thus you |
| * must be running on the processor that you wish to change. |
| */ |
| |
| static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
| { |
| long error_start; |
| uint32_t raddr[4]; |
| int error = 0; |
| |
| lock_kernel(); |
| switch (cmd) { |
| |
| case PA_PERF_ON: |
| /* Start the counters */ |
| perf_start_counters(); |
| break; |
| |
| case PA_PERF_OFF: |
| error_start = perf_stop_counters(raddr); |
| if (error_start != 0) { |
| printk(KERN_ERR "perf_off: perf_stop_counters = %ld\n", error_start); |
| error = -EFAULT; |
| break; |
| } |
| |
| /* copy out the Counters */ |
| if (copy_to_user((void __user *)arg, raddr, |
| sizeof (raddr)) != 0) { |
| error = -EFAULT; |
| break; |
| } |
| break; |
| |
| case PA_PERF_VERSION: |
| /* Return the version # */ |
| error = put_user(PERF_VERSION, (int *)arg); |
| break; |
| |
| default: |
| error = -ENOTTY; |
| } |
| |
| unlock_kernel(); |
| |
| return error; |
| } |
| |
| static struct file_operations perf_fops = { |
| .llseek = no_llseek, |
| .read = perf_read, |
| .write = perf_write, |
| .unlocked_ioctl = perf_ioctl, |
| .compat_ioctl = perf_ioctl, |
| .open = perf_open, |
| .release = perf_release |
| }; |
| |
| static struct miscdevice perf_dev = { |
| MISC_DYNAMIC_MINOR, |
| PA_PERF_DEV, |
| &perf_fops |
| }; |
| |
| /* |
| * Initialize the module |
| */ |
| static int __init perf_init(void) |
| { |
| int ret; |
| |
| /* Determine correct processor interface to use */ |
| bitmask_array = perf_bitmasks; |
| |
| if (boot_cpu_data.cpu_type == pcxu || |
| boot_cpu_data.cpu_type == pcxu_) { |
| perf_processor_interface = ONYX_INTF; |
| } else if (boot_cpu_data.cpu_type == pcxw || |
| boot_cpu_data.cpu_type == pcxw_ || |
| boot_cpu_data.cpu_type == pcxw2 || |
| boot_cpu_data.cpu_type == mako) { |
| perf_processor_interface = CUDA_INTF; |
| if (boot_cpu_data.cpu_type == pcxw2 || |
| boot_cpu_data.cpu_type == mako) |
| bitmask_array = perf_bitmasks_piranha; |
| } else { |
| perf_processor_interface = UNKNOWN_INTF; |
| printk("Performance monitoring counters not supported on this processor\n"); |
| return -ENODEV; |
| } |
| |
| ret = misc_register(&perf_dev); |
| if (ret) { |
| printk(KERN_ERR "Performance monitoring counters: " |
| "cannot register misc device.\n"); |
| return ret; |
| } |
| |
| /* Patch the images to match the system */ |
| perf_patch_images(); |
| |
| spin_lock_init(&perf_lock); |
| |
| /* TODO: this only lets us access the first cpu.. what to do for SMP? */ |
| cpu_device = cpu_data[0].dev; |
| printk("Performance monitoring counters enabled for %s\n", |
| cpu_data[0].dev->name); |
| |
| return 0; |
| } |
| |
| /* |
| * perf_start_counters(void) |
| * |
| * Start the counters. |
| */ |
| static void perf_start_counters(void) |
| { |
| /* Enable performance monitor counters */ |
| perf_intrigue_enable_perf_counters(); |
| } |
| |
| /* |
| * perf_stop_counters |
| * |
| * Stop the performance counters and save counts |
| * in a per_processor array. |
| */ |
| static int perf_stop_counters(uint32_t *raddr) |
| { |
| uint64_t userbuf[MAX_RDR_WORDS]; |
| |
| /* Disable performance counters */ |
| perf_intrigue_disable_perf_counters(); |
| |
| if (perf_processor_interface == ONYX_INTF) { |
| uint64_t tmp64; |
| /* |
| * Read the counters |
| */ |
| if (!perf_rdr_read_ubuf(16, userbuf)) |
| return -13; |
| |
| /* Counter0 is bits 1398 thru 1429 */ |
| tmp64 = (userbuf[21] << 22) & 0x00000000ffc00000; |
| tmp64 |= (userbuf[22] >> 42) & 0x00000000003fffff; |
| /* OR sticky0 (bit 1430) to counter0 bit 32 */ |
| tmp64 |= (userbuf[22] >> 10) & 0x0000000080000000; |
| raddr[0] = (uint32_t)tmp64; |
| |
| /* Counter1 is bits 1431 thru 1462 */ |
| tmp64 = (userbuf[22] >> 9) & 0x00000000ffffffff; |
| /* OR sticky1 (bit 1463) to counter1 bit 32 */ |
| tmp64 |= (userbuf[22] << 23) & 0x0000000080000000; |
| raddr[1] = (uint32_t)tmp64; |
| |
| /* Counter2 is bits 1464 thru 1495 */ |
| tmp64 = (userbuf[22] << 24) & 0x00000000ff000000; |
| tmp64 |= (userbuf[23] >> 40) & 0x0000000000ffffff; |
| /* OR sticky2 (bit 1496) to counter2 bit 32 */ |
| tmp64 |= (userbuf[23] >> 8) & 0x0000000080000000; |
| raddr[2] = (uint32_t)tmp64; |
| |
| /* Counter3 is bits 1497 thru 1528 */ |
| tmp64 = (userbuf[23] >> 7) & 0x00000000ffffffff; |
| /* OR sticky3 (bit 1529) to counter3 bit 32 */ |
| tmp64 |= (userbuf[23] << 25) & 0x0000000080000000; |
| raddr[3] = (uint32_t)tmp64; |
| |
| /* |
| * Zero out the counters |
| */ |
| |
| /* |
| * The counters and sticky-bits comprise the last 132 bits |
| * (1398 - 1529) of RDR16 on a U chip. We'll zero these |
| * out the easy way: zero out last 10 bits of dword 21, |
| * all of dword 22 and 58 bits (plus 6 don't care bits) of |
| * dword 23. |
| */ |
| userbuf[21] &= 0xfffffffffffffc00ul; /* 0 to last 10 bits */ |
| userbuf[22] = 0; |
| userbuf[23] = 0; |
| |
| /* |
| * Write back the zero'ed bytes + the image given |
| * the read was destructive. |
| */ |
| perf_rdr_write(16, userbuf); |
| } else { |
| |
| /* |
| * Read RDR-15 which contains the counters and sticky bits |
| */ |
| if (!perf_rdr_read_ubuf(15, userbuf)) { |
| return -13; |
| } |
| |
| /* |
| * Clear out the counters |
| */ |
| perf_rdr_clear(15); |
| |
| /* |
| * Copy the counters |
| */ |
| raddr[0] = (uint32_t)((userbuf[0] >> 32) & 0x00000000ffffffffUL); |
| raddr[1] = (uint32_t)(userbuf[0] & 0x00000000ffffffffUL); |
| raddr[2] = (uint32_t)((userbuf[1] >> 32) & 0x00000000ffffffffUL); |
| raddr[3] = (uint32_t)(userbuf[1] & 0x00000000ffffffffUL); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * perf_rdr_get_entry |
| * |
| * Retrieve a pointer to the description of what this |
| * RDR contains. |
| */ |
| static struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num) |
| { |
| if (perf_processor_interface == ONYX_INTF) { |
| return &perf_rdr_tbl_U[rdr_num]; |
| } else { |
| return &perf_rdr_tbl_W[rdr_num]; |
| } |
| } |
| |
| /* |
| * perf_rdr_read_ubuf |
| * |
| * Read the RDR value into the buffer specified. |
| */ |
| static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer) |
| { |
| uint64_t data, data_mask = 0; |
| uint32_t width, xbits, i; |
| struct rdr_tbl_ent *tentry; |
| |
| tentry = perf_rdr_get_entry(rdr_num); |
| if ((width = tentry->width) == 0) |
| return 0; |
| |
| /* Clear out buffer */ |
| i = tentry->num_words; |
| while (i--) { |
| buffer[i] = 0; |
| } |
| |
| /* Check for bits an even number of 64 */ |
| if ((xbits = width & 0x03f) != 0) { |
| data_mask = 1; |
| data_mask <<= (64 - xbits); |
| data_mask--; |
| } |
| |
| /* Grab all of the data */ |
| i = tentry->num_words; |
| while (i--) { |
| |
| if (perf_processor_interface == ONYX_INTF) { |
| data = perf_rdr_shift_in_U(rdr_num, width); |
| } else { |
| data = perf_rdr_shift_in_W(rdr_num, width); |
| } |
| if (xbits) { |
| buffer[i] |= (data << (64 - xbits)); |
| if (i) { |
| buffer[i-1] |= ((data >> xbits) & data_mask); |
| } |
| } else { |
| buffer[i] = data; |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * perf_rdr_clear |
| * |
| * Zero out the given RDR register |
| */ |
| static int perf_rdr_clear(uint32_t rdr_num) |
| { |
| struct rdr_tbl_ent *tentry; |
| int32_t i; |
| |
| tentry = perf_rdr_get_entry(rdr_num); |
| |
| if (tentry->width == 0) { |
| return -1; |
| } |
| |
| i = tentry->num_words; |
| while (i--) { |
| if (perf_processor_interface == ONYX_INTF) { |
| perf_rdr_shift_out_U(rdr_num, 0UL); |
| } else { |
| perf_rdr_shift_out_W(rdr_num, 0UL); |
| } |
| } |
| |
| return 0; |
| } |
| |
| |
| /* |
| * perf_write_image |
| * |
| * Write the given image out to the processor |
| */ |
| static int perf_write_image(uint64_t *memaddr) |
| { |
| uint64_t buffer[MAX_RDR_WORDS]; |
| uint64_t *bptr; |
| uint32_t dwords; |
| uint32_t *intrigue_rdr; |
| uint64_t *intrigue_bitmask, tmp64; |
| void __iomem *runway; |
| struct rdr_tbl_ent *tentry; |
| int i; |
| |
| /* Clear out counters */ |
| if (perf_processor_interface == ONYX_INTF) { |
| |
| perf_rdr_clear(16); |
| |
| /* Toggle performance monitor */ |
| perf_intrigue_enable_perf_counters(); |
| perf_intrigue_disable_perf_counters(); |
| |
| intrigue_rdr = perf_rdrs_U; |
| } else { |
| perf_rdr_clear(15); |
| intrigue_rdr = perf_rdrs_W; |
| } |
| |
| /* Write all RDRs */ |
| while (*intrigue_rdr != -1) { |
| tentry = perf_rdr_get_entry(*intrigue_rdr); |
| perf_rdr_read_ubuf(*intrigue_rdr, buffer); |
| bptr = &buffer[0]; |
| dwords = tentry->num_words; |
| if (tentry->write_control) { |
| intrigue_bitmask = &bitmask_array[tentry->write_control >> 3]; |
| while (dwords--) { |
| tmp64 = *intrigue_bitmask & *memaddr++; |
| tmp64 |= (~(*intrigue_bitmask++)) & *bptr; |
| *bptr++ = tmp64; |
| } |
| } else { |
| while (dwords--) { |
| *bptr++ = *memaddr++; |
| } |
| } |
| |
| perf_rdr_write(*intrigue_rdr, buffer); |
| intrigue_rdr++; |
| } |
| |
| /* |
| * Now copy out the Runway stuff which is not in RDRs |
| */ |
| |
| if (cpu_device == NULL) |
| { |
| printk(KERN_ERR "write_image: cpu_device not yet initialized!\n"); |
| return -1; |
| } |
| |
| runway = ioremap(cpu_device->hpa.start, 4096); |
| |
| /* Merge intrigue bits into Runway STATUS 0 */ |
| tmp64 = __raw_readq(runway + RUNWAY_STATUS) & 0xffecfffffffffffful; |
| __raw_writeq(tmp64 | (*memaddr++ & 0x0013000000000000ul), |
| runway + RUNWAY_STATUS); |
| |
| /* Write RUNWAY DEBUG registers */ |
| for (i = 0; i < 8; i++) { |
| __raw_writeq(*memaddr++, runway + RUNWAY_DEBUG); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * perf_rdr_write |
| * |
| * Write the given RDR register with the contents |
| * of the given buffer. |
| */ |
| static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer) |
| { |
| struct rdr_tbl_ent *tentry; |
| int32_t i; |
| |
| printk("perf_rdr_write\n"); |
| tentry = perf_rdr_get_entry(rdr_num); |
| if (tentry->width == 0) { return; } |
| |
| i = tentry->num_words; |
| while (i--) { |
| if (perf_processor_interface == ONYX_INTF) { |
| perf_rdr_shift_out_U(rdr_num, buffer[i]); |
| } else { |
| perf_rdr_shift_out_W(rdr_num, buffer[i]); |
| } |
| } |
| printk("perf_rdr_write done\n"); |
| } |
| |
| module_init(perf_init); |